aboutsummaryrefslogtreecommitdiff
path: root/gn3/db
diff options
context:
space:
mode:
authorFrederick Muriuki Muriithi2021-12-06 14:04:59 +0300
committerFrederick Muriuki Muriithi2021-12-06 14:04:59 +0300
commit66406115f41594ba40e3fbbc6f69aace2d11800f (patch)
tree0f3de09b74a3f47918dd4a192665c8a06c508144 /gn3/db
parent77099cac68e8f4792bf54d8e1f7ce6f315bedfa7 (diff)
parent5d2248f1dabbc7dd04f48aafcc9f327817a9c92c (diff)
downloadgenenetwork3-66406115f41594ba40e3fbbc6f69aace2d11800f.tar.gz
Merge branch 'partial-correlations'
Diffstat (limited to 'gn3/db')
-rw-r--r--gn3/db/correlations.py564
-rw-r--r--gn3/db/species.py44
-rw-r--r--gn3/db/traits.py361
3 files changed, 916 insertions, 53 deletions
diff --git a/gn3/db/correlations.py b/gn3/db/correlations.py
new file mode 100644
index 0000000..3d12019
--- /dev/null
+++ b/gn3/db/correlations.py
@@ -0,0 +1,564 @@
+"""
+This module will hold functions that are used in the (partial) correlations
+feature to access the database to retrieve data needed for computations.
+"""
+import os
+from functools import reduce
+from typing import Any, Dict, Tuple, Union
+
+from gn3.random import random_string
+from gn3.data_helpers import partition_all
+from gn3.db.species import translate_to_mouse_gene_id
+
+def get_filename(conn: Any, target_db_name: str, text_files_dir: str) -> Union[
+ str, bool]:
+ """
+ Retrieve the name of the reference database file with which correlations are
+ computed.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getFileName` function in
+ GeneNetwork1.
+ """
+ with conn.cursor() as cursor:
+ cursor.execute(
+ "SELECT Id, FullName from ProbeSetFreeze WHERE Name=%s",
+ (target_db_name,))
+ result = cursor.fetchone()
+ if result:
+ filename = "ProbeSetFreezeId_{tid}_FullName_{fname}.txt".format(
+ tid=result[0],
+ fname=result[1].replace(' ', '_').replace('/', '_'))
+ return ((filename in os.listdir(text_files_dir))
+ and f"{text_files_dir}/{filename}")
+
+ return False
+
+def build_temporary_literature_table(
+ conn: Any, species: str, gene_id: int, return_number: int) -> str:
+ """
+ Build and populate a temporary table to hold the literature correlation data
+ to be used in computations.
+
+ "This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getTempLiteratureTable` function in
+ GeneNetwork1.
+ """
+ def __translated_species_id(row, cursor):
+ if species == "mouse":
+ return row[1]
+ query = {
+ "rat": "SELECT rat FROM GeneIDXRef WHERE mouse=%s",
+ "human": "SELECT human FROM GeneIDXRef WHERE mouse=%d"}
+ if species in query.keys():
+ cursor.execute(query[species], row[1])
+ record = cursor.fetchone()
+ if record:
+ return record[0]
+ return None
+ return None
+
+ temp_table_name = f"TOPLITERATURE{random_string(8)}"
+ with conn.cursor as cursor:
+ mouse_geneid = translate_to_mouse_gene_id(species, gene_id, conn)
+ data_query = (
+ "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
+ "WHERE GeneId1 = %(mouse_gene_id)s "
+ "UNION ALL "
+ "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
+ "WHERE GeneId2 = %(mouse_gene_id)s "
+ "AND GeneId1 != %(mouse_gene_id)s")
+ cursor.execute(
+ (f"CREATE TEMPORARY TABLE {temp_table_name} ("
+ "GeneId1 int(12) unsigned, "
+ "GeneId2 int(12) unsigned PRIMARY KEY, "
+ "value double)"))
+ cursor.execute(data_query, mouse_gene_id=mouse_geneid)
+ literature_data = [
+ {"GeneId1": row[0], "GeneId2": row[1], "value": row[2]}
+ for row in cursor.fetchall()
+ if __translated_species_id(row, cursor)]
+
+ cursor.execute(
+ (f"INSERT INTO {temp_table_name} "
+ "VALUES (%(GeneId1)s, %(GeneId2)s, %(value)s)"),
+ literature_data[0:(2 * return_number)])
+
+ return temp_table_name
+
+def fetch_geno_literature_correlations(temp_table: str) -> str:
+ """
+ Helper function for `fetch_literature_correlations` below, to build query
+ for `Geno*` tables.
+ """
+ return (
+ f"SELECT Geno.Name, {temp_table}.value "
+ "FROM Geno, GenoXRef, GenoFreeze "
+ f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId "
+ "WHERE ProbeSet.GeneId IS NOT NULL "
+ f"AND {temp_table}.value IS NOT NULL "
+ "AND GenoXRef.GenoFreezeId = GenoFreeze.Id "
+ "AND GenoFreeze.Name = %(db_name)s "
+ "AND Geno.Id=GenoXRef.GenoId "
+ "ORDER BY Geno.Id")
+
+def fetch_probeset_literature_correlations(temp_table: str) -> str:
+ """
+ Helper function for `fetch_literature_correlations` below, to build query
+ for `ProbeSet*` tables.
+ """
+ return (
+ f"SELECT ProbeSet.Name, {temp_table}.value "
+ "FROM ProbeSet, ProbeSetXRef, ProbeSetFreeze "
+ "LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId "
+ "WHERE ProbeSet.GeneId IS NOT NULL "
+ "AND {temp_table}.value IS NOT NULL "
+ "AND ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
+ "AND ProbeSetFreeze.Name = %(db_name)s "
+ "AND ProbeSet.Id=ProbeSetXRef.ProbeSetId "
+ "ORDER BY ProbeSet.Id")
+
+def fetch_literature_correlations(
+ species: str, gene_id: int, dataset: dict, return_number: int,
+ conn: Any) -> dict:
+ """
+ Gather the literature correlation data and pair it with trait id string(s).
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchLitCorrelations` function in
+ GeneNetwork1.
+ """
+ temp_table = build_temporary_literature_table(
+ conn, species, gene_id, return_number)
+ query_fns = {
+ "Geno": fetch_geno_literature_correlations,
+ # "Temp": fetch_temp_literature_correlations,
+ # "Publish": fetch_publish_literature_correlations,
+ "ProbeSet": fetch_probeset_literature_correlations}
+ with conn.cursor as cursor:
+ cursor.execute(
+ query_fns[dataset["dataset_type"]](temp_table),
+ db_name=dataset["dataset_name"])
+ results = cursor.fetchall()
+ cursor.execute("DROP TEMPORARY TABLE %s", temp_table)
+ return dict(results)
+
+def fetch_symbol_value_pair_dict(
+ symbol_list: Tuple[str, ...], data_id_dict: dict,
+ conn: Any) -> Dict[str, Tuple[float, ...]]:
+ """
+ Map each gene symbols to the corresponding tissue expression data.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.getSymbolValuePairDict` function
+ in GeneNetwork1.
+ """
+ data_ids = {
+ symbol: data_id_dict.get(symbol) for symbol in symbol_list
+ if data_id_dict.get(symbol) is not None
+ }
+ query = "SELECT Id, value FROM TissueProbeSetData WHERE Id IN %(data_ids)s"
+ with conn.cursor() as cursor:
+ cursor.execute(
+ query,
+ data_ids=tuple(data_ids.values()))
+ value_results = cursor.fetchall()
+ return {
+ key: tuple(row[1] for row in value_results if row[0] == key)
+ for key in data_ids.keys()
+ }
+
+ return {}
+
+def fetch_gene_symbol_tissue_value_dict(
+ symbol_list: Tuple[str, ...], data_id_dict: dict, conn: Any,
+ limit_num: int = 1000) -> dict:#getGeneSymbolTissueValueDict
+ """
+ Wrapper function for `gn3.db.correlations.fetch_symbol_value_pair_dict`.
+
+ This is a migrations of the
+ `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDict` in
+ GeneNetwork1.
+ """
+ count = len(symbol_list)
+ if count != 0 and count <= limit_num:
+ return fetch_symbol_value_pair_dict(symbol_list, data_id_dict, conn)
+
+ if count > limit_num:
+ return {
+ key: value for dct in [
+ fetch_symbol_value_pair_dict(sl, data_id_dict, conn)
+ for sl in partition_all(limit_num, symbol_list)]
+ for key, value in dct.items()
+ }
+
+ return {}
+
+def fetch_tissue_probeset_xref_info(
+ gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+ conn: Any) -> Tuple[tuple, dict, dict, dict, dict, dict, dict]:
+ """
+ Retrieve the ProbeSet XRef information for tissues.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.getTissueProbeSetXRefInfo`
+ function in GeneNetwork1."""
+ with conn.cursor() as cursor:
+ if len(gene_name_list) == 0:
+ query = (
+ "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, "
+ "t.description, t.Probe_Target_Description "
+ "FROM "
+ "("
+ " SELECT Symbol, max(Mean) AS maxmean "
+ " FROM TissueProbeSetXRef "
+ " WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+ " AND Symbol != '' "
+ " AND Symbol IS NOT NULL "
+ " GROUP BY Symbol"
+ ") AS x "
+ "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
+ "AND t.Mean = x.maxmean")
+ cursor.execute(query, probeset_freeze_id=probeset_freeze_id)
+ else:
+ query = (
+ "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, "
+ "t.description, t.Probe_Target_Description "
+ "FROM "
+ "("
+ " SELECT Symbol, max(Mean) AS maxmean "
+ " FROM TissueProbeSetXRef "
+ " WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+ " AND Symbol in %(symbols)s "
+ " GROUP BY Symbol"
+ ") AS x "
+ "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
+ "AND t.Mean = x.maxmean")
+ cursor.execute(
+ query, probeset_freeze_id=probeset_freeze_id,
+ symbols=tuple(gene_name_list))
+
+ results = cursor.fetchall()
+
+ return reduce(
+ lambda acc, item: (
+ acc[0] + (item[0],),
+ {**acc[1], item[0].lower(): item[1]},
+ {**acc[1], item[0].lower(): item[2]},
+ {**acc[1], item[0].lower(): item[3]},
+ {**acc[1], item[0].lower(): item[4]},
+ {**acc[1], item[0].lower(): item[5]},
+ {**acc[1], item[0].lower(): item[6]}),
+ results or tuple(),
+ (tuple(), {}, {}, {}, {}, {}, {}))
+
+def fetch_gene_symbol_tissue_value_dict_for_trait(
+ gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+ conn: Any) -> dict:
+ """
+ Fetches a map of the gene symbols to the tissue values.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDictForTrait`
+ function in GeneNetwork1.
+ """
+ xref_info = fetch_tissue_probeset_xref_info(
+ gene_name_list, probeset_freeze_id, conn)
+ if xref_info[0]:
+ return fetch_gene_symbol_tissue_value_dict(xref_info[0], xref_info[2], conn)
+ return {}
+
+def build_temporary_tissue_correlations_table(
+ conn: Any, trait_symbol: str, probeset_freeze_id: int, method: str,
+ return_number: int) -> str:
+ """
+ Build a temporary table to hold the tissue correlations data.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getTempTissueCorrTable` function in
+ GeneNetwork1."""
+ # We should probably pass the `correlations_of_all_tissue_traits` function
+ # as an argument to this function and get rid of the one call immediately
+ # following this comment.
+ from gn3.computations.partial_correlations import (#pylint: disable=[C0415, R0401]
+ correlations_of_all_tissue_traits)
+ # This import above is necessary within the function to avoid
+ # circular-imports.
+ #
+ #
+ # This import above is indicative of convoluted code, with the computation
+ # being interwoven with the data retrieval. This needs to be changed, such
+ # that the function being imported here is no longer necessary, or have the
+ # imported function passed to this function as an argument.
+ symbol_corr_dict, symbol_p_value_dict = correlations_of_all_tissue_traits(
+ fetch_gene_symbol_tissue_value_dict_for_trait(
+ (trait_symbol,), probeset_freeze_id, conn),
+ fetch_gene_symbol_tissue_value_dict_for_trait(
+ tuple(), probeset_freeze_id, conn),
+ method)
+
+ symbol_corr_list = sorted(
+ symbol_corr_dict.items(), key=lambda key_val: key_val[1])
+
+ temp_table_name = f"TOPTISSUE{random_string(8)}"
+ create_query = (
+ "CREATE TEMPORARY TABLE {temp_table_name}"
+ "(Symbol varchar(100) PRIMARY KEY, Correlation float, PValue float)")
+ insert_query = (
+ f"INSERT INTO {temp_table_name}(Symbol, Correlation, PValue) "
+ " VALUES (%(symbol)s, %(correlation)s, %(pvalue)s)")
+
+ with conn.cursor() as cursor:
+ cursor.execute(create_query)
+ cursor.execute(
+ insert_query,
+ tuple({
+ "symbol": symbol,
+ "correlation": corr,
+ "pvalue": symbol_p_value_dict[symbol]
+ } for symbol, corr in symbol_corr_list[0: 2 * return_number]))
+
+ return temp_table_name
+
+def fetch_tissue_correlations(# pylint: disable=R0913
+ dataset: dict, trait_symbol: str, probeset_freeze_id: int, method: str,
+ return_number: int, conn: Any) -> dict:
+ """
+ Pair tissue correlations data with a trait id string.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchTissueCorrelations` function in
+ GeneNetwork1.
+ """
+ temp_table = build_temporary_tissue_correlations_table(
+ conn, trait_symbol, probeset_freeze_id, method, return_number)
+ with conn.cursor() as cursor:
+ cursor.execute(
+ (
+ f"SELECT ProbeSet.Name, {temp_table}.Correlation, "
+ f"{temp_table}.PValue "
+ "FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze) "
+ "LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol "
+ "WHERE ProbeSetFreeze.Name = %(db_name) "
+ "AND ProbeSetFreeze.Id=ProbeSetXRef.ProbeSetFreezeId "
+ "AND ProbeSet.Id = ProbeSetXRef.ProbeSetId "
+ "AND ProbeSet.Symbol IS NOT NULL "
+ "AND %s.Correlation IS NOT NULL"),
+ db_name=dataset["dataset_name"])
+ results = cursor.fetchall()
+ cursor.execute("DROP TEMPORARY TABLE %s", temp_table)
+ return {
+ trait_name: (tiss_corr, tiss_p_val)
+ for trait_name, tiss_corr, tiss_p_val in results}
+
+def check_for_literature_info(conn: Any, geneid: int) -> bool:
+ """
+ Checks the database to find out whether the trait with `geneid` has any
+ associated literature.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.checkForLitInfo` function in
+ GeneNetwork1.
+ """
+ query = "SELECT 1 FROM LCorrRamin3 WHERE GeneId1=%s LIMIT 1"
+ with conn.cursor() as cursor:
+ cursor.execute(query, geneid)
+ result = cursor.fetchone()
+ if result:
+ return True
+
+ return False
+
+def check_symbol_for_tissue_correlation(
+ conn: Any, tissue_probeset_freeze_id: int, symbol: str = "") -> bool:
+ """
+ Checks whether a symbol has any associated tissue correlations.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.checkSymbolForTissueCorr` function
+ in GeneNetwork1.
+ """
+ query = (
+ "SELECT 1 FROM TissueProbeSetXRef "
+ "WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+ "AND Symbol=%(symbol)s LIMIT 1")
+ with conn.cursor() as cursor:
+ cursor.execute(
+ query, probeset_freeze_id=tissue_probeset_freeze_id, symbol=symbol)
+ result = cursor.fetchone()
+ if result:
+ return True
+
+ return False
+
+def fetch_sample_ids(
+ conn: Any, sample_names: Tuple[str, ...], species_name: str) -> Tuple[
+ int, ...]:
+ """
+ Given a sequence of sample names, and a species name, return the sample ids
+ that correspond to both.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+ GeneNetwork1.
+ """
+ query = (
+ "SELECT Strain.Id FROM Strain, Species "
+ "WHERE Strain.Name IN %(samples_names)s "
+ "AND Strain.SpeciesId=Species.Id "
+ "AND Species.name=%(species_name)s")
+ with conn.cursor() as cursor:
+ cursor.execute(
+ query,
+ {
+ "samples_names": tuple(sample_names),
+ "species_name": species_name
+ })
+ return tuple(row[0] for row in cursor.fetchall())
+
+def build_query_sgo_lit_corr(
+ db_type: str, temp_table: str, sample_id_columns: str,
+ joins: Tuple[str, ...]) -> str:
+ """
+ Build query for `SGO Literature Correlation` data, when querying the given
+ `temp_table` temporary table.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+ GeneNetwork1.
+ """
+ return (
+ (f"SELECT {db_type}.Name, {temp_table}.value, " +
+ sample_id_columns +
+ f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+ f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId " +
+ " ".join(joins) +
+ " WHERE ProbeSet.GeneId IS NOT NULL " +
+ f"AND {temp_table}.value IS NOT NULL " +
+ f"AND {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+ f"AND {db_type}Freeze.Name = %(db_name)s " +
+ f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " +
+ f"ORDER BY {db_type}.Id"),
+ 2)
+
+def build_query_tissue_corr(db_type, temp_table, sample_id_columns, joins):
+ """
+ Build query for `Tissue Correlation` data, when querying the given
+ `temp_table` temporary table.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+ GeneNetwork1.
+ """
+ return (
+ (f"SELECT {db_type}.Name, {temp_table}.Correlation, " +
+ f"{temp_table}.PValue, " +
+ sample_id_columns +
+ f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+ f"LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol " +
+ " ".join(joins) +
+ " WHERE ProbeSet.Symbol IS NOT NULL " +
+ f"AND {temp_table}.Correlation IS NOT NULL " +
+ f"AND {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+ f"AND {db_type}Freeze.Name = %(db_name)s " +
+ f"AND {db_type}.Id = {db_type}XRef.{db_type}Id "
+ f"ORDER BY {db_type}.Id"),
+ 3)
+
+def fetch_all_database_data(# pylint: disable=[R0913, R0914]
+ conn: Any, species: str, gene_id: int, trait_symbol: str,
+ samples: Tuple[str, ...], dataset: dict, method: str,
+ return_number: int, probeset_freeze_id: int) -> Tuple[
+ Tuple[float], int]:
+ """
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+ GeneNetwork1.
+ """
+ db_type = dataset["dataset_type"]
+ db_name = dataset["dataset_name"]
+ def __build_query__(sample_ids, temp_table):
+ sample_id_columns = ", ".join(f"T{smpl}.value" for smpl in sample_ids)
+ if db_type == "Publish":
+ joins = tuple(
+ ("LEFT JOIN PublishData AS T{item} "
+ "ON T{item}.Id = PublishXRef.DataId "
+ "AND T{item}.StrainId = %(T{item}_sample_id)s")
+ for item in sample_ids)
+ return (
+ ("SELECT PublishXRef.Id, " +
+ sample_id_columns +
+ "FROM (PublishXRef, PublishFreeze) " +
+ " ".join(joins) +
+ " WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
+ "AND PublishFreeze.Name = %(db_name)s"),
+ 1)
+ if temp_table is not None:
+ joins = tuple(
+ (f"LEFT JOIN {db_type}Data AS T{item} "
+ f"ON T{item}.Id = {db_type}XRef.DataId "
+ f"AND T{item}.StrainId=%(T{item}_sample_id)s")
+ for item in sample_ids)
+ if method.lower() == "sgo literature correlation":
+ return build_query_sgo_lit_corr(
+ sample_ids, temp_table, sample_id_columns, joins)
+ if method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ return build_query_tissue_corr(
+ sample_ids, temp_table, sample_id_columns, joins)
+ joins = tuple(
+ (f"LEFT JOIN {db_type}Data AS T{item} "
+ f"ON T{item}.Id = {db_type}XRef.DataId "
+ f"AND T{item}.StrainId = %(T{item}_sample_id)s")
+ for item in sample_ids)
+ return (
+ (
+ f"SELECT {db_type}.Name, " +
+ sample_id_columns +
+ f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+ " ".join(joins) +
+ f" WHERE {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+ f"AND {db_type}Freeze.Name = %(db_name)s " +
+ f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " +
+ f"ORDER BY {db_type}.Id"),
+ 1)
+
+ def __fetch_data__(sample_ids, temp_table):
+ query, data_start_pos = __build_query__(sample_ids, temp_table)
+ with conn.cursor() as cursor:
+ cursor.execute(
+ query,
+ {"db_name": db_name,
+ **{f"T{item}_sample_id": item for item in sample_ids}})
+ return (cursor.fetchall(), data_start_pos)
+
+ sample_ids = tuple(
+ # look into graduating this to an argument and removing the `samples`
+ # and `species` argument: function currying and compositions might help
+ # with this
+ f"{sample_id}" for sample_id in
+ fetch_sample_ids(conn, samples, species))
+
+ temp_table = None
+ if gene_id and db_type == "probeset":
+ if method.lower() == "sgo literature correlation":
+ temp_table = build_temporary_literature_table(
+ conn, species, gene_id, return_number)
+ if method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ temp_table = build_temporary_tissue_correlations_table(
+ conn, trait_symbol, probeset_freeze_id, method, return_number)
+
+ trait_database = tuple(
+ item for sublist in
+ (__fetch_data__(ssample_ids, temp_table)
+ for ssample_ids in partition_all(25, sample_ids))
+ for item in sublist)
+
+ if temp_table:
+ with conn.cursor() as cursor:
+ cursor.execute(f"DROP TEMPORARY TABLE {temp_table}")
+
+ return (trait_database[0], trait_database[1])
diff --git a/gn3/db/species.py b/gn3/db/species.py
index 0deae4e..5b8e096 100644
--- a/gn3/db/species.py
+++ b/gn3/db/species.py
@@ -30,3 +30,47 @@ def get_chromosome(name: str, is_species: bool, conn: Any) -> Optional[Tuple]:
with conn.cursor() as cursor:
cursor.execute(_sql)
return cursor.fetchall()
+
+def translate_to_mouse_gene_id(species: str, geneid: int, conn: Any) -> int:
+ """
+ Translate rat or human geneid to mouse geneid
+
+ This is a migration of the
+ `web.webqtl.correlation/CorrelationPage.translateToMouseGeneID` function in
+ GN1
+ """
+ assert species in ("rat", "mouse", "human"), "Invalid species"
+ if geneid is None:
+ return 0
+
+ if species == "mouse":
+ return geneid
+
+ with conn.cursor as cursor:
+ query = {
+ "rat": "SELECT mouse FROM GeneIDXRef WHERE rat = %s",
+ "human": "SELECT mouse FROM GeneIDXRef WHERE human = %s"
+ }
+ cursor.execute(query[species], geneid)
+ translated_gene_id = cursor.fetchone()
+ if translated_gene_id:
+ return translated_gene_id[0]
+
+ return 0 # default if all else fails
+
+def species_name(conn: Any, group: str) -> str:
+ """
+ Retrieve the name of the species, given the group (RISet).
+
+ This is a migration of the
+ `web.webqtl.dbFunction.webqtlDatabaseFunction.retrieveSpecies` function in
+ GeneNetwork1.
+ """
+ with conn.cursor() as cursor:
+ cursor.execute(
+ ("SELECT Species.Name FROM Species, InbredSet "
+ "WHERE InbredSet.Name = %(group_name)s "
+ "AND InbredSet.SpeciesId = Species.Id"),
+ {"group_name": group})
+ return cursor.fetchone()[0]
+ return None
diff --git a/gn3/db/traits.py b/gn3/db/traits.py
index f2673c8..4098b08 100644
--- a/gn3/db/traits.py
+++ b/gn3/db/traits.py
@@ -1,17 +1,93 @@
"""This class contains functions relating to trait data manipulation"""
import os
+import MySQLdb
+from functools import reduce
from typing import Any, Dict, Union, Sequence
+
+import MySQLdb
+
from gn3.settings import TMPDIR
from gn3.random import random_string
from gn3.function_helpers import compose
from gn3.db.datasets import retrieve_trait_dataset
+def export_trait_data(
+ trait_data: dict, samplelist: Sequence[str], dtype: str = "val",
+ var_exists: bool = False, n_exists: bool = False):
+ """
+ Export data according to `samplelist`. Mostly used in calculating
+ correlations.
+
+ DESCRIPTION:
+ Migrated from
+ https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/base/webqtlTrait.py#L166-L211
+
+ PARAMETERS
+ trait: (dict)
+ The dictionary of key-value pairs representing a trait
+ samplelist: (list)
+ A list of sample names
+ dtype: (str)
+ ... verify what this is ...
+ var_exists: (bool)
+ A flag indicating existence of variance
+ n_exists: (bool)
+ A flag indicating existence of ndata
+ """
+ def __export_all_types(tdata, sample):
+ sample_data = []
+ if tdata[sample]["value"]:
+ sample_data.append(tdata[sample]["value"])
+ if var_exists:
+ if tdata[sample]["variance"]:
+ sample_data.append(tdata[sample]["variance"])
+ else:
+ sample_data.append(None)
+ if n_exists:
+ if tdata[sample]["ndata"]:
+ sample_data.append(tdata[sample]["ndata"])
+ else:
+ sample_data.append(None)
+ else:
+ if var_exists and n_exists:
+ sample_data += [None, None, None]
+ elif var_exists or n_exists:
+ sample_data += [None, None]
+ else:
+ sample_data.append(None)
+
+ return tuple(sample_data)
+
+ def __exporter(accumulator, sample):
+ # pylint: disable=[R0911]
+ if sample in trait_data["data"]:
+ if dtype == "val":
+ return accumulator + (trait_data["data"][sample]["value"], )
+ if dtype == "var":
+ return accumulator + (trait_data["data"][sample]["variance"], )
+ if dtype == "N":
+ return accumulator + (trait_data["data"][sample]["ndata"], )
+ if dtype == "all":
+ return accumulator + __export_all_types(trait_data["data"], sample)
+ raise KeyError("Type `%s` is incorrect" % dtype)
+ if var_exists and n_exists:
+ return accumulator + (None, None, None)
+ if var_exists or n_exists:
+ return accumulator + (None, None)
+ return accumulator + (None,)
+
+ return reduce(__exporter, samplelist, tuple())
+
+
def get_trait_csv_sample_data(conn: Any,
trait_name: int, phenotype_id: int):
"""Fetch a trait and return it as a csv string"""
- sql = ("SELECT DISTINCT Strain.Id, PublishData.Id, Strain.Name, "
- "PublishData.value, "
+ def __float_strip(num_str):
+ if str(num_str)[-2:] == ".0":
+ return str(int(num_str))
+ return str(num_str)
+ sql = ("SELECT DISTINCT Strain.Name, PublishData.value, "
"PublishSE.error, NStrain.count FROM "
"(PublishData, Strain, PublishXRef, PublishFreeze) "
"LEFT JOIN PublishSE ON "
@@ -23,65 +99,189 @@ def get_trait_csv_sample_data(conn: Any,
"PublishData.Id = PublishXRef.DataId AND "
"PublishXRef.Id = %s AND PublishXRef.PhenotypeId = %s "
"AND PublishData.StrainId = Strain.Id Order BY Strain.Name")
- csv_data = ["Strain Id,Strain Name,Value,SE,Count"]
- publishdata_id = ""
+ csv_data = ["Strain Name,Value,SE,Count"]
with conn.cursor() as cursor:
cursor.execute(sql, (trait_name, phenotype_id,))
for record in cursor.fetchall():
- (strain_id, publishdata_id,
- strain_name, value, error, count) = record
+ (strain_name, value, error, count) = record
csv_data.append(
- ",".join([str(val) if val else "x"
- for val in (strain_id, strain_name,
- value, error, count)]))
- return f"# Publish Data Id: {publishdata_id}\n\n" + "\n".join(csv_data)
+ ",".join([__float_strip(val) if val else "x"
+ for val in (strain_name, value, error, count)]))
+ return "\n".join(csv_data)
+
+def update_sample_data(conn: Any, #pylint: disable=[R0913]
-def update_sample_data(conn: Any,
+ trait_name: str,
strain_name: str,
- strain_id: int,
- publish_data_id: int,
+ phenotype_id: int,
value: Union[int, float, str],
error: Union[int, float, str],
count: Union[int, str]):
"""Given the right parameters, update sample-data from the relevant
table."""
- # pylint: disable=[R0913, R0914, C0103]
- STRAIN_ID_SQL: str = "UPDATE Strain SET Name = %s WHERE Id = %s"
- PUBLISH_DATA_SQL: str = ("UPDATE PublishData SET value = %s "
- "WHERE StrainId = %s AND Id = %s")
- PUBLISH_SE_SQL: str = ("UPDATE PublishSE SET error = %s "
- "WHERE StrainId = %s AND DataId = %s")
- N_STRAIN_SQL: str = ("UPDATE NStrain SET count = %s "
- "WHERE StrainId = %s AND DataId = %s")
-
- updated_strains: int = 0
+ strain_id, data_id = "", ""
+
+ with conn.cursor() as cursor:
+ cursor.execute(
+ ("SELECT Strain.Id, PublishData.Id FROM "
+ "(PublishData, Strain, PublishXRef, PublishFreeze) "
+ "LEFT JOIN PublishSE ON "
+ "(PublishSE.DataId = PublishData.Id AND "
+ "PublishSE.StrainId = PublishData.StrainId) "
+ "LEFT JOIN NStrain ON "
+ "(NStrain.DataId = PublishData.Id AND "
+ "NStrain.StrainId = PublishData.StrainId) "
+ "WHERE PublishXRef.InbredSetId = "
+ "PublishFreeze.InbredSetId AND "
+ "PublishData.Id = PublishXRef.DataId AND "
+ "PublishXRef.Id = %s AND "
+ "PublishXRef.PhenotypeId = %s "
+ "AND PublishData.StrainId = Strain.Id "
+ "AND Strain.Name = \"%s\"") % (trait_name,
+ phenotype_id,
+ str(strain_name)))
+ strain_id, data_id = cursor.fetchone()
updated_published_data: int = 0
updated_se_data: int = 0
updated_n_strains: int = 0
with conn.cursor() as cursor:
- # Update the Strains table
- cursor.execute(STRAIN_ID_SQL, (strain_name, strain_id))
- updated_strains = cursor.rowcount
# Update the PublishData table
- cursor.execute(PUBLISH_DATA_SQL,
+ cursor.execute(("UPDATE PublishData SET value = %s "
+ "WHERE StrainId = %s AND Id = %s"),
(None if value == "x" else value,
- strain_id, publish_data_id))
+ strain_id, data_id))
updated_published_data = cursor.rowcount
+
# Update the PublishSE table
- cursor.execute(PUBLISH_SE_SQL,
+ cursor.execute(("UPDATE PublishSE SET error = %s "
+ "WHERE StrainId = %s AND DataId = %s"),
(None if error == "x" else error,
- strain_id, publish_data_id))
+ strain_id, data_id))
updated_se_data = cursor.rowcount
+
# Update the NStrain table
- cursor.execute(N_STRAIN_SQL,
+ cursor.execute(("UPDATE NStrain SET count = %s "
+ "WHERE StrainId = %s AND DataId = %s"),
(None if count == "x" else count,
- strain_id, publish_data_id))
+ strain_id, data_id))
updated_n_strains = cursor.rowcount
- return (updated_strains, updated_published_data,
+ return (updated_published_data,
updated_se_data, updated_n_strains)
+
+def delete_sample_data(conn: Any,
+ trait_name: str,
+ strain_name: str,
+ phenotype_id: int):
+ """Given the right parameters, delete sample-data from the relevant
+ table."""
+ strain_id, data_id = "", ""
+
+ deleted_published_data: int = 0
+ deleted_se_data: int = 0
+ deleted_n_strains: int = 0
+
+ with conn.cursor() as cursor:
+ # Delete the PublishData table
+ try:
+ cursor.execute(
+ ("SELECT Strain.Id, PublishData.Id FROM "
+ "(PublishData, Strain, PublishXRef, PublishFreeze) "
+ "LEFT JOIN PublishSE ON "
+ "(PublishSE.DataId = PublishData.Id AND "
+ "PublishSE.StrainId = PublishData.StrainId) "
+ "LEFT JOIN NStrain ON "
+ "(NStrain.DataId = PublishData.Id AND "
+ "NStrain.StrainId = PublishData.StrainId) "
+ "WHERE PublishXRef.InbredSetId = "
+ "PublishFreeze.InbredSetId AND "
+ "PublishData.Id = PublishXRef.DataId AND "
+ "PublishXRef.Id = %s AND "
+ "PublishXRef.PhenotypeId = %s "
+ "AND PublishData.StrainId = Strain.Id "
+ "AND Strain.Name = \"%s\"") % (trait_name,
+ phenotype_id,
+ str(strain_name)))
+ strain_id, data_id = cursor.fetchone()
+
+ cursor.execute(("DELETE FROM PublishData "
+ "WHERE StrainId = %s AND Id = %s")
+ % (strain_id, data_id))
+ deleted_published_data = cursor.rowcount
+
+ # Delete the PublishSE table
+ cursor.execute(("DELETE FROM PublishSE "
+ "WHERE StrainId = %s AND DataId = %s") %
+ (strain_id, data_id))
+ deleted_se_data = cursor.rowcount
+
+ # Delete the NStrain table
+ cursor.execute(("DELETE FROM NStrain "
+ "WHERE StrainId = %s AND DataId = %s" %
+ (strain_id, data_id)))
+ deleted_n_strains = cursor.rowcount
+ except Exception as e: #pylint: disable=[C0103, W0612]
+ conn.rollback()
+ raise MySQLdb.Error
+ conn.commit()
+ cursor.close()
+ cursor.close()
+
+ return (deleted_published_data,
+ deleted_se_data, deleted_n_strains)
+
+
+def insert_sample_data(conn: Any, #pylint: disable=[R0913]
+ trait_name: str,
+ strain_name: str,
+ phenotype_id: int,
+ value: Union[int, float, str],
+ error: Union[int, float, str],
+ count: Union[int, str]):
+ """Given the right parameters, insert sample-data to the relevant table.
+
+ """
+
+ inserted_published_data, inserted_se_data, inserted_n_strains = 0, 0, 0
+ with conn.cursor() as cursor:
+ try:
+ cursor.execute("SELECT DataId FROM PublishXRef WHERE Id = %s AND "
+ "PhenotypeId = %s", (trait_name, phenotype_id))
+ data_id = cursor.fetchone()
+
+ cursor.execute("SELECT Id FROM Strain WHERE Name = %s",
+ (strain_name,))
+ strain_id = cursor.fetchone()
+
+ # Insert the PublishData table
+ cursor.execute(("INSERT INTO PublishData (Id, StrainId, value)"
+ "VALUES (%s, %s, %s)"),
+ (data_id, strain_id, value))
+ inserted_published_data = cursor.rowcount
+
+ # Insert into the PublishSE table if error is specified
+ if error and error != "x":
+ cursor.execute(("INSERT INTO PublishSE (StrainId, DataId, "
+ " error) VALUES (%s, %s, %s)") %
+ (strain_id, data_id, error))
+ inserted_se_data = cursor.rowcount
+
+ # Insert into the NStrain table
+ if count and count != "x":
+ cursor.execute(("INSERT INTO NStrain "
+ "(StrainId, DataId, error) "
+ "VALUES (%s, %s, %s)") %
+ (strain_id, data_id, count))
+ inserted_n_strains = cursor.rowcount
+ except Exception as e: #pylint: disable=[C0103, W0612]
+ conn.rollback()
+ raise MySQLdb.Error
+ return (inserted_published_data,
+ inserted_se_data, inserted_n_strains)
+
+
def retrieve_publish_trait_info(trait_data_source: Dict[str, Any], conn: Any):
"""Retrieve trait information for type `Publish` traits.
@@ -121,11 +321,12 @@ def retrieve_publish_trait_info(trait_data_source: Dict[str, Any], conn: Any):
cursor.execute(
query,
{
- k:v for k, v in trait_data_source.items()
+ k: v for k, v in trait_data_source.items()
if k in ["trait_name", "trait_dataset_id"]
})
return dict(zip([k.lower() for k in keys], cursor.fetchone()))
+
def set_confidential_field(trait_type, trait_info):
"""Post processing function for 'Publish' trait types.
@@ -138,6 +339,7 @@ def set_confidential_field(trait_type, trait_info):
and not trait_info.get("pubmed_id", None)) else 0}
return trait_info
+
def retrieve_probeset_trait_info(trait_data_source: Dict[str, Any], conn: Any):
"""Retrieve trait information for type `ProbeSet` traits.
@@ -165,11 +367,12 @@ def retrieve_probeset_trait_info(trait_data_source: Dict[str, Any], conn: Any):
cursor.execute(
query,
{
- k:v for k, v in trait_data_source.items()
+ k: v for k, v in trait_data_source.items()
if k in ["trait_name", "trait_dataset_name"]
})
return dict(zip(keys, cursor.fetchone()))
+
def retrieve_geno_trait_info(trait_data_source: Dict[str, Any], conn: Any):
"""Retrieve trait information for type `Geno` traits.
@@ -189,11 +392,12 @@ def retrieve_geno_trait_info(trait_data_source: Dict[str, Any], conn: Any):
cursor.execute(
query,
{
- k:v for k, v in trait_data_source.items()
+ k: v for k, v in trait_data_source.items()
if k in ["trait_name", "trait_dataset_name"]
})
return dict(zip(keys, cursor.fetchone()))
+
def retrieve_temp_trait_info(trait_data_source: Dict[str, Any], conn: Any):
"""Retrieve trait information for type `Temp` traits.
@@ -206,11 +410,12 @@ def retrieve_temp_trait_info(trait_data_source: Dict[str, Any], conn: Any):
cursor.execute(
query,
{
- k:v for k, v in trait_data_source.items()
+ k: v for k, v in trait_data_source.items()
if k in ["trait_name"]
})
return dict(zip(keys, cursor.fetchone()))
+
def set_haveinfo_field(trait_info):
"""
Common postprocessing function for all trait types.
@@ -218,6 +423,7 @@ def set_haveinfo_field(trait_info):
Sets the value for the 'haveinfo' field."""
return {**trait_info, "haveinfo": 1 if trait_info else 0}
+
def set_homologene_id_field_probeset(trait_info, conn):
"""
Postprocessing function for 'ProbeSet' traits.
@@ -233,7 +439,7 @@ def set_homologene_id_field_probeset(trait_info, conn):
cursor.execute(
query,
{
- k:v for k, v in trait_info.items()
+ k: v for k, v in trait_info.items()
if k in ["geneid", "group"]
})
res = cursor.fetchone()
@@ -241,12 +447,13 @@ def set_homologene_id_field_probeset(trait_info, conn):
return {**trait_info, "homologeneid": res[0]}
return {**trait_info, "homologeneid": None}
+
def set_homologene_id_field(trait_type, trait_info, conn):
"""
Common postprocessing function for all trait types.
Sets the value for the 'homologene' key."""
- set_to_null = lambda ti: {**ti, "homologeneid": None}
+ def set_to_null(ti): return {**ti, "homologeneid": None} # pylint: disable=[C0103, C0321]
functions_table = {
"Temp": set_to_null,
"Geno": set_to_null,
@@ -255,6 +462,7 @@ def set_homologene_id_field(trait_type, trait_info, conn):
}
return functions_table[trait_type](trait_info)
+
def load_publish_qtl_info(trait_info, conn):
"""
Load extra QTL information for `Publish` traits
@@ -275,6 +483,7 @@ def load_publish_qtl_info(trait_info, conn):
return dict(zip(["locus", "lrs", "additive"], cursor.fetchone()))
return {"locus": "", "lrs": "", "additive": ""}
+
def load_probeset_qtl_info(trait_info, conn):
"""
Load extra QTL information for `ProbeSet` traits
@@ -297,6 +506,7 @@ def load_probeset_qtl_info(trait_info, conn):
["locus", "lrs", "pvalue", "mean", "additive"], cursor.fetchone()))
return {"locus": "", "lrs": "", "pvalue": "", "mean": "", "additive": ""}
+
def load_qtl_info(qtl, trait_type, trait_info, conn):
"""
Load extra QTL information for traits
@@ -325,6 +535,7 @@ def load_qtl_info(qtl, trait_type, trait_info, conn):
return qtl_info_functions[trait_type](trait_info, conn)
+
def build_trait_name(trait_fullname):
"""
Initialises the trait's name, and other values from the search data provided
@@ -351,6 +562,7 @@ def build_trait_name(trait_fullname):
"cellid": name_parts[2] if len(name_parts) == 3 else ""
}
+
def retrieve_probeset_sequence(trait, conn):
"""
Retrieve a 'ProbeSet' trait's sequence information
@@ -372,6 +584,7 @@ def retrieve_probeset_sequence(trait, conn):
seq = cursor.fetchone()
return {**trait, "sequence": seq[0] if seq else ""}
+
def retrieve_trait_info(
threshold: int, trait_full_name: str, conn: Any,
qtl=None):
@@ -427,6 +640,7 @@ def retrieve_trait_info(
}
return trait_info
+
def retrieve_temp_trait_data(trait_info: dict, conn: Any):
"""
Retrieve trait data for `Temp` traits.
@@ -445,10 +659,12 @@ def retrieve_temp_trait_data(trait_info: dict, conn: Any):
query,
{"trait_name": trait_info["trait_name"]})
return [dict(zip(
- ["sample_name", "value", "se_error", "nstrain", "id"], row))
+ ["sample_name", "value", "se_error", "nstrain", "id"],
+ row))
for row in cursor.fetchall()]
return []
+
def retrieve_species_id(group, conn: Any):
"""
Retrieve a species id given the Group value
@@ -460,6 +676,7 @@ def retrieve_species_id(group, conn: Any):
return cursor.fetchone()[0]
return None
+
def retrieve_geno_trait_data(trait_info: Dict, conn: Any):
"""
Retrieve trait data for `Geno` traits.
@@ -483,11 +700,14 @@ def retrieve_geno_trait_data(trait_info: Dict, conn: Any):
"dataset_name": trait_info["db"]["dataset_name"],
"species_id": retrieve_species_id(
trait_info["db"]["group"], conn)})
- return [dict(zip(
- ["sample_name", "value", "se_error", "id"], row))
- for row in cursor.fetchall()]
+ return [
+ dict(zip(
+ ["sample_name", "value", "se_error", "id"],
+ row))
+ for row in cursor.fetchall()]
return []
+
def retrieve_publish_trait_data(trait_info: Dict, conn: Any):
"""
Retrieve trait data for `Publish` traits.
@@ -514,11 +734,13 @@ def retrieve_publish_trait_data(trait_info: Dict, conn: Any):
query,
{"trait_name": trait_info["trait_name"],
"dataset_id": trait_info["db"]["dataset_id"]})
- return [dict(zip(
- ["sample_name", "value", "se_error", "nstrain", "id"], row))
- for row in cursor.fetchall()]
+ return [
+ dict(zip(
+ ["sample_name", "value", "se_error", "nstrain", "id"], row))
+ for row in cursor.fetchall()]
return []
+
def retrieve_cellid_trait_data(trait_info: Dict, conn: Any):
"""
Retrieve trait data for `Probe Data` types.
@@ -547,11 +769,13 @@ def retrieve_cellid_trait_data(trait_info: Dict, conn: Any):
{"cellid": trait_info["cellid"],
"trait_name": trait_info["trait_name"],
"dataset_id": trait_info["db"]["dataset_id"]})
- return [dict(zip(
- ["sample_name", "value", "se_error", "id"], row))
- for row in cursor.fetchall()]
+ return [
+ dict(zip(
+ ["sample_name", "value", "se_error", "id"], row))
+ for row in cursor.fetchall()]
return []
+
def retrieve_probeset_trait_data(trait_info: Dict, conn: Any):
"""
Retrieve trait data for `ProbeSet` traits.
@@ -576,11 +800,13 @@ def retrieve_probeset_trait_data(trait_info: Dict, conn: Any):
query,
{"trait_name": trait_info["trait_name"],
"dataset_name": trait_info["db"]["dataset_name"]})
- return [dict(zip(
- ["sample_name", "value", "se_error", "id"], row))
- for row in cursor.fetchall()]
+ return [
+ dict(zip(
+ ["sample_name", "value", "se_error", "id"], row))
+ for row in cursor.fetchall()]
return []
+
def with_samplelist_data_setup(samplelist: Sequence[str]):
"""
Build function that computes the trait data from provided list of samples.
@@ -607,6 +833,7 @@ def with_samplelist_data_setup(samplelist: Sequence[str]):
return None
return setup_fn
+
def without_samplelist_data_setup():
"""
Build function that computes the trait data.
@@ -627,6 +854,7 @@ def without_samplelist_data_setup():
return None
return setup_fn
+
def retrieve_trait_data(trait: dict, conn: Any, samplelist: Sequence[str] = tuple()):
"""
Retrieve trait data
@@ -666,11 +894,38 @@ def retrieve_trait_data(trait: dict, conn: Any, samplelist: Sequence[str] = tupl
"data": dict(map(
lambda x: (
x["sample_name"],
- {k:v for k, v in x.items() if x != "sample_name"}),
+ {k: v for k, v in x.items() if x != "sample_name"}),
data))}
return {}
+
def generate_traits_filename(base_path: str = TMPDIR):
"""Generate a unique filename for use with generated traits files."""
return "{}/traits_test_file_{}.txt".format(
os.path.abspath(base_path), random_string(10))
+
+
+def export_informative(trait_data: dict, inc_var: bool = False) -> tuple:
+ """
+ Export informative strain
+
+ This is a migration of the `exportInformative` function in
+ web/webqtl/base/webqtlTrait.py module in GeneNetwork1.
+
+ There is a chance that the original implementation has a bug, especially
+ dealing with the `inc_var` value. It the `inc_var` value is meant to control
+ the inclusion of the `variance` value, then the current implementation, and
+ that one in GN1 have a bug.
+ """
+ def __exporter__(acc, data_item):
+ if not inc_var or data_item["variance"] is not None:
+ return (
+ acc[0] + (data_item["sample_name"],),
+ acc[1] + (data_item["value"],),
+ acc[2] + (data_item["variance"],))
+ return acc
+ return reduce(
+ __exporter__,
+ filter(lambda td: td["value"] is not None,
+ trait_data["data"].values()),
+ (tuple(), tuple(), tuple()))