aboutsummaryrefslogtreecommitdiff
path: root/gn3/db
diff options
context:
space:
mode:
authorzsloan2021-11-11 11:23:39 -0600
committerGitHub2021-11-11 11:23:39 -0600
commit8c77af63efae6f06d7c7c3269fc0e41811a8037a (patch)
tree9ffa4b84fd36f09e772db3e218bc980999324c41 /gn3/db
parent607c6e627c23c1bce3b199b145855182ab51b211 (diff)
parent249b85102063debfeeb1b0565956059b8a3af1cf (diff)
downloadgenenetwork3-8c77af63efae6f06d7c7c3269fc0e41811a8037a.tar.gz
Merge branch 'main' into feature/add_rqtl_pairscan
Diffstat (limited to 'gn3/db')
-rw-r--r--gn3/db/correlations.py381
-rw-r--r--gn3/db/species.py27
-rw-r--r--gn3/db/traits.py93
3 files changed, 501 insertions, 0 deletions
diff --git a/gn3/db/correlations.py b/gn3/db/correlations.py
new file mode 100644
index 0000000..06b3310
--- /dev/null
+++ b/gn3/db/correlations.py
@@ -0,0 +1,381 @@
+"""
+This module will hold functions that are used in the (partial) correlations
+feature to access the database to retrieve data needed for computations.
+"""
+
+from functools import reduce
+from typing import Any, Dict, Tuple
+
+from gn3.random import random_string
+from gn3.data_helpers import partition_all
+from gn3.db.species import translate_to_mouse_gene_id
+
+from gn3.computations.partial_correlations import correlations_of_all_tissue_traits
+
+def get_filename(target_db_name: str, conn: Any) -> str:
+ """
+ Retrieve the name of the reference database file with which correlations are
+ computed.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getFileName` function in
+ GeneNetwork1.
+ """
+ with conn.cursor() as cursor:
+ cursor.execute(
+ "SELECT Id, FullName from ProbeSetFreeze WHERE Name-%s",
+ target_db_name)
+ result = cursor.fetchone()
+ if result:
+ return "ProbeSetFreezeId_{tid}_FullName_{fname}.txt".format(
+ tid=result[0],
+ fname=result[1].replace(' ', '_').replace('/', '_'))
+
+ return ""
+
+def build_temporary_literature_table(
+ species: str, gene_id: int, return_number: int, conn: Any) -> str:
+ """
+ Build and populate a temporary table to hold the literature correlation data
+ to be used in computations.
+
+ "This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getTempLiteratureTable` function in
+ GeneNetwork1.
+ """
+ def __translated_species_id(row, cursor):
+ if species == "mouse":
+ return row[1]
+ query = {
+ "rat": "SELECT rat FROM GeneIDXRef WHERE mouse=%s",
+ "human": "SELECT human FROM GeneIDXRef WHERE mouse=%d"}
+ if species in query.keys():
+ cursor.execute(query[species], row[1])
+ record = cursor.fetchone()
+ if record:
+ return record[0]
+ return None
+ return None
+
+ temp_table_name = f"TOPLITERATURE{random_string(8)}"
+ with conn.cursor as cursor:
+ mouse_geneid = translate_to_mouse_gene_id(species, gene_id, conn)
+ data_query = (
+ "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
+ "WHERE GeneId1 = %(mouse_gene_id)s "
+ "UNION ALL "
+ "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
+ "WHERE GeneId2 = %(mouse_gene_id)s "
+ "AND GeneId1 != %(mouse_gene_id)s")
+ cursor.execute(
+ (f"CREATE TEMPORARY TABLE {temp_table_name} ("
+ "GeneId1 int(12) unsigned, "
+ "GeneId2 int(12) unsigned PRIMARY KEY, "
+ "value double)"))
+ cursor.execute(data_query, mouse_gene_id=mouse_geneid)
+ literature_data = [
+ {"GeneId1": row[0], "GeneId2": row[1], "value": row[2]}
+ for row in cursor.fetchall()
+ if __translated_species_id(row, cursor)]
+
+ cursor.execute(
+ (f"INSERT INTO {temp_table_name} "
+ "VALUES (%(GeneId1)s, %(GeneId2)s, %(value)s)"),
+ literature_data[0:(2 * return_number)])
+
+ return temp_table_name
+
+def fetch_geno_literature_correlations(temp_table: str) -> str:
+ """
+ Helper function for `fetch_literature_correlations` below, to build query
+ for `Geno*` tables.
+ """
+ return (
+ f"SELECT Geno.Name, {temp_table}.value "
+ "FROM Geno, GenoXRef, GenoFreeze "
+ f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId "
+ "WHERE ProbeSet.GeneId IS NOT NULL "
+ f"AND {temp_table}.value IS NOT NULL "
+ "AND GenoXRef.GenoFreezeId = GenoFreeze.Id "
+ "AND GenoFreeze.Name = %(db_name)s "
+ "AND Geno.Id=GenoXRef.GenoId "
+ "ORDER BY Geno.Id")
+
+def fetch_probeset_literature_correlations(temp_table: str) -> str:
+ """
+ Helper function for `fetch_literature_correlations` below, to build query
+ for `ProbeSet*` tables.
+ """
+ return (
+ f"SELECT ProbeSet.Name, {temp_table}.value "
+ "FROM ProbeSet, ProbeSetXRef, ProbeSetFreeze "
+ "LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId "
+ "WHERE ProbeSet.GeneId IS NOT NULL "
+ "AND {temp_table}.value IS NOT NULL "
+ "AND ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
+ "AND ProbeSetFreeze.Name = %(db_name)s "
+ "AND ProbeSet.Id=ProbeSetXRef.ProbeSetId "
+ "ORDER BY ProbeSet.Id")
+
+def fetch_literature_correlations(
+ species: str, gene_id: int, dataset: dict, return_number: int,
+ conn: Any) -> dict:
+ """
+ Gather the literature correlation data and pair it with trait id string(s).
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchLitCorrelations` function in
+ GeneNetwork1.
+ """
+ temp_table = build_temporary_literature_table(
+ species, gene_id, return_number, conn)
+ query_fns = {
+ "Geno": fetch_geno_literature_correlations,
+ # "Temp": fetch_temp_literature_correlations,
+ # "Publish": fetch_publish_literature_correlations,
+ "ProbeSet": fetch_probeset_literature_correlations}
+ with conn.cursor as cursor:
+ cursor.execute(
+ query_fns[dataset["dataset_type"]](temp_table),
+ db_name=dataset["dataset_name"])
+ results = cursor.fetchall()
+ cursor.execute("DROP TEMPORARY TABLE %s", temp_table)
+ return dict(results)
+
+def fetch_symbol_value_pair_dict(
+ symbol_list: Tuple[str, ...], data_id_dict: dict,
+ conn: Any) -> Dict[str, Tuple[float, ...]]:
+ """
+ Map each gene symbols to the corresponding tissue expression data.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.getSymbolValuePairDict` function
+ in GeneNetwork1.
+ """
+ data_ids = {
+ symbol: data_id_dict.get(symbol) for symbol in symbol_list
+ if data_id_dict.get(symbol) is not None
+ }
+ query = "SELECT Id, value FROM TissueProbeSetData WHERE Id IN %(data_ids)s"
+ with conn.cursor() as cursor:
+ cursor.execute(
+ query,
+ data_ids=tuple(data_ids.values()))
+ value_results = cursor.fetchall()
+ return {
+ key: tuple(row[1] for row in value_results if row[0] == key)
+ for key in data_ids.keys()
+ }
+
+ return {}
+
+def fetch_gene_symbol_tissue_value_dict(
+ symbol_list: Tuple[str, ...], data_id_dict: dict, conn: Any,
+ limit_num: int = 1000) -> dict:#getGeneSymbolTissueValueDict
+ """
+ Wrapper function for `gn3.db.correlations.fetch_symbol_value_pair_dict`.
+
+ This is a migrations of the
+ `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDict` in
+ GeneNetwork1.
+ """
+ count = len(symbol_list)
+ if count != 0 and count <= limit_num:
+ return fetch_symbol_value_pair_dict(symbol_list, data_id_dict, conn)
+
+ if count > limit_num:
+ return {
+ key: value for dct in [
+ fetch_symbol_value_pair_dict(sl, data_id_dict, conn)
+ for sl in partition_all(limit_num, symbol_list)]
+ for key, value in dct.items()
+ }
+
+ return {}
+
+def fetch_tissue_probeset_xref_info(
+ gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+ conn: Any) -> Tuple[tuple, dict, dict, dict, dict, dict, dict]:
+ """
+ Retrieve the ProbeSet XRef information for tissues.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.getTissueProbeSetXRefInfo`
+ function in GeneNetwork1."""
+ with conn.cursor() as cursor:
+ if len(gene_name_list) == 0:
+ query = (
+ "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, "
+ "t.description, t.Probe_Target_Description "
+ "FROM "
+ "("
+ " SELECT Symbol, max(Mean) AS maxmean "
+ " FROM TissueProbeSetXRef "
+ " WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+ " AND Symbol != '' "
+ " AND Symbol IS NOT NULL "
+ " GROUP BY Symbol"
+ ") AS x "
+ "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
+ "AND t.Mean = x.maxmean")
+ cursor.execute(query, probeset_freeze_id=probeset_freeze_id)
+ else:
+ query = (
+ "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, "
+ "t.description, t.Probe_Target_Description "
+ "FROM "
+ "("
+ " SELECT Symbol, max(Mean) AS maxmean "
+ " FROM TissueProbeSetXRef "
+ " WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+ " AND Symbol in %(symbols)s "
+ " GROUP BY Symbol"
+ ") AS x "
+ "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
+ "AND t.Mean = x.maxmean")
+ cursor.execute(
+ query, probeset_freeze_id=probeset_freeze_id,
+ symbols=tuple(gene_name_list))
+
+ results = cursor.fetchall()
+
+ return reduce(
+ lambda acc, item: (
+ acc[0] + (item[0],),
+ {**acc[1], item[0].lower(): item[1]},
+ {**acc[1], item[0].lower(): item[2]},
+ {**acc[1], item[0].lower(): item[3]},
+ {**acc[1], item[0].lower(): item[4]},
+ {**acc[1], item[0].lower(): item[5]},
+ {**acc[1], item[0].lower(): item[6]}),
+ results or tuple(),
+ (tuple(), {}, {}, {}, {}, {}, {}))
+
+def fetch_gene_symbol_tissue_value_dict_for_trait(
+ gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+ conn: Any) -> dict:
+ """
+ Fetches a map of the gene symbols to the tissue values.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDictForTrait`
+ function in GeneNetwork1.
+ """
+ xref_info = fetch_tissue_probeset_xref_info(
+ gene_name_list, probeset_freeze_id, conn)
+ if xref_info[0]:
+ return fetch_gene_symbol_tissue_value_dict(xref_info[0], xref_info[2], conn)
+ return {}
+
+def build_temporary_tissue_correlations_table(
+ trait_symbol: str, probeset_freeze_id: int, method: str,
+ return_number: int, conn: Any) -> str:
+ """
+ Build a temporary table to hold the tissue correlations data.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getTempTissueCorrTable` function in
+ GeneNetwork1."""
+ # We should probably pass the `correlations_of_all_tissue_traits` function
+ # as an argument to this function and get rid of the one call immediately
+ # following this comment.
+ symbol_corr_dict, symbol_p_value_dict = correlations_of_all_tissue_traits(
+ fetch_gene_symbol_tissue_value_dict_for_trait(
+ (trait_symbol,), probeset_freeze_id, conn),
+ fetch_gene_symbol_tissue_value_dict_for_trait(
+ tuple(), probeset_freeze_id, conn),
+ method)
+
+ symbol_corr_list = sorted(
+ symbol_corr_dict.items(), key=lambda key_val: key_val[1])
+
+ temp_table_name = f"TOPTISSUE{random_string(8)}"
+ create_query = (
+ "CREATE TEMPORARY TABLE {temp_table_name}"
+ "(Symbol varchar(100) PRIMARY KEY, Correlation float, PValue float)")
+ insert_query = (
+ f"INSERT INTO {temp_table_name}(Symbol, Correlation, PValue) "
+ " VALUES (%(symbol)s, %(correlation)s, %(pvalue)s)")
+
+ with conn.cursor() as cursor:
+ cursor.execute(create_query)
+ cursor.execute(
+ insert_query,
+ tuple({
+ "symbol": symbol,
+ "correlation": corr,
+ "pvalue": symbol_p_value_dict[symbol]
+ } for symbol, corr in symbol_corr_list[0: 2 * return_number]))
+
+ return temp_table_name
+
+def fetch_tissue_correlations(# pylint: disable=R0913
+ dataset: dict, trait_symbol: str, probeset_freeze_id: int, method: str,
+ return_number: int, conn: Any) -> dict:
+ """
+ Pair tissue correlations data with a trait id string.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchTissueCorrelations` function in
+ GeneNetwork1.
+ """
+ temp_table = build_temporary_tissue_correlations_table(
+ trait_symbol, probeset_freeze_id, method, return_number, conn)
+ with conn.cursor() as cursor:
+ cursor.execute(
+ (
+ f"SELECT ProbeSet.Name, {temp_table}.Correlation, "
+ f"{temp_table}.PValue "
+ "FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze) "
+ "LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol "
+ "WHERE ProbeSetFreeze.Name = %(db_name) "
+ "AND ProbeSetFreeze.Id=ProbeSetXRef.ProbeSetFreezeId "
+ "AND ProbeSet.Id = ProbeSetXRef.ProbeSetId "
+ "AND ProbeSet.Symbol IS NOT NULL "
+ "AND %s.Correlation IS NOT NULL"),
+ db_name=dataset["dataset_name"])
+ results = cursor.fetchall()
+ cursor.execute("DROP TEMPORARY TABLE %s", temp_table)
+ return {
+ trait_name: (tiss_corr, tiss_p_val)
+ for trait_name, tiss_corr, tiss_p_val in results}
+
+def check_for_literature_info(conn: Any, geneid: int) -> bool:
+ """
+ Checks the database to find out whether the trait with `geneid` has any
+ associated literature.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.checkForLitInfo` function in
+ GeneNetwork1.
+ """
+ query = "SELECT 1 FROM LCorrRamin3 WHERE GeneId1=%s LIMIT 1"
+ with conn.cursor() as cursor:
+ cursor.execute(query, geneid)
+ result = cursor.fetchone()
+ if result:
+ return True
+
+ return False
+
+def check_symbol_for_tissue_correlation(
+ conn: Any, tissue_probeset_freeze_id: int, symbol: str = "") -> bool:
+ """
+ Checks whether a symbol has any associated tissue correlations.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.checkSymbolForTissueCorr` function
+ in GeneNetwork1.
+ """
+ query = (
+ "SELECT 1 FROM TissueProbeSetXRef "
+ "WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+ "AND Symbol=%(symbol)s LIMIT 1")
+ with conn.cursor() as cursor:
+ cursor.execute(
+ query, probeset_freeze_id=tissue_probeset_freeze_id, symbol=symbol)
+ result = cursor.fetchone()
+ if result:
+ return True
+
+ return False
diff --git a/gn3/db/species.py b/gn3/db/species.py
index 0deae4e..702a9a8 100644
--- a/gn3/db/species.py
+++ b/gn3/db/species.py
@@ -30,3 +30,30 @@ def get_chromosome(name: str, is_species: bool, conn: Any) -> Optional[Tuple]:
with conn.cursor() as cursor:
cursor.execute(_sql)
return cursor.fetchall()
+
+def translate_to_mouse_gene_id(species: str, geneid: int, conn: Any) -> int:
+ """
+ Translate rat or human geneid to mouse geneid
+
+ This is a migration of the
+ `web.webqtl.correlation/CorrelationPage.translateToMouseGeneID` function in
+ GN1
+ """
+ assert species in ("rat", "mouse", "human"), "Invalid species"
+ if geneid is None:
+ return 0
+
+ if species == "mouse":
+ return geneid
+
+ with conn.cursor as cursor:
+ query = {
+ "rat": "SELECT mouse FROM GeneIDXRef WHERE rat = %s",
+ "human": "SELECT mouse FROM GeneIDXRef WHERE human = %s"
+ }
+ cursor.execute(query[species], geneid)
+ translated_gene_id = cursor.fetchone()
+ if translated_gene_id:
+ return translated_gene_id[0]
+
+ return 0 # default if all else fails
diff --git a/gn3/db/traits.py b/gn3/db/traits.py
index f2673c8..1c6aaa7 100644
--- a/gn3/db/traits.py
+++ b/gn3/db/traits.py
@@ -1,12 +1,81 @@
"""This class contains functions relating to trait data manipulation"""
import os
+from functools import reduce
from typing import Any, Dict, Union, Sequence
+
from gn3.settings import TMPDIR
from gn3.random import random_string
from gn3.function_helpers import compose
from gn3.db.datasets import retrieve_trait_dataset
+def export_trait_data(
+ trait_data: dict, samplelist: Sequence[str], dtype: str = "val",
+ var_exists: bool = False, n_exists: bool = False):
+ """
+ Export data according to `samplelist`. Mostly used in calculating
+ correlations.
+
+ DESCRIPTION:
+ Migrated from
+ https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L166-L211
+
+ PARAMETERS
+ trait: (dict)
+ The dictionary of key-value pairs representing a trait
+ samplelist: (list)
+ A list of sample names
+ dtype: (str)
+ ... verify what this is ...
+ var_exists: (bool)
+ A flag indicating existence of variance
+ n_exists: (bool)
+ A flag indicating existence of ndata
+ """
+ def __export_all_types(tdata, sample):
+ sample_data = []
+ if tdata[sample]["value"]:
+ sample_data.append(tdata[sample]["value"])
+ if var_exists:
+ if tdata[sample]["variance"]:
+ sample_data.append(tdata[sample]["variance"])
+ else:
+ sample_data.append(None)
+ if n_exists:
+ if tdata[sample]["ndata"]:
+ sample_data.append(tdata[sample]["ndata"])
+ else:
+ sample_data.append(None)
+ else:
+ if var_exists and n_exists:
+ sample_data += [None, None, None]
+ elif var_exists or n_exists:
+ sample_data += [None, None]
+ else:
+ sample_data.append(None)
+
+ return tuple(sample_data)
+
+ def __exporter(accumulator, sample):
+ # pylint: disable=[R0911]
+ if sample in trait_data["data"]:
+ if dtype == "val":
+ return accumulator + (trait_data["data"][sample]["value"], )
+ if dtype == "var":
+ return accumulator + (trait_data["data"][sample]["variance"], )
+ if dtype == "N":
+ return accumulator + (trait_data["data"][sample]["ndata"], )
+ if dtype == "all":
+ return accumulator + __export_all_types(trait_data["data"], sample)
+ raise KeyError("Type `%s` is incorrect" % dtype)
+ if var_exists and n_exists:
+ return accumulator + (None, None, None)
+ if var_exists or n_exists:
+ return accumulator + (None, None)
+ return accumulator + (None,)
+
+ return reduce(__exporter, samplelist, tuple())
+
def get_trait_csv_sample_data(conn: Any,
trait_name: int, phenotype_id: int):
"""Fetch a trait and return it as a csv string"""
@@ -674,3 +743,27 @@ def generate_traits_filename(base_path: str = TMPDIR):
"""Generate a unique filename for use with generated traits files."""
return "{}/traits_test_file_{}.txt".format(
os.path.abspath(base_path), random_string(10))
+
+def export_informative(trait_data: dict, inc_var: bool = False) -> tuple:
+ """
+ Export informative strain
+
+ This is a migration of the `exportInformative` function in
+ web/webqtl/base/webqtlTrait.py module in GeneNetwork1.
+
+ There is a chance that the original implementation has a bug, especially
+ dealing with the `inc_var` value. It the `inc_var` value is meant to control
+ the inclusion of the `variance` value, then the current implementation, and
+ that one in GN1 have a bug.
+ """
+ def __exporter__(acc, data_item):
+ if not inc_var or data_item["variance"] is not None:
+ return (
+ acc[0] + (data_item["sample_name"],),
+ acc[1] + (data_item["value"],),
+ acc[2] + (data_item["variance"],))
+ return acc
+ return reduce(
+ __exporter__,
+ filter(lambda td: td["value"] is not None, trait_data["data"].values()),
+ (tuple(), tuple(), tuple()))