about summary refs log tree commit diff
path: root/gn3
diff options
context:
space:
mode:
authorFrederick Muriuki Muriithi2021-11-12 04:07:42 +0300
committerFrederick Muriuki Muriithi2021-11-12 04:07:42 +0300
commitd1617bd8af25bf7c7777be7a634559fd31b491ad (patch)
tree9565d4fcca4fa553dc21a9543353a8b29357ab4a /gn3
parentd895eea22ab908c11f4ebb77f99518367879b1f6 (diff)
parent85405fe6875358d3bb98b03621271d5909dd393f (diff)
downloadgenenetwork3-d1617bd8af25bf7c7777be7a634559fd31b491ad.tar.gz
Merge branch 'main' of github.com:genenetwork/genenetwork3 into partial-correlations
Diffstat (limited to 'gn3')
-rw-r--r--gn3/authentication.py67
-rw-r--r--gn3/computations/correlations.py30
-rw-r--r--gn3/computations/correlations2.py36
-rw-r--r--gn3/heatmaps.py6
4 files changed, 86 insertions, 53 deletions
diff --git a/gn3/authentication.py b/gn3/authentication.py
index 7bc7b77..6719631 100644
--- a/gn3/authentication.py
+++ b/gn3/authentication.py
@@ -1,9 +1,12 @@
 """Methods for interacting with gn-proxy."""
 import functools
 import json
+import uuid
+import datetime
+
 from urllib.parse import urljoin
 from enum import Enum, unique
-from typing import Dict, Union
+from typing import Dict, List, Optional, Union
 
 from redis import Redis
 import requests
@@ -95,3 +98,65 @@ def get_highest_user_access_role(
     for key, value in json.loads(response.content).items():
         access_role[key] = max(map(lambda role: role_mapping[role], value))
     return access_role
+
+
+def get_groups_by_user_uid(user_uid: str, conn: Redis) -> Dict:
+    """Given a user uid, get the groups in which they are a member or admin of.
+
+    Args:
+      - user_uid: A user's unique id
+      - conn: A redis connection
+
+    Returns:
+      - A dictionary containing the list of groups the user is part of e.g.:
+        {"admin": [], "member": ["ce0dddd1-6c50-4587-9eec-6c687a54ad86"]}
+    """
+    admin = []
+    member = []
+    for uuid, group_info in conn.hgetall("groups").items():
+        group_info = json.loads(group_info)
+        group_info["uuid"] = uuid
+        if user_uid in group_info.get('admins'):
+            admin.append(group_info)
+        if user_uid in group_info.get('members'):
+            member.append(group_info)
+    return {
+        "admin": admin,
+        "member": member,
+    }
+
+
+def get_user_info_by_key(key: str, value: str,
+                         conn: Redis) -> Optional[Dict]:
+    """Given a key, get a user's information if value is matched"""
+    if key != "user_id":
+        for uuid, user_info in conn.hgetall("users").items():
+            user_info = json.loads(user_info)
+            if (key in user_info and
+                user_info.get(key) == value):
+                user_info["user_id"] = uuid
+                return user_info
+    elif key == "user_id":
+        if user_info := conn.hget("users", value):
+            user_info = json.loads(user_info)
+            user_info["user_id"] = value
+            return user_info
+    return None
+
+
+def create_group(conn: Redis, group_name: Optional[str],
+                 admin_user_uids: List = [],
+                 member_user_uids: List = []) -> Optional[Dict]:
+    """Create a group given the group name, members and admins of that group."""
+    if group_name and bool(admin_user_uids + member_user_uids):
+        timestamp = datetime.datetime.utcnow().strftime('%b %d %Y %I:%M%p')
+        group = {
+            "id": (group_id := str(uuid.uuid4())),
+            "admins": admin_user_uids,
+            "members": member_user_uids,
+            "name": group_name,
+            "created_timestamp": timestamp,
+            "changed_timestamp": timestamp,
+        }
+        conn.hset("groups", group_id, json.dumps(group))
+        return group
diff --git a/gn3/computations/correlations.py b/gn3/computations/correlations.py
index c930df0..c5c56db 100644
--- a/gn3/computations/correlations.py
+++ b/gn3/computations/correlations.py
@@ -1,6 +1,7 @@
 """module contains code for correlations"""
 import math
 import multiprocessing
+from contextlib import closing
 
 from typing import List
 from typing import Tuple
@@ -49,13 +50,9 @@ def normalize_values(a_values: List,
     ([2.3, 4.1, 5], [3.4, 6.2, 4.1], 3)
 
     """
-    a_new = []
-    b_new = []
     for a_val, b_val in zip(a_values, b_values):
         if (a_val and b_val is not None):
-            a_new.append(a_val)
-            b_new.append(b_val)
-    return a_new, b_new, len(a_new)
+            yield a_val, b_val
 
 
 def compute_corr_coeff_p_value(primary_values: List, target_values: List,
@@ -81,8 +78,10 @@ def compute_sample_r_correlation(trait_name, corr_method, trait_vals,
     correlation coeff and p value
 
     """
-    (sanitized_traits_vals, sanitized_target_vals,
-     num_overlap) = normalize_values(trait_vals, target_samples_vals)
+
+    sanitized_traits_vals, sanitized_target_vals = list(
+        zip(*list(normalize_values(trait_vals, target_samples_vals))))
+    num_overlap = len(sanitized_traits_vals)
 
     if num_overlap > 5:
 
@@ -114,13 +113,9 @@ def filter_shared_sample_keys(this_samplelist,
     filter the values using the shared keys
 
     """
-    this_vals = []
-    target_vals = []
     for key, value in target_samplelist.items():
         if key in this_samplelist:
-            target_vals.append(value)
-            this_vals.append(this_samplelist[key])
-    return (this_vals, target_vals)
+            yield this_samplelist[key], value
 
 
 def fast_compute_all_sample_correlation(this_trait,
@@ -139,9 +134,10 @@ def fast_compute_all_sample_correlation(this_trait,
     for target_trait in target_dataset:
         trait_name = target_trait.get("trait_id")
         target_trait_data = target_trait["trait_sample_data"]
-        processed_values.append((trait_name, corr_method, *filter_shared_sample_keys(
-            this_trait_samples, target_trait_data)))
-    with multiprocessing.Pool(4) as pool:
+        processed_values.append((trait_name, corr_method,
+                                 list(zip(*list(filter_shared_sample_keys(
+                                     this_trait_samples, target_trait_data))))))
+    with closing(multiprocessing.Pool()) as pool:
         results = pool.starmap(compute_sample_r_correlation, processed_values)
 
         for sample_correlation in results:
@@ -172,8 +168,8 @@ def compute_all_sample_correlation(this_trait,
     for target_trait in target_dataset:
         trait_name = target_trait.get("trait_id")
         target_trait_data = target_trait["trait_sample_data"]
-        this_vals, target_vals = filter_shared_sample_keys(
-            this_trait_samples, target_trait_data)
+        this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
+            this_trait_samples, target_trait_data))))
 
         sample_correlation = compute_sample_r_correlation(
             trait_name=trait_name,
diff --git a/gn3/computations/correlations2.py b/gn3/computations/correlations2.py
index 93db3fa..d0222ae 100644
--- a/gn3/computations/correlations2.py
+++ b/gn3/computations/correlations2.py
@@ -6,45 +6,21 @@ FUNCTIONS:
 compute_correlation:
     TODO: Describe what the function does..."""
 
-from math import sqrt
-from functools import reduce
+from scipy import stats
 ## From GN1: mostly for clustering and heatmap generation
 
 def __items_with_values(dbdata, userdata):
     """Retains only corresponding items in the data items that are not `None` values.
     This should probably be renamed to something sensible"""
-    def both_not_none(item1, item2):
-        """Check that both items are not the value `None`."""
-        if (item1 is not None) and (item2 is not None):
-            return (item1, item2)
-        return None
-    def split_lists(accumulator, item):
-        """Separate the 'x' and 'y' items."""
-        return [accumulator[0] + [item[0]], accumulator[1] + [item[1]]]
-    return reduce(
-        split_lists,
-        filter(lambda x: x is not None, map(both_not_none, dbdata, userdata)),
-        [[], []])
+    filtered = [x for x in zip(dbdata, userdata) if x[0] is not None and x[1] is not None]
+    return tuple(zip(*filtered)) if filtered else ([], [])
 
 def compute_correlation(dbdata, userdata):
-    """Compute some form of correlation.
+    """Compute the Pearson correlation coefficient.
 
     This is extracted from
     https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/utility/webqtlUtil.py#L622-L647
     """
     x_items, y_items = __items_with_values(dbdata, userdata)
-    if len(x_items) < 6:
-        return (0.0, len(x_items))
-    meanx = sum(x_items)/len(x_items)
-    meany = sum(y_items)/len(y_items)
-    def cal_corr_vals(acc, item):
-        xitem, yitem = item
-        return [
-            acc[0] + ((xitem - meanx) * (yitem - meany)),
-            acc[1] + ((xitem - meanx) * (xitem - meanx)),
-            acc[2] + ((yitem - meany) * (yitem - meany))]
-    xyd, sxd, syd = reduce(cal_corr_vals, zip(x_items, y_items), [0.0, 0.0, 0.0])
-    try:
-        return ((xyd/(sqrt(sxd)*sqrt(syd))), len(x_items))
-    except ZeroDivisionError:
-        return(0, len(x_items))
+    correlation = stats.pearsonr(x_items, y_items)[0] if len(x_items) >= 6 else 0
+    return (correlation, len(x_items))
diff --git a/gn3/heatmaps.py b/gn3/heatmaps.py
index bf9dfd1..f0af409 100644
--- a/gn3/heatmaps.py
+++ b/gn3/heatmaps.py
@@ -64,11 +64,7 @@ def cluster_traits(traits_data_list: Sequence[Dict]):
     def __compute_corr(tdata_i, tdata_j):
         if tdata_i[0] == tdata_j[0]:
             return 0.0
-        corr_vals = compute_correlation(tdata_i[1], tdata_j[1])
-        corr = corr_vals[0]
-        if (1 - corr) < 0:
-            return 0.0
-        return 1 - corr
+        return 1 - compute_correlation(tdata_i[1], tdata_j[1])[0]
 
     def __cluster(tdata_i):
         return tuple(