aboutsummaryrefslogtreecommitdiff
path: root/gn3/computations
diff options
context:
space:
mode:
authorFrederick Muriuki Muriithi2021-11-29 14:01:44 +0300
committerFrederick Muriuki Muriithi2021-11-29 14:01:44 +0300
commit99953f6e4a540da41d0517203eb63da4e19405cd (patch)
tree92faedba7770082d95cff3fb0aa7e1a6595c004d /gn3/computations
parent6b147173d514093ec4e461f5843170c968290e5e (diff)
downloadgenenetwork3-99953f6e4a540da41d0517203eb63da4e19405cd.tar.gz
Fix linting errors
Issue: https://github.com/genenetwork/gn-gemtext-threads/blob/main/topics/gn1-migration-to-gn2/partial-correlations.gmi
Diffstat (limited to 'gn3/computations')
-rw-r--r--gn3/computations/partial_correlations.py131
1 files changed, 70 insertions, 61 deletions
diff --git a/gn3/computations/partial_correlations.py b/gn3/computations/partial_correlations.py
index 869bee4..231b0a7 100644
--- a/gn3/computations/partial_correlations.py
+++ b/gn3/computations/partial_correlations.py
@@ -14,12 +14,20 @@ import pingouin
from scipy.stats import pearsonr, spearmanr
from gn3.settings import TEXTDIR
+from gn3.random import random_string
from gn3.function_helpers import compose
from gn3.data_helpers import parse_csv_line
from gn3.db.traits import export_informative
from gn3.db.traits import retrieve_trait_info, retrieve_trait_data
from gn3.db.species import species_name, translate_to_mouse_gene_id
-from gn3.db.correlations import get_filename, fetch_all_database_data
+from gn3.db.correlations import (
+ get_filename,
+ fetch_all_database_data,
+ check_for_literature_info,
+ fetch_tissue_correlations,
+ fetch_literature_correlations,
+ check_symbol_for_tissue_correlation,
+ fetch_gene_symbol_tissue_value_dict_for_trait)
def control_samples(controls: Sequence[dict], sampleslist: Sequence[str]):
"""
@@ -311,7 +319,7 @@ def compute_partial(
zero_order_corr = pingouin.corr(
datafrm["x"], datafrm["y"], method=(
- "pearson" if "pearson" in method.lower() else "spearman"))
+ "pearson" if "pearson" in method.lower() else "spearman"))
if math.isnan(pc_coeff):
return (
@@ -371,9 +379,10 @@ def partial_correlations_normal(# pylint: disable=R0913
return len(trait_database), all_correlations
-def partial_corrs(
- conn, samples , primary_vals, control_vals, return_number, species, input_trait_geneid,
- input_trait_symbol, tissue_probeset_freeze_id, method, dataset, database_filename):
+def partial_corrs(# pylint: disable=[R0913]
+ conn, samples, primary_vals, control_vals, return_number, species,
+ input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
+ method, dataset, database_filename):
"""
Compute the partial correlations, selecting the fast or normal method
depending on the existence of the database text file.
@@ -404,8 +413,7 @@ def partial_corrs(
data_start_pos, dataset, method)
def literature_correlation_by_list(
- conn: Any, input_trait_mouse_geneid: int, species: str,
- trait_list: Tuple[dict]) -> Tuple[dict]:
+ conn: Any, species: str, trait_list: Tuple[dict]) -> Tuple[dict]:
"""
This is a migration of the
`web.webqtl.correlation.CorrelationPage.getLiteratureCorrelationByList`
@@ -415,16 +423,16 @@ def literature_correlation_by_list(
bool(t.get("tissue_corr")) and
bool(t.get("tissue_p_value"))))(trait)
for trait in trait_list):
- temp_table_name = f"LITERATURE{random_string(8)}"
- q1 = (
+ temporary_table_name = f"LITERATURE{random_string(8)}"
+ query1 = (
f"CREATE TEMPORARY TABLE {temporary_table_name} "
"(GeneId1 INT(12) UNSIGNED, GeneId2 INT(12) UNSIGNED PRIMARY KEY, "
"value DOUBLE)")
- q2 = (
+ query2 = (
f"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
"SELECT GeneId1, GeneId2, value FROM LCorrRamin3 "
"WHERE GeneId1=%(geneid)s")
- q3 = (
+ query3 = (
"INSERT INTO {temporary_table_name}(GeneId1, GeneId2, value) "
"SELECT GeneId2, GeneId1, value FROM LCorrRamin3 "
"WHERE GeneId2=%s AND GeneId1 != %(geneid)s")
@@ -433,7 +441,8 @@ def literature_correlation_by_list(
if trait.get("geneid"):
return {
**trait,
- "mouse_geneid": translate_to_mouse_gene_id(trait.get("geneid"))
+ "mouse_geneid": translate_to_mouse_gene_id(
+ species, trait.get("geneid"), conn)
}
return {**trait, "mouse_geneid": 0}
@@ -441,13 +450,13 @@ def literature_correlation_by_list(
cursor.execute(
f"SELECT GeneId2, value FROM {temporary_table_name} "
"WHERE GeneId2 IN %(geneids)s",
- geneids = geneids)
- return {geneid: value for geneid, value in cursor.fetchall()}
+ geneids=geneids)
+ return dict(cursor.fetchall())
with conn.cursor() as cursor:
- cursor.execute(q1)
- cursor.execute(q2)
- cursor.execute(q3)
+ cursor.execute(query1)
+ cursor.execute(query2)
+ cursor.execute(query3)
traits = tuple(__set_mouse_geneid__(trait) for trait in trait_list)
lcorrs = __retrieve_lcorr__(
@@ -470,9 +479,9 @@ def tissue_correlation_by_list(
`web.webqtl.correlation.CorrelationPage.getTissueCorrelationByList`
function in GeneNetwork1.
"""
- def __add_tissue_corr__(trait, primary_trait_value, trait_value):
+ def __add_tissue_corr__(trait, primary_trait_values, trait_values):
result = pingouin.corr(
- primary_trait_values, target_trait_values,
+ primary_trait_values, trait_values,
method=("spearman" if "spearman" in method.lower() else "pearson"))
return {
**trait,
@@ -484,7 +493,8 @@ def tissue_correlation_by_list(
prim_trait_symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
(primary_trait_symbol,), tissue_probeset_freeze_id, conn)
if primary_trait_symbol.lower() in prim_trait_symbol_value_dict:
- primary_trait_value = prim_trait_symbol_value_dict[prim_trait_symbol.lower()]
+ primary_trait_value = prim_trait_symbol_value_dict[
+ primary_trait_symbol.lower()]
gene_symbol_list = tuple(
trait for trait in trait_list if "symbol" in trait.keys())
symbol_value_dict = fetch_gene_symbol_tissue_value_dict_for_trait(
@@ -504,7 +514,7 @@ def tissue_correlation_by_list(
} for trait in trait_list)
return trait_list
-def partial_correlations_entry(
+def partial_correlations_entry(# pylint: disable=[R0913, R0914, R0911]
conn: Any, primary_trait_name: str,
control_trait_names: Tuple[str, ...], method: str,
criteria: int, group: str, target_db_name: str) -> dict:
@@ -524,7 +534,7 @@ def partial_correlations_entry(
primary_trait = retrieve_trait_info(threshold, primary_trait_name, conn)
primary_trait_data = retrieve_trait_data(primary_trait, conn)
- primary_samples, primary_values, primary_variances = export_informative(
+ primary_samples, primary_values, _primary_variances = export_informative(
primary_trait_data)
cntrl_traits = tuple(
@@ -537,8 +547,8 @@ def partial_correlations_entry(
(cntrl_samples,
cntrl_values,
- cntrl_variances,
- cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
+ _cntrl_variances,
+ _cntrl_ns) = control_samples(cntrl_traits_data, primary_samples)
common_primary_control_samples = primary_samples
fixed_primary_vals = primary_values
@@ -547,8 +557,8 @@ def partial_correlations_entry(
(common_primary_control_samples,
fixed_primary_vals,
fixed_control_vals,
- primary_variances,
- cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
+ _primary_variances,
+ _cntrl_variances) = fix_samples(primary_trait, cntrl_traits)
if len(common_primary_control_samples) < corr_min_informative:
return {
@@ -580,7 +590,6 @@ def partial_correlations_entry(
tissue_probeset_freeze_id = 1
db_type = primary_trait["db"]["dataset_type"]
- db_name = primary_trait["db"]["dataset_name"]
if db_type == "ProbeSet" and method.lower() in (
"sgo literature correlation",
@@ -605,10 +614,11 @@ def partial_correlations_entry(
"associated Literature Information."),
"error_type": "Literature Correlation"}
- if (method.lower() in (
- "tissue correlation, pearson's r",
- "tissue correlation, spearman's rho")
- and input_trait_symbol is None):
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and input_trait_symbol is None):
return {
"status": "error",
"message": (
@@ -616,11 +626,12 @@ def partial_correlations_entry(
"any associated Tissue Correlation Information."),
"error_type": "Tissue Correlation"}
- if (method.lower() in (
- "tissue correlation, pearson's r",
- "tissue correlation, spearman's rho")
- and check_symbol_for_tissue_correlation(
- conn, tissue_probeset_freeze_id, input_trait_symbol)):
+ if (
+ method.lower() in (
+ "tissue correlation, pearson's r",
+ "tissue correlation, spearman's rho")
+ and check_symbol_for_tissue_correlation(
+ conn, tissue_probeset_freeze_id, input_trait_symbol)):
return {
"status": "error",
"message": (
@@ -629,7 +640,7 @@ def partial_correlations_entry(
"error_type": "Tissue Correlation"}
database_filename = get_filename(conn, target_db_name, TEXTDIR)
- total_traits, all_correlations = partial_corrs(
+ _total_traits, all_correlations = partial_corrs(
conn, common_primary_control_samples, fixed_primary_vals,
fixed_control_vals, len(fixed_primary_vals), species,
input_trait_geneid, input_trait_symbol, tissue_probeset_freeze_id,
@@ -637,11 +648,11 @@ def partial_correlations_entry(
def __make_sorter__(method):
- def __sort_6__(x):
- return x[6]
+ def __sort_6__(row):
+ return row[6]
- def __sort_3__(x):
- return x[3]
+ def __sort_3__(row):
+ return row[3]
if "literature" in method.lower():
return __sort_6__
@@ -655,33 +666,31 @@ def partial_correlations_entry(
all_correlations, key=__make_sorter__(method))
add_lit_corr_and_tiss_corr = compose(
- partial(
- literature_correlation_by_list, conn, input_trait_mouse_geneid,
- species),
+ partial(literature_correlation_by_list, conn, species),
partial(
tissue_correlation_by_list, conn, input_trait_symbol,
tissue_probeset_freeze_id, method))
trait_list = add_lit_corr_and_tiss_corr(tuple(
- {
- **retrieve_trait_info(
- threshold,
- f"{primary_trait['db']['dataset_name']}::{item[0]}",
- conn),
- "noverlap": item[1],
- "partial_corr": item[2],
- "partial_corr_p_value": item[3],
- "corr": item[4],
- "corr_p_value": item[5],
- "rank_order": (1 if "spearman" in method.lower() else 0),
- **({
- "tissue_corr": item[6],
- "tissue_p_value": item[7]}
+ {
+ **retrieve_trait_info(
+ threshold,
+ f"{primary_trait['db']['dataset_name']}::{item[0]}",
+ conn),
+ "noverlap": item[1],
+ "partial_corr": item[2],
+ "partial_corr_p_value": item[3],
+ "corr": item[4],
+ "corr_p_value": item[5],
+ "rank_order": (1 if "spearman" in method.lower() else 0),
+ **({
+ "tissue_corr": item[6],
+ "tissue_p_value": item[7]}
if len(item) == 8 else {}),
- **({"l_corr": item[6]}
+ **({"l_corr": item[6]}
if len(item) == 7 else {})
- }
+ }
for item in
- sorted_correlations[:min(criteria, len(all_correlations))]))
+ sorted_correlations[:min(criteria, len(all_correlations))]))
return trait_list