aboutsummaryrefslogtreecommitdiff
path: root/gn3/db/correlations.py
diff options
context:
space:
mode:
authorFrederick Muriuki Muriithi2021-12-06 14:04:59 +0300
committerFrederick Muriuki Muriithi2021-12-06 14:04:59 +0300
commit66406115f41594ba40e3fbbc6f69aace2d11800f (patch)
tree0f3de09b74a3f47918dd4a192665c8a06c508144 /gn3/db/correlations.py
parent77099cac68e8f4792bf54d8e1f7ce6f315bedfa7 (diff)
parent5d2248f1dabbc7dd04f48aafcc9f327817a9c92c (diff)
downloadgenenetwork3-66406115f41594ba40e3fbbc6f69aace2d11800f.tar.gz
Merge branch 'partial-correlations'
Diffstat (limited to 'gn3/db/correlations.py')
-rw-r--r--gn3/db/correlations.py564
1 files changed, 564 insertions, 0 deletions
diff --git a/gn3/db/correlations.py b/gn3/db/correlations.py
new file mode 100644
index 0000000..3d12019
--- /dev/null
+++ b/gn3/db/correlations.py
@@ -0,0 +1,564 @@
+"""
+This module will hold functions that are used in the (partial) correlations
+feature to access the database to retrieve data needed for computations.
+"""
+import os
+from functools import reduce
+from typing import Any, Dict, Tuple, Union
+
+from gn3.random import random_string
+from gn3.data_helpers import partition_all
+from gn3.db.species import translate_to_mouse_gene_id
+
+def get_filename(conn: Any, target_db_name: str, text_files_dir: str) -> Union[
+ str, bool]:
+ """
+ Retrieve the name of the reference database file with which correlations are
+ computed.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getFileName` function in
+ GeneNetwork1.
+ """
+ with conn.cursor() as cursor:
+ cursor.execute(
+ "SELECT Id, FullName from ProbeSetFreeze WHERE Name=%s",
+ (target_db_name,))
+ result = cursor.fetchone()
+ if result:
+ filename = "ProbeSetFreezeId_{tid}_FullName_{fname}.txt".format(
+ tid=result[0],
+ fname=result[1].replace(' ', '_').replace('/', '_'))
+ return ((filename in os.listdir(text_files_dir))
+ and f"{text_files_dir}/{filename}")
+
+ return False
+
+def build_temporary_literature_table(
+ conn: Any, species: str, gene_id: int, return_number: int) -> str:
+ """
+ Build and populate a temporary table to hold the literature correlation data
+ to be used in computations.
+
+ "This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getTempLiteratureTable` function in
+ GeneNetwork1.
+ """
+ def __translated_species_id(row, cursor):
+ if species == "mouse":
+ return row[1]
+ query = {
+ "rat": "SELECT rat FROM GeneIDXRef WHERE mouse=%s",
+ "human": "SELECT human FROM GeneIDXRef WHERE mouse=%d"}
+ if species in query.keys():
+ cursor.execute(query[species], row[1])
+ record = cursor.fetchone()
+ if record:
+ return record[0]
+ return None
+ return None
+
+ temp_table_name = f"TOPLITERATURE{random_string(8)}"
+ with conn.cursor as cursor:
+ mouse_geneid = translate_to_mouse_gene_id(species, gene_id, conn)
+ data_query = (
+ "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
+ "WHERE GeneId1 = %(mouse_gene_id)s "
+ "UNION ALL "
+ "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
+ "WHERE GeneId2 = %(mouse_gene_id)s "
+ "AND GeneId1 != %(mouse_gene_id)s")
+ cursor.execute(
+ (f"CREATE TEMPORARY TABLE {temp_table_name} ("
+ "GeneId1 int(12) unsigned, "
+ "GeneId2 int(12) unsigned PRIMARY KEY, "
+ "value double)"))
+ cursor.execute(data_query, mouse_gene_id=mouse_geneid)
+ literature_data = [
+ {"GeneId1": row[0], "GeneId2": row[1], "value": row[2]}
+ for row in cursor.fetchall()
+ if __translated_species_id(row, cursor)]
+
+ cursor.execute(
+ (f"INSERT INTO {temp_table_name} "
+ "VALUES (%(GeneId1)s, %(GeneId2)s, %(value)s)"),
+ literature_data[0:(2 * return_number)])
+
+ return temp_table_name
+
+def fetch_geno_literature_correlations(temp_table: str) -> str:
+ """
+ Helper function for `fetch_literature_correlations` below, to build query
+ for `Geno*` tables.
+ """
+ return (
+ f"SELECT Geno.Name, {temp_table}.value "
+ "FROM Geno, GenoXRef, GenoFreeze "
+ f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId "
+ "WHERE ProbeSet.GeneId IS NOT NULL "
+ f"AND {temp_table}.value IS NOT NULL "
+ "AND GenoXRef.GenoFreezeId = GenoFreeze.Id "
+ "AND GenoFreeze.Name = %(db_name)s "
+ "AND Geno.Id=GenoXRef.GenoId "
+ "ORDER BY Geno.Id")
+
+def fetch_probeset_literature_correlations(temp_table: str) -> str:
+ """
+ Helper function for `fetch_literature_correlations` below, to build query
+ for `ProbeSet*` tables.
+ """
+ return (
+ f"SELECT ProbeSet.Name, {temp_table}.value "
+ "FROM ProbeSet, ProbeSetXRef, ProbeSetFreeze "
+ "LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId "
+ "WHERE ProbeSet.GeneId IS NOT NULL "
+ "AND {temp_table}.value IS NOT NULL "
+ "AND ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
+ "AND ProbeSetFreeze.Name = %(db_name)s "
+ "AND ProbeSet.Id=ProbeSetXRef.ProbeSetId "
+ "ORDER BY ProbeSet.Id")
+
+def fetch_literature_correlations(
+ species: str, gene_id: int, dataset: dict, return_number: int,
+ conn: Any) -> dict:
+ """
+ Gather the literature correlation data and pair it with trait id string(s).
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchLitCorrelations` function in
+ GeneNetwork1.
+ """
+ temp_table = build_temporary_literature_table(
+ conn, species, gene_id, return_number)
+ query_fns = {
+ "Geno": fetch_geno_literature_correlations,
+ # "Temp": fetch_temp_literature_correlations,
+ # "Publish": fetch_publish_literature_correlations,
+ "ProbeSet": fetch_probeset_literature_correlations}
+ with conn.cursor as cursor:
+ cursor.execute(
+ query_fns[dataset["dataset_type"]](temp_table),
+ db_name=dataset["dataset_name"])
+ results = cursor.fetchall()
+ cursor.execute("DROP TEMPORARY TABLE %s", temp_table)
+ return dict(results)
+
+def fetch_symbol_value_pair_dict(
+ symbol_list: Tuple[str, ...], data_id_dict: dict,
+ conn: Any) -> Dict[str, Tuple[float, ...]]:
+ """
+ Map each gene symbols to the corresponding tissue expression data.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.getSymbolValuePairDict` function
+ in GeneNetwork1.
+ """
+ data_ids = {
+ symbol: data_id_dict.get(symbol) for symbol in symbol_list
+ if data_id_dict.get(symbol) is not None
+ }
+ query = "SELECT Id, value FROM TissueProbeSetData WHERE Id IN %(data_ids)s"
+ with conn.cursor() as cursor:
+ cursor.execute(
+ query,
+ data_ids=tuple(data_ids.values()))
+ value_results = cursor.fetchall()
+ return {
+ key: tuple(row[1] for row in value_results if row[0] == key)
+ for key in data_ids.keys()
+ }
+
+ return {}
+
+def fetch_gene_symbol_tissue_value_dict(
+ symbol_list: Tuple[str, ...], data_id_dict: dict, conn: Any,
+ limit_num: int = 1000) -> dict:#getGeneSymbolTissueValueDict
+ """
+ Wrapper function for `gn3.db.correlations.fetch_symbol_value_pair_dict`.
+
+ This is a migrations of the
+ `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDict` in
+ GeneNetwork1.
+ """
+ count = len(symbol_list)
+ if count != 0 and count <= limit_num:
+ return fetch_symbol_value_pair_dict(symbol_list, data_id_dict, conn)
+
+ if count > limit_num:
+ return {
+ key: value for dct in [
+ fetch_symbol_value_pair_dict(sl, data_id_dict, conn)
+ for sl in partition_all(limit_num, symbol_list)]
+ for key, value in dct.items()
+ }
+
+ return {}
+
+def fetch_tissue_probeset_xref_info(
+ gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+ conn: Any) -> Tuple[tuple, dict, dict, dict, dict, dict, dict]:
+ """
+ Retrieve the ProbeSet XRef information for tissues.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.getTissueProbeSetXRefInfo`
+ function in GeneNetwork1."""
+ with conn.cursor() as cursor:
+ if len(gene_name_list) == 0:
+ query = (
+ "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, "
+ "t.description, t.Probe_Target_Description "
+ "FROM "
+ "("
+ " SELECT Symbol, max(Mean) AS maxmean "
+ " FROM TissueProbeSetXRef "
+ " WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+ " AND Symbol != '' "
+ " AND Symbol IS NOT NULL "
+ " GROUP BY Symbol"
+ ") AS x "
+ "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
+ "AND t.Mean = x.maxmean")
+ cursor.execute(query, probeset_freeze_id=probeset_freeze_id)
+ else:
+ query = (
+ "SELECT t.Symbol, t.GeneId, t.DataId, t.Chr, t.Mb, "
+ "t.description, t.Probe_Target_Description "
+ "FROM "
+ "("
+ " SELECT Symbol, max(Mean) AS maxmean "
+ " FROM TissueProbeSetXRef "
+ " WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+ " AND Symbol in %(symbols)s "
+ " GROUP BY Symbol"
+ ") AS x "
+ "INNER JOIN TissueProbeSetXRef AS t ON t.Symbol = x.Symbol "
+ "AND t.Mean = x.maxmean")
+ cursor.execute(
+ query, probeset_freeze_id=probeset_freeze_id,
+ symbols=tuple(gene_name_list))
+
+ results = cursor.fetchall()
+
+ return reduce(
+ lambda acc, item: (
+ acc[0] + (item[0],),
+ {**acc[1], item[0].lower(): item[1]},
+ {**acc[1], item[0].lower(): item[2]},
+ {**acc[1], item[0].lower(): item[3]},
+ {**acc[1], item[0].lower(): item[4]},
+ {**acc[1], item[0].lower(): item[5]},
+ {**acc[1], item[0].lower(): item[6]}),
+ results or tuple(),
+ (tuple(), {}, {}, {}, {}, {}, {}))
+
+def fetch_gene_symbol_tissue_value_dict_for_trait(
+ gene_name_list: Tuple[str, ...], probeset_freeze_id: int,
+ conn: Any) -> dict:
+ """
+ Fetches a map of the gene symbols to the tissue values.
+
+ This is a migration of the
+ `web.webqtl.correlation.correlationFunction.getGeneSymbolTissueValueDictForTrait`
+ function in GeneNetwork1.
+ """
+ xref_info = fetch_tissue_probeset_xref_info(
+ gene_name_list, probeset_freeze_id, conn)
+ if xref_info[0]:
+ return fetch_gene_symbol_tissue_value_dict(xref_info[0], xref_info[2], conn)
+ return {}
+
+def build_temporary_tissue_correlations_table(
+ conn: Any, trait_symbol: str, probeset_freeze_id: int, method: str,
+ return_number: int) -> str:
+ """
+ Build a temporary table to hold the tissue correlations data.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.getTempTissueCorrTable` function in
+ GeneNetwork1."""
+ # We should probably pass the `correlations_of_all_tissue_traits` function
+ # as an argument to this function and get rid of the one call immediately
+ # following this comment.
+ from gn3.computations.partial_correlations import (#pylint: disable=[C0415, R0401]
+ correlations_of_all_tissue_traits)
+ # This import above is necessary within the function to avoid
+ # circular-imports.
+ #
+ #
+ # This import above is indicative of convoluted code, with the computation
+ # being interwoven with the data retrieval. This needs to be changed, such
+ # that the function being imported here is no longer necessary, or have the
+ # imported function passed to this function as an argument.
+ symbol_corr_dict, symbol_p_value_dict = correlations_of_all_tissue_traits(
+ fetch_gene_symbol_tissue_value_dict_for_trait(
+ (trait_symbol,), probeset_freeze_id, conn),
+ fetch_gene_symbol_tissue_value_dict_for_trait(
+ tuple(), probeset_freeze_id, conn),
+ method)
+
+ symbol_corr_list = sorted(
+ symbol_corr_dict.items(), key=lambda key_val: key_val[1])
+
+ temp_table_name = f"TOPTISSUE{random_string(8)}"
+ create_query = (
+ "CREATE TEMPORARY TABLE {temp_table_name}"
+ "(Symbol varchar(100) PRIMARY KEY, Correlation float, PValue float)")
+ insert_query = (
+ f"INSERT INTO {temp_table_name}(Symbol, Correlation, PValue) "
+ " VALUES (%(symbol)s, %(correlation)s, %(pvalue)s)")
+
+ with conn.cursor() as cursor:
+ cursor.execute(create_query)
+ cursor.execute(
+ insert_query,
+ tuple({
+ "symbol": symbol,
+ "correlation": corr,
+ "pvalue": symbol_p_value_dict[symbol]
+ } for symbol, corr in symbol_corr_list[0: 2 * return_number]))
+
+ return temp_table_name
+
+def fetch_tissue_correlations(# pylint: disable=R0913
+ dataset: dict, trait_symbol: str, probeset_freeze_id: int, method: str,
+ return_number: int, conn: Any) -> dict:
+ """
+ Pair tissue correlations data with a trait id string.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchTissueCorrelations` function in
+ GeneNetwork1.
+ """
+ temp_table = build_temporary_tissue_correlations_table(
+ conn, trait_symbol, probeset_freeze_id, method, return_number)
+ with conn.cursor() as cursor:
+ cursor.execute(
+ (
+ f"SELECT ProbeSet.Name, {temp_table}.Correlation, "
+ f"{temp_table}.PValue "
+ "FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze) "
+ "LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol "
+ "WHERE ProbeSetFreeze.Name = %(db_name) "
+ "AND ProbeSetFreeze.Id=ProbeSetXRef.ProbeSetFreezeId "
+ "AND ProbeSet.Id = ProbeSetXRef.ProbeSetId "
+ "AND ProbeSet.Symbol IS NOT NULL "
+ "AND %s.Correlation IS NOT NULL"),
+ db_name=dataset["dataset_name"])
+ results = cursor.fetchall()
+ cursor.execute("DROP TEMPORARY TABLE %s", temp_table)
+ return {
+ trait_name: (tiss_corr, tiss_p_val)
+ for trait_name, tiss_corr, tiss_p_val in results}
+
+def check_for_literature_info(conn: Any, geneid: int) -> bool:
+ """
+ Checks the database to find out whether the trait with `geneid` has any
+ associated literature.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.checkForLitInfo` function in
+ GeneNetwork1.
+ """
+ query = "SELECT 1 FROM LCorrRamin3 WHERE GeneId1=%s LIMIT 1"
+ with conn.cursor() as cursor:
+ cursor.execute(query, geneid)
+ result = cursor.fetchone()
+ if result:
+ return True
+
+ return False
+
+def check_symbol_for_tissue_correlation(
+ conn: Any, tissue_probeset_freeze_id: int, symbol: str = "") -> bool:
+ """
+ Checks whether a symbol has any associated tissue correlations.
+
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.checkSymbolForTissueCorr` function
+ in GeneNetwork1.
+ """
+ query = (
+ "SELECT 1 FROM TissueProbeSetXRef "
+ "WHERE TissueProbeSetFreezeId=%(probeset_freeze_id)s "
+ "AND Symbol=%(symbol)s LIMIT 1")
+ with conn.cursor() as cursor:
+ cursor.execute(
+ query, probeset_freeze_id=tissue_probeset_freeze_id, symbol=symbol)
+ result = cursor.fetchone()
+ if result:
+ return True
+
+ return False
+
+def fetch_sample_ids(
+ conn: Any, sample_names: Tuple[str, ...], species_name: str) -> Tuple[
+ int, ...]:
+ """
+ Given a sequence of sample names, and a species name, return the sample ids
+ that correspond to both.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+ GeneNetwork1.
+ """
+ query = (
+ "SELECT Strain.Id FROM Strain, Species "
+ "WHERE Strain.Name IN %(samples_names)s "
+ "AND Strain.SpeciesId=Species.Id "
+ "AND Species.name=%(species_name)s")
+ with conn.cursor() as cursor:
+ cursor.execute(
+ query,
+ {
+ "samples_names": tuple(sample_names),
+ "species_name": species_name
+ })
+ return tuple(row[0] for row in cursor.fetchall())
+
+def build_query_sgo_lit_corr(
+ db_type: str, temp_table: str, sample_id_columns: str,
+ joins: Tuple[str, ...]) -> str:
+ """
+ Build query for `SGO Literature Correlation` data, when querying the given
+ `temp_table` temporary table.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+ GeneNetwork1.
+ """
+ return (
+ (f"SELECT {db_type}.Name, {temp_table}.value, " +
+ sample_id_columns +
+ f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+ f"LEFT JOIN {temp_table} ON {temp_table}.GeneId2=ProbeSet.GeneId " +
+ " ".join(joins) +
+ " WHERE ProbeSet.GeneId IS NOT NULL " +
+ f"AND {temp_table}.value IS NOT NULL " +
+ f"AND {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+ f"AND {db_type}Freeze.Name = %(db_name)s " +
+ f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " +
+ f"ORDER BY {db_type}.Id"),
+ 2)
+
+def build_query_tissue_corr(db_type, temp_table, sample_id_columns, joins):
+ """
+ Build query for `Tissue Correlation` data, when querying the given
+ `temp_table` temporary table.
+
+ This is a partial migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+ GeneNetwork1.
+ """
+ return (
+ (f"SELECT {db_type}.Name, {temp_table}.Correlation, " +
+ f"{temp_table}.PValue, " +
+ sample_id_columns +
+ f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+ f"LEFT JOIN {temp_table} ON {temp_table}.Symbol=ProbeSet.Symbol " +
+ " ".join(joins) +
+ " WHERE ProbeSet.Symbol IS NOT NULL " +
+ f"AND {temp_table}.Correlation IS NOT NULL " +
+ f"AND {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+ f"AND {db_type}Freeze.Name = %(db_name)s " +
+ f"AND {db_type}.Id = {db_type}XRef.{db_type}Id "
+ f"ORDER BY {db_type}.Id"),
+ 3)
+
+def fetch_all_database_data(# pylint: disable=[R0913, R0914]
+ conn: Any, species: str, gene_id: int, trait_symbol: str,
+ samples: Tuple[str, ...], dataset: dict, method: str,
+ return_number: int, probeset_freeze_id: int) -> Tuple[
+ Tuple[float], int]:
+ """
+ This is a migration of the
+ `web.webqtl.correlation.CorrelationPage.fetchAllDatabaseData` function in
+ GeneNetwork1.
+ """
+ db_type = dataset["dataset_type"]
+ db_name = dataset["dataset_name"]
+ def __build_query__(sample_ids, temp_table):
+ sample_id_columns = ", ".join(f"T{smpl}.value" for smpl in sample_ids)
+ if db_type == "Publish":
+ joins = tuple(
+ ("LEFT JOIN PublishData AS T{item} "
+ "ON T{item}.Id = PublishXRef.DataId "
+ "AND T{item}.StrainId = %(T{item}_sample_id)s")
+ for item in sample_ids)
+ return (
+ ("SELECT PublishXRef.Id, " +
+ sample_id_columns +
+ "FROM (PublishXRef, PublishFreeze) " +
+ " ".join(joins) +
+ " WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
+ "AND PublishFreeze.Name = %(db_name)s"),
+ 1)
+ if temp_table is not None:
+ joins = tuple(
+ (f"LEFT JOIN {db_type}Data AS T{item} "
+ f"ON T{item}.Id = {db_type}XRef.DataId "
+ f"AND T{item}.StrainId=%(T{item}_sample_id)s")
+ for item in sample_ids)
+ if method.lower() == "sgo literature correlation":
+ return build_query_sgo_lit_corr(
+ sample_ids, temp_table, sample_id_columns, joins)
+ if method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ return build_query_tissue_corr(
+ sample_ids, temp_table, sample_id_columns, joins)
+ joins = tuple(
+ (f"LEFT JOIN {db_type}Data AS T{item} "
+ f"ON T{item}.Id = {db_type}XRef.DataId "
+ f"AND T{item}.StrainId = %(T{item}_sample_id)s")
+ for item in sample_ids)
+ return (
+ (
+ f"SELECT {db_type}.Name, " +
+ sample_id_columns +
+ f" FROM ({db_type}, {db_type}XRef, {db_type}Freeze) " +
+ " ".join(joins) +
+ f" WHERE {db_type}XRef.{db_type}FreezeId = {db_type}Freeze.Id " +
+ f"AND {db_type}Freeze.Name = %(db_name)s " +
+ f"AND {db_type}.Id = {db_type}XRef.{db_type}Id " +
+ f"ORDER BY {db_type}.Id"),
+ 1)
+
+ def __fetch_data__(sample_ids, temp_table):
+ query, data_start_pos = __build_query__(sample_ids, temp_table)
+ with conn.cursor() as cursor:
+ cursor.execute(
+ query,
+ {"db_name": db_name,
+ **{f"T{item}_sample_id": item for item in sample_ids}})
+ return (cursor.fetchall(), data_start_pos)
+
+ sample_ids = tuple(
+ # look into graduating this to an argument and removing the `samples`
+ # and `species` argument: function currying and compositions might help
+ # with this
+ f"{sample_id}" for sample_id in
+ fetch_sample_ids(conn, samples, species))
+
+ temp_table = None
+ if gene_id and db_type == "probeset":
+ if method.lower() == "sgo literature correlation":
+ temp_table = build_temporary_literature_table(
+ conn, species, gene_id, return_number)
+ if method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho"):
+ temp_table = build_temporary_tissue_correlations_table(
+ conn, trait_symbol, probeset_freeze_id, method, return_number)
+
+ trait_database = tuple(
+ item for sublist in
+ (__fetch_data__(ssample_ids, temp_table)
+ for ssample_ids in partition_all(25, sample_ids))
+ for item in sublist)
+
+ if temp_table:
+ with conn.cursor() as cursor:
+ cursor.execute(f"DROP TEMPORARY TABLE {temp_table}")
+
+ return (trait_database[0], trait_database[1])