diff options
author | Frederick Muriuki Muriithi | 2021-09-20 06:42:05 +0300 |
---|---|---|
committer | Frederick Muriuki Muriithi | 2021-09-20 06:42:05 +0300 |
commit | f5415f41d7f682771555e73f36ac4ee7ef51a1d3 (patch) | |
tree | 7564a371d230228bc09d09493ba690776fff394f | |
parent | b7fb10586b956a8b0389e7925e4c0cff28cde82f (diff) | |
download | genenetwork3-f5415f41d7f682771555e73f36ac4ee7ef51a1d3.tar.gz |
Remove proof-of-concept test code
Issue:
https://github.com/genenetwork/gn-gemtext-threads/blob/main/topics/gn1-migration-to-gn2/clustering.gmi
* Remove the proof-of-concept CLI-only module that was used to learn how the
heatmaps work and identify the appropriate data for use with them.
-rw-r--r-- | qtlfilesexport.py | 253 |
1 files changed, 0 insertions, 253 deletions
diff --git a/qtlfilesexport.py b/qtlfilesexport.py deleted file mode 100644 index 100fa75..0000000 --- a/qtlfilesexport.py +++ /dev/null @@ -1,253 +0,0 @@ -""" -Test the qtlfiles export of traits files - -Run with: - - env SQL_URI="mysql://<user>:<password>@<host>:<port>/db_webqtl" python3 qtlfilesexport.py - -replacing the variables in the angled brackets with the appropriate values -""" -from gn3.random import random_string -from gn3.computations.slink import slink -from gn3.db_utils import database_connector -from gn3.computations.qtlreaper import run_reaper -from gn3.db.traits import retrieve_trait_data, retrieve_trait_info -from gn3.computations.heatmap import export_trait_data, get_nearest_marker -from gn3.db.genotypes import ( - build_genotype_file, - parse_genotype_file, - load_genotype_samples) -from gn3.computations.heatmap import ( - cluster_traits, - compute_traits_order, - retrieve_strains_and_values) -from gn3.computations.qtlreaper import ( - generate_traits_file, - chromosome_sorter_key_fn, - parse_reaper_main_results, - organise_reaper_main_results, - parse_reaper_permutation_results) - -import plotly.express as px - -## for dendrogram -import numpy as np -import plotly.graph_objects as go -import plotly.figure_factory as ff - -# for single heatmap -from plotly.subplots import make_subplots - -TMPDIR = "tmp/" - -def trait_fullnames(): - """Return sample names for traits""" - return [ - "UCLA_BXDBXH_CARTILAGE_V2::ILM103710672", - "UCLA_BXDBXH_CARTILAGE_V2::ILM2260338", - "UCLA_BXDBXH_CARTILAGE_V2::ILM3140576", - "UCLA_BXDBXH_CARTILAGE_V2::ILM5670577", - "UCLA_BXDBXH_CARTILAGE_V2::ILM2070121", - "UCLA_BXDBXH_CARTILAGE_V2::ILM103990541", - "UCLA_BXDBXH_CARTILAGE_V2::ILM1190722", - "UCLA_BXDBXH_CARTILAGE_V2::ILM6590722", - "UCLA_BXDBXH_CARTILAGE_V2::ILM4200064", - "UCLA_BXDBXH_CARTILAGE_V2::ILM3140463"] - -def get_lrs_from_chr(trait, chr_name): - chromosome = trait["chromosomes"].get(chr_name) - if chromosome: - return [ - locus["LRS"] for locus in - sorted(chromosome["loci"], key=lambda loc: loc["Locus"])] - return [None] - -def process_traits_data_for_heatmap(data, trait_names, chromosome_names): - print("TRAIT_NAMES: {}".format(trait_names)) - print("chromosome names: {}".format(chromosome_names)) - print("data keys: {}".format(data.keys())) - hdata = [ - [get_lrs_from_chr(data[trait], chr_name) for trait in trait_names] - for chr_name in chromosome_names] - # print("hdata: {}".format(hdata)) - return hdata - -def generate_heatmap( - data, image_filename_prefix, x_axis = None, x_label: str = "", - y_axis = None, y_label: str = "", output_dir: str = TMPDIR): - """Generate single heatmap section.""" - print("X-AXIS:({}, {}), Y-AXIS: ({}, {}), ROWS:{}, COLS:{}".format( - x_axis, (len(x_axis) if x_axis else 0), - y_axis, (len(y_axis) if y_axis else 0), - len(data), len(data[0]))) - fig = px.imshow( - data, - x = x_axis, - y = y_axis, - width=1000 - ) - fig.update_yaxes(title=y_label) - fig.update_xaxes(title=x_label) - image_filename = "{}/{}.html".format(output_dir, image_filename_prefix) - fig.write_html(image_filename) - return image_filename, fig - -def generate_dendrogram( - data, image_filename_prefix, x_axis = None, x_label: str = "", - y_axis = None, y_label: str = "", output_dir: str = TMPDIR): - fig = ff.create_dendrogram( - np.array(data), orientation="right", labels=y_axis) - - heatmap = go.Heatmap( - x=fig['layout']['xaxis']['ticktext'], - y=fig['layout']['yaxis']['ticktext'], - z=data) - - # print("HEAMAP:{}".format(heatmap)) - fig.add_trace(heatmap) - - fig.update_layout({"width": 1000, "height": 500}) - image_filename = "{}/{}.html".format(output_dir, image_filename_prefix) - fig.write_html(image_filename) - return image_filename, fig - -def generate_single_heatmap( - data, image_filename_prefix, x_axis = None, x_label: str = "", - y_axis = None, y_label: str = "", output_dir: str = TMPDIR): - """Generate single heatmap section.""" - # fig = go.Figure({"type": "heatmap"}) - num_cols = len(x_axis) - fig = make_subplots( - rows=1, - cols=num_cols, - shared_yaxes="rows", - # horizontal_spacing=(1 / (num_cols - 1)), - subplot_titles=x_axis - ) - hms = [go.Heatmap( - name=chromo, - y = y_axis, - z = data_array, - showscale=False) for chromo, data_array in zip(x_axis, data)] - for col, hm in enumerate(hms): - fig.add_trace(hm, row=1, col=(col + 1)) - - fig.update_traces( - showlegend=False, - colorscale=[ - [0.0, '#3B3B3B'], [0.4999999999999999, '#ABABAB'], - [0.5, '#F5DE11'], [1.0, '#FF0D00']], - selector={"type": "heatmap"}) - fig.update_traces( - showlegend=True, - showscale=True, - selector={"name": x_axis[-1]}) - fig.update_layout( - coloraxis_colorscale=[ - [0.0, '#3B3B3B'], [0.4999999999999999, '#ABABAB'], - [0.5, '#F5DE11'], [1.0, '#FF0D00']] - ) - print(fig) - image_filename = "{}/{}.html".format(output_dir, image_filename_prefix) - fig.write_html(image_filename) - return image_filename, fig - -def main(): - """entrypoint function""" - conn = database_connector()[0] - threshold = 0 - traits = [ - retrieve_trait_info(threshold, fullname, conn) - for fullname in trait_fullnames()] - traits_data_list = [retrieve_trait_data(t, conn) for t in traits] - genotype_filename = build_genotype_file(traits[0]["riset"]) - genotype = parse_genotype_file(genotype_filename) - strains = load_genotype_samples(genotype_filename) - exported_traits_data_list = [ - export_trait_data(td, strains) for td in traits_data_list] - slinked = slink(cluster_traits(exported_traits_data_list)) - print("SLINKED: {}".format(slinked)) - traits_order = compute_traits_order(slinked) - print("KEYS: {}".format(traits[0].keys())) - ordered_traits_names = [ - traits[idx]["trait_fullname"] for idx in traits_order] - print("ORDERS: {}".format(traits_order)) - strains_and_values = retrieve_strains_and_values( - traits_order, strains, exported_traits_data_list) - strains_values = strains_and_values[0][1] - trait_values = [t[2] for t in strains_and_values] - traits_filename = "{}/traits_test_file_{}.txt".format( - TMPDIR, random_string(10)) - generate_traits_file(strains_values, trait_values, traits_filename) - print("Generated file: {}".format(traits_filename)) - - main_output, permutations_output = run_reaper( - genotype_filename, traits_filename, separate_nperm_output=True) - - print("Main output: {}, Permutation output: {}".format( - main_output, permutations_output)) - - qtlresults = parse_reaper_main_results(main_output) - permudata = parse_reaper_permutation_results(permutations_output) - # print("QTLRESULTS: {}".format(qtlresults)) - # print("PERMUDATA: {}".format(permudata)) - - nearest = get_nearest_marker(traits, genotype) - print("NEAREST: {}".format(nearest)) - - organised = organise_reaper_main_results(qtlresults) - - traits_ids = [# sort numerically, but retain the ids as strings - str(i) for i in sorted({int(row["ID"]) for row in qtlresults})] - chromosome_names = sorted( - {row["Chr"] for row in qtlresults}, key = chromosome_sorter_key_fn) - loci_names = sorted({row["Locus"] for row in qtlresults}) - ordered_traits_names = { - res_id: trait for res_id, trait in - zip(traits_ids, - [traits[idx]["trait_fullname"] for idx in traits_order])} - # print("ordered:{}, original: {}".format( - # ordered_traits_names, [t["trait_fullname"] for t in traits])) - # print("chromosome_names:{}".format(chromosome_names)) - # print("trait_ids:{}".format(traits_ids)) - # print("loci names:{}".format(loci_names)) - hdata = process_traits_data_for_heatmap(organised, traits_ids, chromosome_names) - - # print("ZIPPED: {}".format(zip(tuple(ordered_traits_names.keys()), hdata))) - # print("HDATA LENGTH:{}, ORDERED TRAITS LENGTH:{}".format(len(hdata), len(ordered_traits_names.keys()))) - heatmaps_data = [ - generate_heatmap( - data, - "heatmap_chr{}_{}".format(chromo, random_string(10)), - y_axis=tuple( - ordered_traits_names[traits_ids[order]] - for order in traits_order), - x_label=chromo, - output_dir=TMPDIR) - for chromo, data in zip(chromosome_names, hdata)] - print("IMAGES FILENAMES: {}".format([img[0] for img in heatmaps_data])) - - dendograms_data = [ - generate_dendrogram( - data, - "dendo_chr{}_{}".format(chromo, random_string(10)), - y_axis=tuple( - ordered_traits_names[traits_ids[order]] - for order in traits_order), - x_label=chromo, - output_dir=TMPDIR) - for chromo, data in zip(chromosome_names, hdata)] - - res = generate_single_heatmap( - hdata, - "single_heatmap_{}".format(random_string(10)), - y_axis=tuple( - ordered_traits_names[traits_ids[order]] - for order in traits_order), - y_label="Traits", - x_axis=[chromo for chromo in chromosome_names], - x_label="Chromosomes", - output_dir=TMPDIR) - -if __name__ == "__main__": - main() |