about summary refs log tree commit diff
path: root/gn3/computations
diff options
context:
space:
mode:
authorFrederick Muriuki Muriithi2021-12-06 14:04:59 +0300
committerFrederick Muriuki Muriithi2021-12-06 14:04:59 +0300
commit66406115f41594ba40e3fbbc6f69aace2d11800f (patch)
tree0f3de09b74a3f47918dd4a192665c8a06c508144 /gn3/computations
parent77099cac68e8f4792bf54d8e1f7ce6f315bedfa7 (diff)
parent5d2248f1dabbc7dd04f48aafcc9f327817a9c92c (diff)
downloadgenenetwork3-66406115f41594ba40e3fbbc6f69aace2d11800f.tar.gz
Merge branch 'partial-correlations'
Diffstat (limited to 'gn3/computations')
-rw-r--r--gn3/computations/biweight.py27
-rw-r--r--gn3/computations/correlations.py41
-rw-r--r--gn3/computations/correlations2.py36
-rw-r--r--gn3/computations/partial_correlations.py696
-rw-r--r--gn3/computations/wgcna.py49
5 files changed, 767 insertions, 82 deletions
diff --git a/gn3/computations/biweight.py b/gn3/computations/biweight.py
deleted file mode 100644
index 7accd0c..0000000
--- a/gn3/computations/biweight.py
+++ /dev/null
@@ -1,27 +0,0 @@
-"""module contains script to call biweight midcorrelation in R"""
-import subprocess
-
-from typing import List
-from typing import Tuple
-
-from gn3.settings import BIWEIGHT_RSCRIPT
-
-
-def calculate_biweight_corr(trait_vals: List,
-                            target_vals: List,
-                            path_to_script: str = BIWEIGHT_RSCRIPT,
-                            command: str = "Rscript"
-                            ) -> Tuple[float, float]:
-    """biweight function"""
-
-    args_1 = ' '.join(str(trait_val) for trait_val in trait_vals)
-    args_2 = ' '.join(str(target_val) for target_val in target_vals)
-    cmd = [command, path_to_script] + [args_1] + [args_2]
-
-    results = subprocess.check_output(cmd, universal_newlines=True)
-    try:
-        (corr_coeff, p_val) = tuple(
-            [float(y.strip()) for y in results.split()])
-        return (corr_coeff, p_val)
-    except Exception as error:
-        raise error
diff --git a/gn3/computations/correlations.py b/gn3/computations/correlations.py
index bb13ff1..c5c56db 100644
--- a/gn3/computations/correlations.py
+++ b/gn3/computations/correlations.py
@@ -1,6 +1,7 @@
 """module contains code for correlations"""
 import math
 import multiprocessing
+from contextlib import closing
 
 from typing import List
 from typing import Tuple
@@ -8,7 +9,7 @@ from typing import Optional
 from typing import Callable
 
 import scipy.stats
-from gn3.computations.biweight import calculate_biweight_corr
+import pingouin as pg
 
 
 def map_shared_keys_to_values(target_sample_keys: List,
@@ -49,13 +50,9 @@ def normalize_values(a_values: List,
     ([2.3, 4.1, 5], [3.4, 6.2, 4.1], 3)
 
     """
-    a_new = []
-    b_new = []
     for a_val, b_val in zip(a_values, b_values):
         if (a_val and b_val is not None):
-            a_new.append(a_val)
-            b_new.append(b_val)
-    return a_new, b_new, len(a_new)
+            yield a_val, b_val
 
 
 def compute_corr_coeff_p_value(primary_values: List, target_values: List,
@@ -81,8 +78,10 @@ def compute_sample_r_correlation(trait_name, corr_method, trait_vals,
     correlation coeff and p value
 
     """
-    (sanitized_traits_vals, sanitized_target_vals,
-     num_overlap) = normalize_values(trait_vals, target_samples_vals)
+
+    sanitized_traits_vals, sanitized_target_vals = list(
+        zip(*list(normalize_values(trait_vals, target_samples_vals))))
+    num_overlap = len(sanitized_traits_vals)
 
     if num_overlap > 5:
 
@@ -102,11 +101,10 @@ package :not packaged in guix
 
     """
 
-    try:
-        results = calculate_biweight_corr(x_val, y_val)
-        return results
-    except Exception as error:
-        raise error
+    results = pg.corr(x_val, y_val, method="bicor")
+    corr_coeff = results["r"].values[0]
+    p_val = results["p-val"].values[0]
+    return (corr_coeff, p_val)
 
 
 def filter_shared_sample_keys(this_samplelist,
@@ -115,13 +113,9 @@ def filter_shared_sample_keys(this_samplelist,
     filter the values using the shared keys
 
     """
-    this_vals = []
-    target_vals = []
     for key, value in target_samplelist.items():
         if key in this_samplelist:
-            target_vals.append(value)
-            this_vals.append(this_samplelist[key])
-    return (this_vals, target_vals)
+            yield this_samplelist[key], value
 
 
 def fast_compute_all_sample_correlation(this_trait,
@@ -140,9 +134,10 @@ def fast_compute_all_sample_correlation(this_trait,
     for target_trait in target_dataset:
         trait_name = target_trait.get("trait_id")
         target_trait_data = target_trait["trait_sample_data"]
-        processed_values.append((trait_name, corr_method, *filter_shared_sample_keys(
-            this_trait_samples, target_trait_data)))
-    with multiprocessing.Pool(4) as pool:
+        processed_values.append((trait_name, corr_method,
+                                 list(zip(*list(filter_shared_sample_keys(
+                                     this_trait_samples, target_trait_data))))))
+    with closing(multiprocessing.Pool()) as pool:
         results = pool.starmap(compute_sample_r_correlation, processed_values)
 
         for sample_correlation in results:
@@ -173,8 +168,8 @@ def compute_all_sample_correlation(this_trait,
     for target_trait in target_dataset:
         trait_name = target_trait.get("trait_id")
         target_trait_data = target_trait["trait_sample_data"]
-        this_vals, target_vals = filter_shared_sample_keys(
-            this_trait_samples, target_trait_data)
+        this_vals, target_vals = list(zip(*list(filter_shared_sample_keys(
+            this_trait_samples, target_trait_data))))
 
         sample_correlation = compute_sample_r_correlation(
             trait_name=trait_name,
diff --git a/gn3/computations/correlations2.py b/gn3/computations/correlations2.py
index 93db3fa..d0222ae 100644
--- a/gn3/computations/correlations2.py
+++ b/gn3/computations/correlations2.py
@@ -6,45 +6,21 @@ FUNCTIONS:
 compute_correlation:
     TODO: Describe what the function does..."""
 
-from math import sqrt
-from functools import reduce
+from scipy import stats
 ## From GN1: mostly for clustering and heatmap generation
 
 def __items_with_values(dbdata, userdata):
     """Retains only corresponding items in the data items that are not `None` values.
     This should probably be renamed to something sensible"""
-    def both_not_none(item1, item2):
-        """Check that both items are not the value `None`."""
-        if (item1 is not None) and (item2 is not None):
-            return (item1, item2)
-        return None
-    def split_lists(accumulator, item):
-        """Separate the 'x' and 'y' items."""
-        return [accumulator[0] + [item[0]], accumulator[1] + [item[1]]]
-    return reduce(
-        split_lists,
-        filter(lambda x: x is not None, map(both_not_none, dbdata, userdata)),
-        [[], []])
+    filtered = [x for x in zip(dbdata, userdata) if x[0] is not None and x[1] is not None]
+    return tuple(zip(*filtered)) if filtered else ([], [])
 
 def compute_correlation(dbdata, userdata):
-    """Compute some form of correlation.
+    """Compute the Pearson correlation coefficient.
 
     This is extracted from
     https://github.com/genenetwork/genenetwork1/blob/master/web/webqtl/utility/webqtlUtil.py#L622-L647
     """
     x_items, y_items = __items_with_values(dbdata, userdata)
-    if len(x_items) < 6:
-        return (0.0, len(x_items))
-    meanx = sum(x_items)/len(x_items)
-    meany = sum(y_items)/len(y_items)
-    def cal_corr_vals(acc, item):
-        xitem, yitem = item
-        return [
-            acc[0] + ((xitem - meanx) * (yitem - meany)),
-            acc[1] + ((xitem - meanx) * (xitem - meanx)),
-            acc[2] + ((yitem - meany) * (yitem - meany))]
-    xyd, sxd, syd = reduce(cal_corr_vals, zip(x_items, y_items), [0.0, 0.0, 0.0])
-    try:
-        return ((xyd/(sqrt(sxd)*sqrt(syd))), len(x_items))
-    except ZeroDivisionError:
-        return(0, len(x_items))
+    correlation = stats.pearsonr(x_items, y_items)[0] if len(x_items) >= 6 else 0
+    return (correlation, len(x_items))
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
new file mode 100644
index 0000000..231b0a7
--- /dev/null
+++ b/gn3/computations/partial_correlations.py
@@ -0,0 +1,696 @@
+"""
+This module deals with partial correlations.
+
+It is an attempt to migrate over the partial correlations feature from
+GeneNetwork1.
+"""
+
+import math
+from functools import reduce, partial
+from typing import Any, Tuple, Union, Sequence
+
+import pandas
+import pingouin
+from scipy.stats import pearsonr, spearmanr
+
+from gn3.settings import TEXTDIR
+from gn3.random import random_string
+from gn3.function_helpers import  compose
+from gn3.data_helpers import parse_csv_line
+from gn3.db.traits import export_informative
+from gn3.db.traits import retrieve_trait_info, retrieve_trait_data
+from gn3.db.species import species_name, translate_to_mouse_gene_id
+from gn3.db.correlations import (
+    get_filename,
+    fetch_all_database_data,
+    check_for_literature_info,
+    fetch_tissue_correlations,
+    fetch_literature_correlations,
+    check_symbol_for_tissue_correlation,
+    fetch_gene_symbol_tissue_value_dict_for_trait)
+
+def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
+    """
+    Fetches data for the control traits.
+
+    This migrates `web/webqtl/correlation/correlationFunction.controlStrain` in
+    GN1, with a few modifications to the arguments passed in.
+
+    PARAMETERS:
+    controls: A map of sample names to trait data. Equivalent to the `cvals`
+        value in the corresponding source function in GN1.
+    sampleslist: A list of samples. Equivalent to `strainlst` in the
+        corresponding source function in GN1
+    """
+    def __process_control__(trait_data):
+        def __process_sample__(acc, sample):
+            if sample in trait_data["data"].keys():
+                sample_item = trait_data["data"][sample]
+                val = sample_item["value"]
+                if val is not None:
+                    return (
+                        acc[0] + (sample,),
+                        acc[1] + (val,),
+                        acc[2] + (sample_item["variance"],))
+            return acc
+        return reduce(
+            __process_sample__, sampleslist, (tuple(), tuple(), tuple()))
+
+    return reduce(
+        lambda acc, item: (
+            acc[0] + (item[0],),
+            acc[1] + (item[1],),
+            acc[2] + (item[2],),
+            acc[3] + (len(item[0]),),
+        ),
+        [__process_control__(trait_data) for trait_data in controls],
+        (tuple(), tuple(), tuple(), tuple()))
+
+def dictify_by_samples(samples_vals_vars: Sequence[Sequence]) -> Sequence[dict]:
+    """
+    Build a sequence of dictionaries from a sequence of separate sequences of
+    samples, values and variances.
+
+    This is a partial migration of
+    `web.webqtl.correlation.correlationFunction.fixStrains` function in GN1.
+    This implementation extracts code that will find common use, and that will
+    find use in more than one place.
+    """
+    return tuple(
+        {
+            sample: {"sample_name": sample, "value": val, "variance": var}
+            for sample, val, var in zip(*trait_line)
+        } for trait_line in zip(*(samples_vals_vars[0:3])))
+
+def fix_samples(primary_trait: dict, control_traits: Sequence[dict]) -> Sequence[Sequence[Any]]:
+    """
+    Corrects sample_names, values and variance such that they all contain only
+    those samples that are common to the reference trait and all control traits.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.correlationFunction.fixStrain` function in GN1.
+    """
+    primary_samples = tuple(
+        present[0] for present in
+        ((sample, all(sample in control.keys() for control in control_traits))
+         for sample in primary_trait.keys())
+        if present[1])
+    control_vals_vars: tuple = reduce(
+        lambda acc, x: (acc[0] + (x[0],), acc[1] + (x[1],)),
+        ((item["value"], item["variance"])
+         for sublist in [tuple(control.values()) for control in control_traits]
+         for item in sublist),
+        (tuple(), tuple()))
+    return (
+        primary_samples,
+        tuple(primary_trait[sample]["value"] for sample in primary_samples),
+        control_vals_vars[0],
+        tuple(primary_trait[sample]["variance"] for sample in primary_samples),
+        control_vals_vars[1])
+
+def find_identical_traits(
+        primary_name: str, primary_value: float, control_names: Tuple[str, ...],
+        control_values: Tuple[float, ...]) -> Tuple[str, ...]:
+    """
+    Find traits that have the same value when the values are considered to
+    3 decimal places.
+
+    This is a migration of the
+    `web.webqtl.correlation.correlationFunction.findIdenticalTraits` function in
+    GN1.
+    """
+    def __merge_identicals__(
+            acc: Tuple[str, ...],
+            ident: Tuple[str, Tuple[str, ...]]) -> Tuple[str, ...]:
+        return acc + ident[1]
+
+    def __dictify_controls__(acc, control_item):
+        ckey = tuple("{:.3f}".format(item) for item in control_item[0])
+        return {**acc, ckey: acc.get(ckey, tuple()) + (control_item[1],)}
+
+    return (reduce(## for identical control traits
+        __merge_identicals__,
+        (item for item in reduce(# type: ignore[var-annotated]
+            __dictify_controls__, zip(control_values, control_names),
+            {}).items() if len(item[1]) > 1),
+        tuple())
+            or
+            reduce(## If no identical control traits, try primary and controls
+                __merge_identicals__,
+                (item for item in reduce(# type: ignore[var-annotated]
+                    __dictify_controls__,
+                    zip((primary_value,) + control_values,
+                        (primary_name,) + control_names), {}).items()
+                 if len(item[1]) > 1),
+                tuple()))
+
+def tissue_correlation(
+        primary_trait_values: Tuple[float, ...],
+        target_trait_values: Tuple[float, ...],
+        method: str) -> Tuple[float, float]:
+    """
+    Compute the correlation between the primary trait values, and the values of
+    a single target value.
+
+    This migrates the `cal_tissue_corr` function embedded in the larger
+    `web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
+    GeneNetwork1.
+    """
+    def spearman_corr(*args):
+        result = spearmanr(*args)
+        return (result.correlation, result.pvalue)
+
+    method_fns = {"pearson": pearsonr, "spearman": spearman_corr}
+
+    assert len(primary_trait_values) == len(target_trait_values), (
+        "The lengths of the `primary_trait_values` and `target_trait_values` "
+        "must be equal")
+    assert method in method_fns.keys(), (
+        "Method must be one of: {}".format(",".join(method_fns.keys())))
+
+    corr, pvalue = method_fns[method](primary_trait_values, target_trait_values)
+    return (corr, pvalue)
+
+def batch_computed_tissue_correlation(
+        primary_trait_values: Tuple[float, ...], target_traits_dict: dict,
+        method: str) -> Tuple[dict, dict]:
+    """
+    This is a migration of the
+    `web.webqtl.correlation.correlationFunction.batchCalTissueCorr` function in
+    GeneNetwork1
+    """
+    def __corr__(acc, target):
+        corr = tissue_correlation(primary_trait_values, target[1], method)
+        return ({**acc[0], target[0]: corr[0]}, {**acc[0], target[1]: corr[1]})
+    return reduce(__corr__, target_traits_dict.items(), ({}, {}))
+
+def correlations_of_all_tissue_traits(
+        primary_trait_symbol_value_dict: dict, symbol_value_dict: dict,
+        method: str) -> Tuple[dict, dict]:
+    """
+    Computes and returns the correlation of all tissue traits.
+
+    This is a migration of the
+    `web.webqtl.correlation.correlationFunction.calculateCorrOfAllTissueTrait`
+    function in GeneNetwork1.
+    """
+    primary_trait_values = tuple(primary_trait_symbol_value_dict.values())[0]
+    return batch_computed_tissue_correlation(
+        primary_trait_values, symbol_value_dict, method)
+
+def good_dataset_samples_indexes(
+        samples: Tuple[str, ...],
+        samples_from_file: Tuple[str, ...]) -> Tuple[int, ...]:
+    """
+    Return the indexes of the items in `samples_from_files` that are also found
+    in `samples`.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsFast`
+    function in GeneNetwork1.
+    """
+    return tuple(sorted(
+        samples_from_file.index(good) for good in
+        set(samples).intersection(set(samples_from_file))))
+
+def partial_correlations_fast(# pylint: disable=[R0913, R0914]
+        samples, primary_vals, control_vals, database_filename,
+        fetched_correlations, method: str, correlation_type: str) -> Tuple[
+            float, Tuple[float, ...]]:
+    """
+    Computes partial correlation coefficients using data from a CSV file.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsFast`
+    function in GeneNetwork1.
+    """
+    assert method in ("spearman", "pearson")
+    with open(database_filename, "r") as dataset_file:
+        dataset = tuple(dataset_file.readlines())
+
+    good_dataset_samples = good_dataset_samples_indexes(
+        samples, parse_csv_line(dataset[0])[1:])
+
+    def __process_trait_names_and_values__(acc, line):
+        trait_line = parse_csv_line(line)
+        trait_name = trait_line[0]
+        trait_data = trait_line[1:]
+        if trait_name in fetched_correlations.keys():
+            return (
+                acc[0] + (trait_name,),
+                acc[1] + tuple(
+                    trait_data[i] if i in good_dataset_samples else None
+                    for i in range(len(trait_data))))
+        return acc
+
+    processed_trait_names_values: tuple = reduce(
+        __process_trait_names_and_values__, dataset[1:], (tuple(), tuple()))
+    all_target_trait_names: Tuple[str, ...] = processed_trait_names_values[0]
+    all_target_trait_values: Tuple[float, ...] = processed_trait_names_values[1]
+
+    all_correlations = compute_partial(
+        primary_vals, control_vals, all_target_trait_names,
+        all_target_trait_values, method)
+    ## Line 772 to 779 in GN1 are the cause of the weird complexity in the
+    ## return below. Once the surrounding code is successfully migrated and
+    ## reworked, this complexity might go away, by getting rid of the
+    ## `correlation_type` parameter
+    return len(all_correlations), tuple(
+        corr + (
+            (fetched_correlations[corr[0]],) if correlation_type == "literature"
+            else fetched_correlations[corr[0]][0:2])
+        for idx, corr in enumerate(all_correlations))
+
+def build_data_frame(
+        xdata: Tuple[float, ...], ydata: Tuple[float, ...],
+        zdata: Union[
+            Tuple[float, ...],
+            Tuple[Tuple[float, ...], ...]]) -> pandas.DataFrame:
+    """
+    Build a pandas DataFrame object from xdata, ydata and zdata
+    """
+    x_y_df = pandas.DataFrame({"x": xdata, "y": ydata})
+    if isinstance(zdata[0], float):
+        return x_y_df.join(pandas.DataFrame({"z": zdata}))
+    interm_df = x_y_df.join(pandas.DataFrame(
+        {"z{}".format(i): val for i, val in enumerate(zdata)}))
+    if interm_df.shape[1] == 3:
+        return interm_df.rename(columns={"z0": "z"})
+    return interm_df
+
+def compute_partial(
+        primary_vals, control_vals, target_vals, target_names,
+        method: str) -> Tuple[
+            Union[
+                Tuple[str, int, float, float, float, float], None],
+            ...]:
+    """
+    Compute the partial correlations.
+
+    This is a re-implementation of the
+    `web.webqtl.correlation.correlationFunction.determinePartialsByR` function
+    in GeneNetwork1.
+
+    This implementation reworks the child function `compute_partial` which will
+    then be used in the place of `determinPartialsByR`.
+
+    TODO: moving forward, we might need to use the multiprocessing library to
+    speed up the computations, in case they are found to be slow.
+    """
+    # replace the R code with `pingouin.partial_corr`
+    def __compute_trait_info__(target):
+        targ_vals = target[0]
+        targ_name = target[1]
+        primary = [
+            prim for targ, prim in zip(targ_vals, primary_vals)
+            if targ is not None]
+
+        datafrm = build_data_frame(
+            primary,
+            tuple(targ for targ in targ_vals if targ is not None),
+            tuple(cont for i, cont in enumerate(control_vals)
+                  if target[i] is not None))
+        covariates = "z" if datafrm.shape[1] == 3 else [
+            col for col in datafrm.columns if col not in ("x", "y")]
+        ppc = pingouin.partial_corr(
+            data=datafrm, x="x", y="y", covar=covariates, method=(
+                "pearson" if "pearson" in method.lower() else "spearman"))
+        pc_coeff = ppc["r"][0]
+
+        zero_order_corr = pingouin.corr(
+            datafrm["x"], datafrm["y"], method=(
+                "pearson" if "pearson" in method.lower() else "spearman"))
+
+        if math.isnan(pc_coeff):
+            return (
+                targ_name, len(primary), pc_coeff, 1, zero_order_corr["r"][0],
+                zero_order_corr["p-val"][0])
+        return (
+            targ_name, len(primary), pc_coeff,
+            (ppc["p-val"][0] if not math.isnan(ppc["p-val"][0]) else (
+                0 if (abs(pc_coeff - 1) < 0.0000001) else 1)),
+            zero_order_corr["r"][0], zero_order_corr["p-val"][0])
+
+    return tuple(
+        __compute_trait_info__(target)
+        for target in zip(target_vals, target_names))
+
+def partial_correlations_normal(# pylint: disable=R0913
+        primary_vals, control_vals, input_trait_gene_id, trait_database,
+        data_start_pos: int, db_type: str, method: str) -> Tuple[
+            float, Tuple[float, ...]]:
+    """
+    Computes the correlation coefficients.
+
+    This is a migration of the
+    `web.webqtl.correlation.PartialCorrDBPage.getPartialCorrelationsNormal`
+    function in GeneNetwork1.
+    """
+    def __add_lit_and_tiss_corr__(item):
+        if method.lower() == "sgo literature correlation":
+            # if method is 'SGO Literature Correlation', `compute_partial`
+            # would give us LitCorr in the [1] position
+            return tuple(item) + trait_database[1]
+        if method.lower() in (
+                "tissue correlation, pearson's r",
+                "tissue correlation, spearman's rho"):
+            # if method is 'Tissue Correlation, *', `compute_partial` would give
+            # us Tissue Corr in the [1] position and Tissue Corr P Value in the
+            # [2] position
+            return tuple(item) + (trait_database[1], trait_database[2])
+        return item
+
+    target_trait_names, target_trait_vals = reduce(
+        lambda acc, item: (acc[0]+(item[0],), acc[1]+(item[data_start_pos:],)),
+        trait_database, (tuple(), tuple()))
+
+    all_correlations = compute_partial(
+        primary_vals, control_vals, target_trait_vals, target_trait_names,
+        method)
+
+    if (input_trait_gene_id and db_type == "ProbeSet" and method.lower() in (
+            "sgo literature correlation", "tissue correlation, pearson's r",
+            "tissue correlation, spearman's rho")):
+        return (
+            len(trait_database),
+            tuple(
+                __add_lit_and_tiss_corr__(item)
+                for idx, item in enumerate(all_correlations)))
+
+    return len(trait_database), all_correlations
+
+def partial_corrs(# pylint: disable=[R0913]
+        conn, samples, primary_vals, control_vals, return_number, species,
+        input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+        method, dataset, database_filename):
+    """
+    Compute the partial correlations, selecting the fast or normal method
+    depending on the existence of the database text file.
+
+    This is a partial migration of the
+    `web.webqtl.correlation.PartialCorrDBPage.__init__` function in
+    GeneNetwork1.
+    """
+    if database_filename:
+        return partial_correlations_fast(
+            samples, primary_vals, control_vals, database_filename,
+            (
+                fetch_literature_correlations(
+                    species, input_trait_geneid, dataset, return_number, conn)
+                if "literature" in method.lower() else
+                fetch_tissue_correlations(
+                    dataset, input_trait_symbol, tissue_probeset_freeze_id,
+                    method, return_number, conn)),
+            method,
+            ("literature" if method.lower() == "sgo literature correlation"
+             else ("tissue" if "tissue" in method.lower() else "genetic")))
+
+    trait_database, data_start_pos = fetch_all_database_data(
+        conn, species, input_trait_geneid, input_trait_symbol, samples, dataset,
+        method, return_number, tissue_probeset_freeze_id)
+    return partial_correlations_normal(
+        primary_vals, control_vals, input_trait_geneid, trait_database,
+        data_start_pos, dataset, method)
+
+def literature_correlation_by_list(
+        conn: Any, species: str, trait_list: Tuple[dict]) -> Tuple[dict]:
+    """
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.getLiteratureCorrelationByList`
+    function in GeneNetwork1.
+    """
+    if any((lambda t: (
+            bool(t.get("tissue_corr")) and
+            bool(t.get("tissue_p_value"))))(trait)
+           for trait in trait_list):
+        temporary_table_name = f"LITERATURE{random_string(8)}"
+        query1 = (
+            f"CREATE TEMPORARY TABLE {temporary_table_name} "
+            "(GeneId1 INT(12) UNSIGNED, GeneId2 INT(12) UNSIGNED PRIMARY KEY, "
+            "value DOUBLE)")
+        query2 = (
+            f"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
+            "SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
+            "WHERE GeneId1=%(geneid)s")
+        query3 = (
+            "INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
+            "SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
+            "WHERE GeneId2=%s AND GeneId1 != %(geneid)s")
+
+        def __set_mouse_geneid__(trait):
+            if trait.get("geneid"):
+                return {
+                    **trait,
+                    "mouse_geneid": translate_to_mouse_gene_id(
+                        species, trait.get("geneid"), conn)
+                }
+            return {**trait, "mouse_geneid": 0}
+
+        def __retrieve_lcorr__(cursor, geneids):
+            cursor.execute(
+                f"SELECT GeneId2, value FROM {temporary_table_name} "
+                "WHERE GeneId2 IN %(geneids)s",
+                geneids=geneids)
+            return dict(cursor.fetchall())
+
+        with conn.cursor() as cursor:
+            cursor.execute(query1)
+            cursor.execute(query2)
+            cursor.execute(query3)
+
+            traits = tuple(__set_mouse_geneid__(trait) for trait in trait_list)
+            lcorrs = __retrieve_lcorr__(
+                cursor, (
+                    trait["mouse_geneid"] for trait in traits
+                    if (trait["mouse_geneid"] != 0 and
+                        trait["mouse_geneid"].find(";") < 0)))
+            return tuple(
+                {**trait, "l_corr": lcorrs.get(trait["mouse_geneid"], None)}
+                for trait in traits)
+
+        return trait_list
+    return trait_list
+
+def tissue_correlation_by_list(
+        conn: Any, primary_trait_symbol: str, tissue_probeset_freeze_id: int,
+        method: str, trait_list: Tuple[dict]) -> Tuple[dict]:
+    """
+    This is a migration of the
+    `web.webqtl.correlation.CorrelationPage.getTissueCorrelationByList`
+    function in GeneNetwork1.
+    """
+    def __add_tissue_corr__(trait, primary_trait_values, trait_values):
+        result = pingouin.corr(
+            primary_trait_values, trait_values,
+            method=("spearman" if "spearman" in method.lower() else "pearson"))
+        return {
+            **trait,
+            "tissue_corr": result["r"],
+            "tissue_p_value": result["p-val"]
+        }
+
+    if any((lambda t: bool(t.get("l_corr")))(trait) for trait in trait_list):
+        prim_trait_symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+            (primary_trait_symbol,), tissue_probeset_freeze_id, conn)
+        if primary_trait_symbol.lower() in prim_trait_symbol_value_dict:
+            primary_trait_value = prim_trait_symbol_value_dict[
+                primary_trait_symbol.lower()]
+            gene_symbol_list = tuple(
+                trait for trait in trait_list if "symbol" in trait.keys())
+            symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
+                gene_symbol_list, tissue_probeset_freeze_id, conn)
+            return tuple(
+                __add_tissue_corr__(
+                    trait, primary_trait_value,
+                    symbol_value_dict[trait["symbol"].lower()])
+                for trait in trait_list
+                if ("symbol" in trait and
+                    bool(trait["symbol"]) and
+                    trait["symbol"].lower() in symbol_value_dict))
+        return tuple({
+            **trait,
+            "tissue_corr": None,
+            "tissue_p_value": None
+        } for trait in trait_list)
+    return trait_list
+
+def partial_correlations_entry(# pylint: disable=[R0913, R0914, R0911]
+        conn: Any, primary_trait_name: str,
+        control_trait_names: Tuple[str, ...], method: str,
+        criteria: int, group: str, target_db_name: str) -> dict:
+    """
+    This is the 'ochestration' function for the partial-correlation feature.
+
+    This function will dispatch the functions doing data fetches from the
+    database (and various other places) and feed that data to the functions
+    doing the conversions and computations. It will then return the results of
+    all of that work.
+
+    This function is doing way too much. Look into splitting out the
+    functionality into smaller functions that do fewer things.
+    """
+    threshold = 0
+    corr_min_informative = 4
+
+    primary_trait = retrieve_trait_info(threshold, primary_trait_name, conn)
+    primary_trait_data = retrieve_trait_data(primary_trait, conn)
+    primary_samples, primary_values, _primary_variances = export_informative(
+        primary_trait_data)
+
+    cntrl_traits = tuple(
+        retrieve_trait_info(threshold, trait_full_name, conn)
+        for trait_full_name in control_trait_names)
+    cntrl_traits_data = tuple(
+        retrieve_trait_data(cntrl_trait, conn)
+        for cntrl_trait in cntrl_traits)
+    species = species_name(conn, group)
+
+    (cntrl_samples,
+     cntrl_values,
+     _cntrl_variances,
+     _cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
+
+    common_primary_control_samples = primary_samples
+    fixed_primary_vals = primary_values
+    fixed_control_vals = cntrl_values
+    if not all(cnt_smp == primary_samples for cnt_smp in cntrl_samples):
+        (common_primary_control_samples,
+         fixed_primary_vals,
+         fixed_control_vals,
+         _primary_variances,
+         _cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
+
+    if len(common_primary_control_samples) < corr_min_informative:
+        return {
+            "status": "error",
+            "message": (
+                f"Fewer than {corr_min_informative} samples data entered for "
+                f"{group} dataset. No calculation of correlation has been "
+                "attempted."),
+            "error_type": "Inadequate Samples"}
+
+    identical_traits_names = find_identical_traits(
+        primary_trait_name, primary_values, control_trait_names, cntrl_values)
+    if len(identical_traits_names) > 0:
+        return {
+            "status": "error",
+            "message": (
+                f"{identical_traits_names[0]} and {identical_traits_names[1]} "
+                "have the same values for the {len(fixed_primary_vals)} "
+                "samples that will be used to compute the partial correlation "
+                "(common for all primary and control traits). In such cases, "
+                "partial correlation cannot be computed. Please re-select your "
+                "traits."),
+            "error_type": "Identical Traits"}
+
+    input_trait_geneid = primary_trait.get("geneid")
+    input_trait_symbol = primary_trait.get("symbol")
+    input_trait_mouse_geneid = translate_to_mouse_gene_id(
+        species, input_trait_geneid, conn)
+
+    tissue_probeset_freeze_id = 1
+    db_type = primary_trait["db"]["dataset_type"]
+
+    if db_type == "ProbeSet" and method.lower() in (
+            "sgo literature correlation",
+            "tissue correlation, pearson's r",
+            "tissue correlation, spearman's rho"):
+        return {
+            "status": "error",
+            "message": (
+                "Wrong correlation type: It is not possible to compute the "
+                f"{method} between your trait and data in the {target_db_name} "
+                "database. Please try again after selecting another type of "
+                "correlation."),
+            "error_type": "Correlation Type"}
+
+    if (method.lower() == "sgo literature correlation" and (
+            input_trait_geneid is None or
+            check_for_literature_info(conn, input_trait_mouse_geneid))):
+        return {
+            "status": "error",
+            "message": (
+                "No Literature Information: This gene does not have any "
+                "associated Literature Information."),
+            "error_type": "Literature Correlation"}
+
+    if (
+            method.lower() in (
+                "tissue correlation, pearson's r",
+                "tissue correlation, spearman's rho")
+            and input_trait_symbol is None):
+        return {
+            "status": "error",
+            "message": (
+                "No Tissue Correlation Information: This gene does not have "
+                "any associated Tissue Correlation Information."),
+            "error_type": "Tissue Correlation"}
+
+    if (
+            method.lower() in (
+                "tissue correlation, pearson's r",
+                "tissue correlation, spearman's rho")
+            and check_symbol_for_tissue_correlation(
+                conn, tissue_probeset_freeze_id, input_trait_symbol)):
+        return {
+            "status": "error",
+            "message": (
+                "No Tissue Correlation Information: This gene does not have "
+                "any associated Tissue Correlation Information."),
+            "error_type": "Tissue Correlation"}
+
+    database_filename = get_filename(conn, target_db_name, TEXTDIR)
+    _total_traits, all_correlations = partial_corrs(
+        conn, common_primary_control_samples, fixed_primary_vals,
+        fixed_control_vals, len(fixed_primary_vals), species,
+        input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+        method, primary_trait["db"], database_filename)
+
+
+    def __make_sorter__(method):
+        def __sort_6__(row):
+            return row[6]
+
+        def __sort_3__(row):
+            return row[3]
+
+        if "literature" in method.lower():
+            return __sort_6__
+
+        if "tissue" in method.lower():
+            return __sort_6__
+
+        return __sort_3__
+
+    sorted_correlations = sorted(
+        all_correlations, key=__make_sorter__(method))
+
+    add_lit_corr_and_tiss_corr = compose(
+        partial(literature_correlation_by_list, conn, species),
+        partial(
+            tissue_correlation_by_list, conn, input_trait_symbol,
+            tissue_probeset_freeze_id, method))
+
+    trait_list = add_lit_corr_and_tiss_corr(tuple(
+        {
+            **retrieve_trait_info(
+                threshold,
+                f"{primary_trait['db']['dataset_name']}::{item[0]}",
+                conn),
+            "noverlap": item[1],
+            "partial_corr": item[2],
+            "partial_corr_p_value": item[3],
+            "corr": item[4],
+            "corr_p_value": item[5],
+            "rank_order": (1 if "spearman" in method.lower() else 0),
+            **({
+                "tissue_corr": item[6],
+                "tissue_p_value": item[7]}
+               if len(item) == 8 else {}),
+            **({"l_corr": item[6]}
+               if len(item) == 7 else {})
+        }
+        for item in
+        sorted_correlations[:min(criteria, len(all_correlations))]))
+
+    return trait_list
diff --git a/gn3/computations/wgcna.py b/gn3/computations/wgcna.py
index fd508fa..ab12fe7 100644
--- a/gn3/computations/wgcna.py
+++ b/gn3/computations/wgcna.py
@@ -3,8 +3,11 @@
 import os
 import json
 import uuid
-from gn3.settings import TMPDIR
+import subprocess
+import base64
+
 
+from gn3.settings import TMPDIR
 from gn3.commands import run_cmd
 
 
@@ -14,12 +17,46 @@ def dump_wgcna_data(request_data: dict):
 
     temp_file_path = os.path.join(TMPDIR, filename)
 
+    request_data["TMPDIR"] = TMPDIR
+
     with open(temp_file_path, "w") as output_file:
         json.dump(request_data, output_file)
 
     return temp_file_path
 
 
+def stream_cmd_output(socketio, request_data, cmd: str):
+    """function to stream in realtime"""
+    # xtodo  syncing and closing /edge cases
+
+    socketio.emit("output", {"data": f"calling you script {cmd}"},
+                  namespace="/", room=request_data["socket_id"])
+    results = subprocess.Popen(
+        cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
+
+    if results.stdout is not None:
+
+        for line in iter(results.stdout.readline, b""):
+            socketio.emit("output",
+                          {"data": line.decode("utf-8").rstrip()},
+                          namespace="/", room=request_data["socket_id"])
+
+        socketio.emit(
+            "output", {"data":
+                       "parsing the output results"}, namespace="/",
+            room=request_data["socket_id"])
+
+
+def process_image(image_loc: str) -> bytes:
+    """encode the image"""
+
+    try:
+        with open(image_loc, "rb") as image_file:
+            return base64.b64encode(image_file.read())
+    except FileNotFoundError:
+        return b""
+
+
 def compose_wgcna_cmd(rscript_path: str, temp_file_path: str):
     """function to componse wgcna cmd"""
     # (todo):issue relative paths to abs paths
@@ -32,6 +69,8 @@ def call_wgcna_script(rscript_path: str, request_data: dict):
     generated_file = dump_wgcna_data(request_data)
     cmd = compose_wgcna_cmd(rscript_path, generated_file)
 
+    # stream_cmd_output(request_data, cmd)  disable streaming of data
+
     try:
 
         run_cmd_results = run_cmd(cmd)
@@ -40,8 +79,14 @@ def call_wgcna_script(rscript_path: str, request_data: dict):
 
             if run_cmd_results["code"] != 0:
                 return run_cmd_results
+
+            output_file_data = json.load(outputfile)
+            output_file_data["output"]["image_data"] = process_image(
+                output_file_data["output"]["imageLoc"]).decode("ascii")
+            # json format only supports  unicode string// to get image data reconvert
+
             return {
-                "data": json.load(outputfile),
+                "data": output_file_data,
                 **run_cmd_results
             }
     except FileNotFoundError: