1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
from __future__ import print_function
#import string
from math import *
#import piddle as pid
#import os
import traceback
from pprint import pformat as pf
from corestats import Stats
import reaper
from htmlgen import HTMLgen2 as HT
#from utility import Plot
from utility import webqtlUtil
from base import webqtlConfig
from dbFunction import webqtlDatabaseFunction
def basicStatsTable(vals, trait_type=None, cellid=None, heritability=None):
print("basicStatsTable called - len of vals", len(vals))
st = {} # This is the dictionary where we'll put everything for the template
valsOnly = []
dataXZ = vals[:]
for i in range(len(dataXZ)):
valsOnly.append(dataXZ[i][1])
(st['traitmean'],
st['traitmedian'],
st['traitvar'],
st['traitstdev'],
st['traitsem'],
st['N']) = reaper.anova(valsOnly) #ZS: Should convert this from reaper to R in the future
#tbl = HT.TableLite(cellpadding=20, cellspacing=0)
#dataXZ = vals[:]
dataXZ = sorted(vals, webqtlUtil.cmpOrder)
print("data for stats is:", pf(dataXZ))
for num, item in enumerate(dataXZ):
print(" %i - %s" % (num, item))
print(" length:", len(dataXZ))
st['min'] = dataXZ[0][1]
st['max'] = dataXZ[-1][1]
numbers = [x[1] for x in dataXZ]
stats = Stats(numbers)
at75 = stats.percentile(75)
at25 = stats.percentile(25)
print("should get a stack")
traceback.print_stack()
print("Interquartile:", at75 - at25)
#tbl.append(HT.TR(HT.TD("Statistic",align="left", Class="fs14 fwb ffl b1 cw cbrb", width = 180),
# HT.TD("Value", align="right", Class="fs14 fwb ffl b1 cw cbrb", width = 60)))
#tbl.append(HT.TR(HT.TD("N of Samples",align="left", Class="fs13 b1 cbw c222"),
# HT.TD(N,nowrap="yes", Class="fs13 b1 cbw c222"), align="right"))
#tbl.append(HT.TR(HT.TD("Mean",align="left", Class="fs13 b1 cbw c222",nowrap="yes"),
# HT.TD("%2.3f" % traitmean,nowrap="yes", Class="fs13 b1 cbw c222"), align="right"))
#tbl.append(HT.TR(HT.TD("Median",align="left", Class="fs13 b1 cbw c222",nowrap="yes"),
# HT.TD("%2.3f" % traitmedian,nowrap="yes", Class="fs13 b1 cbw c222"), align="right"))
##tbl.append(HT.TR(HT.TD("Variance",align="left", Class="fs13 b1 cbw c222",nowrap="yes"),
## HT.TD("%2.3f" % traitvar,nowrap="yes",align="left", Class="fs13 b1 cbw c222")))
#tbl.append(HT.TR(HT.TD("Standard Error (SE)",align="left", Class="fs13 b1 cbw c222",nowrap="yes"),
# HT.TD("%2.3f" % traitsem,nowrap="yes", Class="fs13 b1 cbw c222"), align="right"))
#tbl.append(HT.TR(HT.TD("Standard Deviation (SD)", align="left", Class="fs13 b1 cbw c222",nowrap="yes"),
# HT.TD("%2.3f" % traitstdev,nowrap="yes", Class="fs13 b1 cbw c222"), align="right"))
#tbl.append(HT.TR(HT.TD("Minimum", align="left", Class="fs13 b1 cbw c222",nowrap="yes"),
# HT.TD("%s" % dataXZ[0][1],nowrap="yes", Class="fs13 b1 cbw c222"), align="right"))
#tbl.append(HT.TR(HT.TD("Maximum", align="left", Class="fs13 b1 cbw c222",nowrap="yes"),
# HT.TD("%s" % dataXZ[-1][1],nowrap="yes", Class="fs13 b1 cbw c222"), align="right"))
if (trait_type != None and trait_type == 'ProbeSet'):
#tbl.append(HT.TR(HT.TD("Range (log2)",align="left", Class="fs13 b1 cbw c222",nowrap="yes"),
# HT.TD("%2.3f" % (dataXZ[-1][1]-dataXZ[0][1]),nowrap="yes", Class="fs13 b1 cbw c222"), align="right"))
#tbl.append(HT.TR(HT.TD(HT.Span("Range (fold)"),align="left", Class="fs13 b1 cbw c222",nowrap="yes"),
# HT.TD("%2.2f" % pow(2.0,(dataXZ[-1][1]-dataXZ[0][1])), nowrap="yes", Class="fs13 b1 cbw c222"), align="right"))
#tbl.append(HT.TR(HT.TD(HT.Span(HT.Href(url="/glossary.html#Interquartile", target="_blank", text="Interquartile Range", Class="non_bold")), align="left", Class="fs13 b1 cbw c222",nowrap="yes"),
# HT.TD("%2.2f" % pow(2.0,(dataXZ[int((N-1)*3.0/4.0)][1]-dataXZ[int((N-1)/4.0)][1])), nowrap="yes", Class="fs13 b1 cbw c222"), align="right"))
st['range_log2'] = dataXZ[-1][1]-dataXZ[0][1]
st['range_fold'] = pow(2.0, (dataXZ[-1][1]-dataXZ[0][1]))
st['interquartile'] = pow(2.0, (dataXZ[int((st['N']-1)*3.0/4.0)][1]-dataXZ[int((st['N']-1)/4.0)][1]))
#XZ, 04/01/2009: don't try to get H2 value for probe.
if not cellid:
if heritability:
# This field needs to still be put into the Jinja2 template
st['heritability'] = heritability
#tbl.append(HT.TR(HT.TD(HT.Span("Heritability"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"),HT.TD("%s" % heritability, nowrap="yes",align="center", Class="fs13 b1 cbw c222")))
# Lei Yan
# 2008/12/19
return st
def plotNormalProbability(vals=None, RISet='', title=None, showstrains=0, specialStrains=[None], size=(750,500)):
dataXZ = vals[:]
dataXZ.sort(webqtlUtil.cmpOrder)
dataLabel = []
dataX = map(lambda X: X[1], dataXZ)
showLabel = showstrains
if len(dataXZ) > 50:
showLabel = 0
for item in dataXZ:
strainName = webqtlUtil.genShortStrainName(RISet=RISet, input_strainName=item[0])
dataLabel.append(strainName)
dataY=Plot.U(len(dataX))
dataZ=map(Plot.inverseCumul,dataY)
c = pid.PILCanvas(size=(750,500))
Plot.plotXY(c, dataZ, dataX, dataLabel = dataLabel, XLabel='Expected Z score', connectdot=0, YLabel='Trait value', title=title, specialCases=specialStrains, showLabel = showLabel)
filename= webqtlUtil.genRandStr("nP_")
c.save(webqtlConfig.GENERATED_IMAGE_DIR+filename, format='gif')
img=HT.Image('/image/'+filename+'.gif',border=0)
return img
def plotBoxPlot(vals):
valsOnly = []
dataXZ = vals[:]
for i in range(len(dataXZ)):
valsOnly.append(dataXZ[i][1])
plotHeight = 320
plotWidth = 220
xLeftOffset = 60
xRightOffset = 40
yTopOffset = 40
yBottomOffset = 60
canvasHeight = plotHeight + yTopOffset + yBottomOffset
canvasWidth = plotWidth + xLeftOffset + xRightOffset
canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight))
XXX = [('', valsOnly[:])]
Plot.plotBoxPlot(canvas, XXX, offset=(xLeftOffset, xRightOffset, yTopOffset, yBottomOffset), XLabel= "Trait")
filename= webqtlUtil.genRandStr("Box_")
canvas.save(webqtlConfig.GENERATED_IMAGE_DIR+filename, format='gif')
img=HT.Image('/image/'+filename+'.gif',border=0)
plotLink = HT.Span("More about ", HT.Href(text="Box Plots", url="http://davidmlane.com/hyperstat/A37797.html", target="_blank", Class="fs13"))
return img, plotLink
def plotBarGraph(identification='', RISet='', vals=None, type="name"):
this_identification = "unnamed trait"
if identification:
this_identification = identification
if type=="rank":
dataXZ = vals[:]
dataXZ.sort(webqtlUtil.cmpOrder)
title='%s' % this_identification
else:
dataXZ = vals[:]
title='%s' % this_identification
tvals = []
tnames = []
tvars = []
for i in range(len(dataXZ)):
tvals.append(dataXZ[i][1])
tnames.append(webqtlUtil.genShortStrainName(RISet=RISet, input_strainName=dataXZ[i][0]))
tvars.append(dataXZ[i][2])
nnStrain = len(tnames)
sLabel = 1
###determine bar width and space width
if nnStrain < 20:
sw = 4
elif nnStrain < 40:
sw = 3
else:
sw = 2
### 700 is the default plot width minus Xoffsets for 40 strains
defaultWidth = 650
if nnStrain > 40:
defaultWidth += (nnStrain-40)*10
defaultOffset = 100
bw = int(0.5+(defaultWidth - (nnStrain-1.0)*sw)/nnStrain)
if bw < 10:
bw = 10
plotWidth = (nnStrain-1)*sw + nnStrain*bw + defaultOffset
plotHeight = 500
#print [plotWidth, plotHeight, bw, sw, nnStrain]
c = pid.PILCanvas(size=(plotWidth,plotHeight))
Plot.plotBarText(c, tvals, tnames, variance=tvars, YLabel='Value', title=title, sLabel = sLabel, barSpace = sw)
filename= webqtlUtil.genRandStr("Bar_")
c.save(webqtlConfig.GENERATED_IMAGE_DIR+filename, format='gif')
img=HT.Image('/image/'+filename+'.gif',border=0)
return img
|