1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
"""This script must be run each time the database is updated. It runs
queries against the SQL database, indexes the results and builds a
xapian index. This xapian index is later used in providing search
through the web interface.
"""
from functools import partial
import json
import xapian
from utility.monads import sql_query_mdict
from wqflask.database import database_connection, xapian_writable_database
def index_text(termgenerator, text):
"""Index text and increase term position."""
termgenerator.index_text(text)
termgenerator.increase_termpos()
# pylint: disable=invalid-name
def write_document(db, idterm, doctype, doc):
"""Write document into xapian database."""
# We use the XT prefix to indicate the type.
doc.add_boolean_term(f"XT{doctype}")
doc.add_boolean_term(idterm)
db.replace_document(idterm, doc)
# pylint: disable=missing-function-docstring
def main():
termgenerator = xapian.TermGenerator()
termgenerator.set_stemmer(xapian.Stem("en"))
indexer = partial(index_text, termgenerator)
authors_indexer = lambda text: termgenerator.index_text(text, 1, "A")
species_indexer = lambda text: termgenerator.index_text(text, 1, "XS")
group_indexer = lambda text: termgenerator.index_text(text, 1, "XG")
tissue_indexer = lambda text: termgenerator.index_text(text, 1, "XI")
description_indexer = lambda text: termgenerator.index_text(text, 1, "XD")
dataset_indexer = lambda text: termgenerator.index_text(text, 1, "XDS")
symbol_indexer = lambda text: termgenerator.index_text(text, 1, "XY")
chr_indexer = lambda text: termgenerator.index_text(text, 0, "XC")
peakchr_indexer = lambda text: termgenerator.index_text(text, 0, "XPC")
mean_adder = lambda mean: doc.add_value(0, xapian.sortable_serialise(mean))
peak_adder = lambda peak: doc.add_value(1, xapian.sortable_serialise(peak))
mb_adder = lambda mb: doc.add_value(2, xapian.sortable_serialise(mb))
peakmb_adder = lambda peakmb: doc.add_value(3, xapian.sortable_serialise(peakmb))
additive_adder = lambda additive: doc.add_value(4, xapian.sortable_serialise(additive))
year_adder = lambda year: doc.add_value(5, xapian.sortable_serialise(float(year)))
# FIXME: Some Max LRS values in the DB are wrongly listed as
# 0.000, but shouldn't be displayed. Make them NULLs in the
# database.
# pylint: disable=invalid-name
with xapian_writable_database() as db:
with database_connection() as conn:
for trait in sql_query_mdict(conn, """
SELECT ProbeSet.Name AS name,
ProbeSet.Symbol AS symbol,
ProbeSet.description AS description,
ProbeSet.Chr AS chr,
ProbeSet.Mb AS mb,
ProbeSet.alias AS alias,
ProbeSet.GenbankId AS genbankid,
ProbeSet.UniGeneId AS unigeneid,
ProbeSet.Probe_Target_Description AS probe_target_description,
ProbeSetFreeze.Name AS dataset,
ProbeSetFreeze.FullName AS dataset_fullname,
ProbeSetFreeze.Id AS dataset_id,
Species.Name AS species,
InbredSet.Name AS `group`,
Tissue.Name AS tissue,
ProbeSetXRef.Mean AS mean,
ProbeSetXRef.LRS AS lrs,
ProbeSetXRef.additive AS additive,
Geno.Chr as geno_chr,
Geno.Mb as geno_mb
FROM Species
INNER JOIN InbredSet ON InbredSet.SpeciesId = Species.Id
INNER JOIN ProbeFreeze ON ProbeFreeze.InbredSetId = InbredSet.Id
INNER JOIN Tissue ON ProbeFreeze.TissueId = Tissue.Id
INNER JOIN ProbeSetFreeze ON ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id
INNER JOIN ProbeSetXRef ON ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id
INNER JOIN ProbeSet ON ProbeSet.Id = ProbeSetXRef.ProbeSetId
LEFT JOIN Geno ON ProbeSetXRef.Locus = Geno.Name AND Geno.SpeciesId = Species.Id
WHERE ProbeSetFreeze.confidentiality < 1 AND ProbeSetFreeze.public > 0
"""):
doc = xapian.Document()
termgenerator.set_document(doc)
# Add values.
trait["mean"].bind(mean_adder)
trait["lrs"].bind(peak_adder)
trait["mb"].bind(mb_adder)
trait["geno_mb"].bind(peakmb_adder)
trait["additive"].bind(additive_adder)
# Index text.
trait["name"].bind(indexer)
trait["description"].bind(indexer)
trait["symbol"].bind(indexer)
trait.pop("alias").bind(indexer)
trait.pop("genbankid").bind(indexer)
trait.pop("unigeneid").bind(indexer)
trait.pop("probe_target_description").bind(indexer)
trait["species"].bind(species_indexer)
trait["group"].bind(group_indexer)
trait["tissue"].bind(tissue_indexer)
trait["description"].bind(description_indexer)
trait["dataset"].bind(dataset_indexer)
trait["symbol"].bind(symbol_indexer)
trait["chr"].bind(chr_indexer)
trait["geno_chr"].bind(peakchr_indexer)
doc.set_data(json.dumps(trait.data))
write_document(db, trait["name"].bind(lambda name: f"Q{name}"), "gene", doc)
with database_connection() as conn:
# FIXME: Some years are blank strings or strings that
# contain text other than the year. These should be fixed
# in the database and the year field must be made an integer.
for i, trait in enumerate(sql_query_mdict(conn, """
SELECT Species.Name AS species,
InbredSet.Name AS `group`,
PublishFreeze.Name AS dataset,
PublishFreeze.FullName AS dataset_fullname,
PublishXRef.Id AS name,
COALESCE(Phenotype.Post_publication_abbreviation, Phenotype.Pre_publication_abbreviation) AS abbreviation,
COALESCE(Phenotype.Post_publication_description, Phenotype.Pre_publication_description) AS description,
Phenotype.Lab_code,
Publication.Abstract,
Publication.Title,
Publication.Authors AS authors,
IF(CONVERT(Publication.Year, UNSIGNED)=0, NULL, CONVERT(Publication.Year, UNSIGNED)) AS year,
Publication.PubMed_ID AS pubmed_id,
PublishXRef.LRS as lrs,
PublishXRef.additive,
InbredSet.InbredSetCode AS inbredsetcode,
PublishXRef.mean,
PublishFreeze.Id AS dataset_id,
Geno.Chr as geno_chr,
Geno.Mb as geno_mb
FROM Species
INNER JOIN InbredSet ON InbredSet.SpeciesId = Species.Id
INNER JOIN PublishFreeze ON PublishFreeze.InbredSetId = InbredSet.Id
INNER JOIN PublishXRef ON PublishXRef.InbredSetId = InbredSet.Id
INNER JOIN Phenotype ON PublishXRef.PhenotypeId = Phenotype.Id
INNER JOIN Publication ON PublishXRef.PublicationId = Publication.Id
LEFT JOIN Geno ON PublishXRef.Locus = Geno.Name AND Geno.SpeciesId = Species.Id
""")):
doc = xapian.Document()
termgenerator.set_document(doc)
# Add values.
trait["mean"].bind(mean_adder)
trait["lrs"].bind(peak_adder)
trait["geno_mb"].bind(peakmb_adder)
trait["additive"].bind(additive_adder)
trait["year"].bind(year_adder)
# Index text.
trait.pop("abbreviation").bind(indexer)
trait["description"].bind(indexer)
trait.pop("Lab_code").bind(indexer)
trait.pop("Abstract").bind(indexer)
trait.pop("Title").bind(indexer)
trait["authors"].bind(indexer)
trait["inbredsetcode"].bind(indexer)
trait["species"].bind(species_indexer)
trait["group"].bind(group_indexer)
trait["description"].bind(description_indexer)
trait["authors"].bind(authors_indexer)
trait["geno_chr"].bind(peakchr_indexer)
# Convert name from integer to string.
trait["name"] = trait["name"].map(str)
# Split comma-separated authors into a list.
trait["authors"] = trait["authors"].map(
lambda s: [author.strip() for author in s.split(",")])
doc.set_data(json.dumps(trait.data))
write_document(db, f"Q{i}", "phenotype", doc)
if __name__ == "__main__":
main()
|