aboutsummaryrefslogtreecommitdiff
path: root/web/webqtl/qtlminer/GeneUtil.py
blob: 3ae7f3c042b4b4426ec1ce817fee761e9ab0c2e2 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import string
import os


from base import webqtlConfig


#Just return a list of dictionaries
#each dictionary contains sub-dictionary
def loadGenes(cursor, chrName, diffCol, startMb, endMb, webqtlDb =None, species='mouse'):
	#cursor.execute("desc GeneList")
	#results = cursor.fetchall()
	#fetchFields = map(lambda X:X[0], results)
	fetchFields = ['SpeciesId', 'Id', 'GeneSymbol', 'GeneDescription', 'Chromosome', 'TxStart', 'TxEnd', 
	'Strand', 'GeneID', 'NM_ID', 'kgID', 'GenBankID', 'UnigenID', 'ProteinID', 'AlignID', 
	'exonCount', 'exonStarts', 'exonEnds', 'cdsStart', 'cdsEnd']
	
	##List All Species in the Gene Table
	speciesDict = {}
	cursor.execute("select Species.Name, GeneList.SpeciesId from Species, GeneList where \
			GeneList.SpeciesId = Species.Id group by GeneList.SpeciesId")
	results = cursor.fetchall()
	for item in results:
		speciesDict[item[0]] = item[1]
	
	##List current Species and other Species
	speciesId = speciesDict[species]
	otherSpecies = map(lambda X: [X, speciesDict[X]], speciesDict.keys())
	otherSpecies.remove([species, speciesId])

	cursor.execute("""SELECT %s from GeneList 
						where 
					SpeciesId = %d AND Chromosome = '%s' AND
					((TxStart > %f and TxStart <= %f) OR (TxEnd > %f and TxEnd <= %f))
					order by txStart
					""" 
					% (string.join(fetchFields, ", "), speciesId, chrName, startMb, endMb, startMb, endMb))
	results = cursor.fetchall()
	GeneList = []

	if results:
		for result in results:
			newdict = {}
			for j, item in enumerate(fetchFields):
				newdict[item] = result[j]
			#count SNPs if possible	
			if diffCol and species=='mouse':
				cursor.execute("""
					select 
						count(*) from BXDSnpPosition
					where 
						Chr = '%s' AND Mb >= %2.6f AND Mb < %2.6f AND
						StrainId1 = %d AND StrainId2 = %d
				""" % (chrName, newdict["TxStart"], newdict["TxEnd"], diffCol[0], diffCol[1]))
				newdict["snpCount"] = cursor.fetchone()[0]
				newdict["snpDensity"] = newdict["snpCount"]/(newdict["TxEnd"]-newdict["TxStart"])/1000.0
			else:
				newdict["snpDensity"] = newdict["snpCount"] = 0
			
			try:
				newdict['GeneLength'] = 1000.0*(newdict['TxEnd'] - newdict['TxStart'])
			except:
				pass
			
			#load gene from other Species by the same name
			for item in otherSpecies:
				othSpec, othSpecId = item
				newdict2 = {}
				
				cursor.execute("SELECT %s from GeneList where SpeciesId = %d and geneSymbol= '%s' limit 1" % 
							(string.join(fetchFields, ", "), othSpecId, newdict["GeneSymbol"]))
				resultsOther = cursor.fetchone()
				if resultsOther:
					for j, item in enumerate(fetchFields):
						newdict2[item] = resultsOther[j]
							
					#count SNPs if possible, could be a separate function	
					if diffCol and othSpec == 'mouse':
						cursor.execute("""
							select
								count(*) from BXDSnpPosition
							where
								Chr = '%s' AND Mb >= %2.6f AND Mb < %2.6f AND
								StrainId1 = %d AND StrainId2 = %d
							""" % (chrName, newdict["TxStart"], newdict["TxEnd"], diffCol[0], diffCol[1]))



						newdict2["snpCount"] = cursor.fetchone()[0]
						newdict2["snpDensity"] = newdict2["snpCount"]/(newdict2["TxEnd"]-newdict2["TxStart"])/1000.0
					else:
						newdict2["snpDensity"] = newdict2["snpCount"] = 0
						
					try:
						newdict2['GeneLength'] = 1000.0*(newdict2['TxEnd'] - newdict2['TxStart'])
					except:
						pass
						
				newdict['%sGene' % othSpec] = newdict2
				
			GeneList.append(newdict)

	return GeneList






def loadGenesForQTLminer(cursor, chrName, diffCol, startMb, endMb, webqtlDb =None, species='mouse', databaseA='HC_M2_0606_P', databaseB='HC_M2CB_1205_R', databaseC='Illum_LXS_Hipp_loess0807', str1='C57BL/6J', str2='DBA/2J'):
	#cursor.execute("desc GeneList")
	#results = cursor.fetchall()
	#fetchFields = map(lambda X:X[0], results)
	fetchFields = ['SpeciesId', 'Id', 'GeneSymbol', 'GeneDescription', 'Chromosome', 'TxStart', 'TxEnd', 
	'Strand', 'GeneID', 'NM_ID', 'kgID', 'GenBankID', 'UnigenID', 'ProteinID', 'AlignID', 
	'exonCount', 'exonStarts', 'exonEnds', 'cdsStart', 'cdsEnd']
	
	##List All Species in the Gene Table
	speciesDict = {}
	cursor.execute("select Species.Name, GeneList.SpeciesId from Species, GeneList where \
			GeneList.SpeciesId = Species.Id group by GeneList.SpeciesId")
	results = cursor.fetchall()
	for item in results:
		speciesDict[item[0]] = item[1]


#		fpText = open(os.path.join(webqtlConfig.TMPDIR, "strains") + str(j) + '.txt','wb')
#		fpText.write("strain:  '%d'  \n" % thisone  )
#		fpText.close()
#		strainids.append(thisone)



	
	##List current Species and other Species
	speciesId = speciesDict[species]
	otherSpecies = map(lambda X: [X, speciesDict[X]], speciesDict.keys())
	otherSpecies.remove([species, speciesId])

	cursor.execute("""SELECT %s from GeneList 
						where 
					SpeciesId = %d AND Chromosome = '%s' AND
					((TxStart > %f and TxStart <= %f) OR (TxEnd > %f and TxEnd <= %f))
					order by txStart
					""" 
					% (string.join(fetchFields, ", "), speciesId, chrName, startMb, endMb, startMb, endMb))
	results = cursor.fetchall()
	GeneList = []
	
	if results:
		for result in results:
			newdict = {}
			for j, item in enumerate(fetchFields):
				newdict[item] = result[j]

## get pathways

			cursor.execute("""
			    select 
					pathway						
				FROM
				    kegg.mmuflat
				where 
					gene = '%s' 
				""" % (newdict["GeneID"]) )
				
			resAAA = cursor.fetchall()
			if resAAA:
				myFields = ['pathways']
				for j, item in enumerate(myFields):
					temp = []
					for k in resAAA:
						temp.append(k[j])
					newdict["pathways"] = temp 
			
			cursor.execute("""
			    select 
					name						
				FROM
				    kegg.mmuflat
				where 
					gene = '%s' 
				""" % (newdict["GeneID"]) )
				
			resAAA = cursor.fetchall()
			if resAAA:
				myFields = ['pathwaynames']
				for j, item in enumerate(myFields):
					temp = []
					for k in resAAA:
						temp.append(k[j])
					newdict["pathwaynames"] = temp 

## get GO terms

			cursor.execute("""
			    SELECT
				  distinct go.term.name
				FROM   go.gene_product
				  INNER JOIN go.dbxref ON (go.gene_product.dbxref_id=go.dbxref.id)
				  INNER JOIN go.association ON (go.gene_product.id=go.association.gene_product_id)
				  INNER JOIN go.term ON (go.association.term_id=go.term.id)
				WHERE
				  go.dbxref.xref_key = (select mgi from go.genemgi where gene='%s' limit 1)
				AND
				  go.dbxref.xref_dbname = 'MGI'
				AND
				  go.term.term_type='biological_process'
				""" % (newdict["GeneID"]) )

			resAAA = cursor.fetchall()
			if resAAA:
				myFields = ['goterms']
				for j, item in enumerate(myFields):
					temp = []
					for k in resAAA:
						temp.append(k[j])
					newdict["goterms"] = temp 
			





			newdict["snpDensity"] = newdict["snpCount"] = newdict["snpCountall"] = newdict["snpCountmis"] = newdict["snpCountBXD"] = newdict["snpCountmissel"] = 0

			#count SNPs if possible	
			if diffCol and species=='mouse':
				cursor.execute("""
					select 
						count(*) from BXDSnpPosition
					where 
						Chr = '%s' AND Mb >= %2.6f AND Mb < %2.6f AND
						StrainId1 = %d AND StrainId2 = %d
				""" % (chrName, newdict["TxStart"], newdict["TxEnd"], diffCol[0], diffCol[1]))
				newdict["snpCount"] = cursor.fetchone()[0]
				newdict["snpDensity"] = newdict["snpCount"]/(newdict["TxEnd"]-newdict["TxStart"])/1000.0
			else:
				newdict["snpDensity"] = newdict["snpCount"] = 0
			
			try:
				newdict['GeneLength'] = 1000.0*(newdict['TxEnd'] - newdict['TxStart'])
			except:
				pass



#self.cursor.execute("SELECT geneSymbol, chromosome, txStart, txEnd from GeneList where SpeciesId= 1 and geneSymbol = %s", opt.geneName)



			
			## search with gene name... doesnt matter. it changed to start and end position anyway
			##self.cursor.execute("SELECT geneSymbol, chromosome, txStart, txEnd from GeneList where SpeciesId= 1 and geneSymbol = %s", newdict["GeneSymbol"])


			#count SNPs for all strains
			cursor.execute("""
			     SELECT 
				distinct SnpAll.Id
			     from 
			        SnpAll 
			     where 
			        SpeciesId = '1' and SnpAll.Chromosome = '%s' AND 
				    SnpAll.Position >= %2.6f and SnpAll.Position < %2.6f AND
				    SnpAll.Exon='Y'
				""" % (newdict["Chromosome"], newdict["TxStart"], newdict["TxEnd"]))
			snpfetch = cursor.fetchall()
			newdict["snpCountmis"] = len(snpfetch)

## 			# count SNPs for selected strains
			
			sql = """SELECT 
					distinct SnpAll.Id, `%s`, `%s`
				from 
					SnpAll, SnpPattern 
				where 
					SpeciesId = '1' and SnpAll.Chromosome = '%s' AND 
					SnpAll.Position >= %2.6f and SnpAll.Position < %2.6f and SnpAll.Id = SnpPattern.SnpId AND 
					SnpPattern.`%s` != SnpPattern.`%s` AND
					SnpAll.Exon='Y'
					""" % (str1, str2, newdict["Chromosome"], newdict["TxStart"], newdict["TxEnd"], str1, str2)
			cursor.execute(sql)
			ressnp = cursor.fetchall()
			newdict["snpCountmissel"] = len(ressnp)
			newdict["hassnp"] = 'n'
			if len(ressnp)>0 :
				newdict["hassnp"]= 'y'
##          ####################################### NEW NEW NEW







			# count Indels for BXD mice
			cursor.execute("""
				SELECT 
				   distinct IndelAll.Name, IndelAll.Chromosome, IndelAll.SourceId, IndelAll.Mb_start,
				   IndelAll.Mb_end, IndelAll.Strand, IndelAll.Type, IndelAll.Size, IndelAll.InDelSequence,
				   SnpSource.Name  
				from 
				   SnpSource, IndelAll
				where 
				   IndelAll.SpeciesId = '1' and IndelAll.Chromosome = '%s' AND 
				   IndelAll.Mb_start >= %2.6f and IndelAll.Mb_start < (%2.6f+.0010) AND
				   SnpSource.Id = IndelAll.SourceId 
				   order by IndelAll.Mb_start
				""" % (newdict["Chromosome"], newdict["TxStart"], newdict["TxEnd"]))
				
			ressnp = cursor.fetchall()
			newdict["indelCountBXD"] = len(ressnp)
			newdict["hasindel"] = 'n'
			newdict["hasexpr"] = 'n'
			newdict["hascis"] = 'n'
			newdict["score"] = 0
			if len(ressnp)>0 :
				newdict["hasindel"]= 'y'

## #			cursor.execute("""
## #				select 
## #					Name from ProbeSet
## #				where 
## #					GeneId = '%s' AND ChipId=4 limit 1
## #			""" % (newdict["GeneID"]))
## #			if species=='mouse':
## #				cursor.execute("""
## #					select 
## #						Name from ProbeSet
## #					where 
## #						GeneId = '%s' AND ChipId=4
## #				""" % (newdict["GeneID"]))
## #				results = cursor.fetchall()
## #				psets = []
## #				for item in results:
## #					psets.append(item)
## #				newdict["probeset"] = psets 
## #				
## #			else:
## #				newdict["probeset"] = "empty"




			if species=='mouse':
				cursor.execute("""
					select 
						distinct 0,
						ProbeSet.Name as TNAME,
						round(ProbeSetXRef.Mean,1) as TMEAN,
						round(ProbeSetXRef.LRS,1) as TLRS,
						ProbeSet.Chr_num as TCHR_NUM,
						ProbeSet.Mb as TMB,
						ProbeSet.Symbol as TSYMBOL,
						ProbeSet.name_num as TNAME_NUM
						FROM  ProbeSetXRef, ProbeSetFreeze, ProbeSet
					where 
						( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol,
						alias,GenbankId,UniGeneId, Probe_Target_Description)
						AGAINST ('%s' IN BOOLEAN MODE) )
						and ProbeSet.symbol = '%s'
						and ProbeSet.Id = ProbeSetXRef.ProbeSetId
						and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id
						and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1)
				""" % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseA))
				resA = cursor.fetchall()
				
				if resA:
					myFields = ['dummyA','probesetA','meanA','newlrsA','probesetchrA','probesetmbA','probesetsymbolA','probesetnamenumA']

#					fpText = open(os.path.join(webqtlConfig.TMPDIR, "res") + '.txt','wb')
					#fpText.write("newdictgeneid  '%s'  \n" % newdict["GeneId"])
					for j, item in enumerate(myFields):
						temp = []
						for k in resA:
							#							fpText.write("j: result:  '%s'  \n" % k[j])
							temp.append(k[j])
						newdict[item] = temp 
					#					fpText.close()


					# put probesetcisA here
				
					cursor.execute("""
					select 
						distinct 0,
						if( (ProbeSet.Chr = Geno.Chr AND ProbeSetXRef.LRS > 10.0000000  and ABS(ProbeSet.Mb-Geno.Mb) < 10.0000000  ) , concat('yes(',round(ProbeSetXRef.LRS,1),')') , 'no') as cis
						FROM  Geno, ProbeSetXRef, ProbeSetFreeze, ProbeSet
					where 
						( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol,
						alias,GenbankId,UniGeneId, Probe_Target_Description)
						AGAINST ('%s' IN BOOLEAN MODE) )
						and ProbeSet.symbol = '%s'
						and ProbeSet.Id = ProbeSetXRef.ProbeSetId
						and Geno.SpeciesId=1 #XZ: I add this line to speed up query
						and ProbeSetXRef.Locus = Geno.name
						and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id
						and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1)
						""" % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseA))

					resA2 = cursor.fetchall()
					if resA2:
						myFields = ['dummyA2','probesetcisA']
						for j, item in enumerate(myFields):
							temp = []
							for k in resA2:
								#							fpText.write("j: result:  '%s'  \n" % k[j])
								temp.append(k[j])
							newdict[item] = temp 
					else:
						newdict['probesetcisA'] = ''



					# specially for this dataset only
					newdict["hasexpr"] = 'n'
					if len(newdict["meanA"])>0:
						for mym in newdict["meanA"]:
							if mym>8:
								newdict["hasexpr"] = 'y'

					# specially for this dataset only
					newdict["hascis"] = 'n'
					if len(newdict["probesetcisA"])>0:
						for mym in newdict["probesetcisA"]:
							if mym != 'no':
								newdict["hascis"] = 'y'
			
			else:
				myFields = ['dummyA','probesetA,''meanA','newlrsA','probesetchrA','probesetmbA','probesetsymbolA','probesetnamenumA', 'probesetcisA']
				for j, item in enumerate(myFields):
					newdict[item] = "--"

				# specially for this dataset only
				newdict["hasexpr"] = 'n'
				newdict["hascis"] = 'n'
				newdict["score"] = 0

##########################  FOR B

			newdict["score"] = 0
			if newdict["hassnp"] == 'y':
				newdict["score"] = newdict["score"] + 1					
			if newdict["hasexpr"] == 'y':
				newdict["score"] = newdict["score"] + 1					
			if newdict["hasindel"] == 'y':
				newdict["score"] = newdict["score"] + 1					
			if newdict["hascis"] == 'y':
				newdict["score"] = newdict["score"] + 1					
							
							
					
			if species=='mouse':
				cursor.execute("""
					select 
						distinct 0,
						ProbeSet.Name as TNAME,
						round(ProbeSetXRef.Mean,1) as TMEAN,
						round(ProbeSetXRef.LRS,1) as TLRS,
						ProbeSet.Chr_num as TCHR_NUM,
						ProbeSet.Mb as TMB,
						ProbeSet.Symbol as TSYMBOL,
						ProbeSet.name_num as TNAME_NUM
						FROM  ProbeSetXRef, ProbeSetFreeze, ProbeSet
					where 
						( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol,
						alias,GenbankId,UniGeneId, Probe_Target_Description)
						AGAINST ('%s' IN BOOLEAN MODE) )
						and ProbeSet.symbol = '%s'
						and ProbeSet.Id = ProbeSetXRef.ProbeSetId
						and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id
						and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1)
				""" % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseB))

				resB = cursor.fetchall()
				if resB:
					myFields = ['dummyB','probesetB','meanB','newlrsB','probesetchrB','probesetmbB','probesetsymbolB','probesetnamenumB']

#					fpText = open(os.path.join(webqtlConfig.TMPDIR, "res") + '.txt','wb')
					#fpText.write("newdictgeneid  '%s'  \n" % newdict["GeneId"])
					for j, item in enumerate(myFields):
						temp = []
						for k in resB:
							#							fpText.write("j: result:  '%s'  \n" % k[j])
							temp.append(k[j])
						newdict[item] = temp 
					#					fpText.close()


					# put probesetcisB here
					cursor.execute("""
					select 
						distinct 0,
						if( (ProbeSet.Chr = Geno.Chr AND ProbeSetXRef.LRS > 10.0000000  and ABS(ProbeSet.Mb-Geno.Mb) < 10.0000000  ) , concat('yes(',round(ProbeSetXRef.LRS,1),')') , 'no') as cis
						FROM  Geno, ProbeSetXRef, ProbeSetFreeze, ProbeSet
					where 
						( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol,
						alias,GenbankId,UniGeneId, Probe_Target_Description)
						AGAINST ('%s' IN BOOLEAN MODE) )
						and ProbeSet.symbol = '%s'
						and ProbeSet.Id = ProbeSetXRef.ProbeSetId
						and Geno.SpeciesId=1 #XZ: I add this line to speed up query
						and ProbeSetXRef.Locus = Geno.name
						and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id
						and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1)
						""" % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseB))

					resB2 = cursor.fetchall()
					if resB2:
						myFields = ['dummyB2','probesetcisB']
						for j, item in enumerate(myFields):
							temp = []
							for k in resB2:
								#							fpText.write("j: result:  '%s'  \n" % k[j])
								temp.append(k[j])
							newdict[item] = temp 
					else:
						newdict['probesetcisB'] = ''

				
			else:
				myFields = ['dummyB','probesetB,''meanB','newlrsB','probesetchrB','probesetmbB','probesetsymbolB','probesetnamenumB', 'probesetcisB']
				for j, item in enumerate(myFields):
					newdict[item] = "--"



##########################


##########################  FOR C

					
			if species=='mouse':
				cursor.execute("""
					select 
						distinct 0,
						ProbeSet.Name as TNAME,
						round(ProbeSetXRef.Mean,1) as TMEAN,
						round(ProbeSetXRef.LRS,1) as TLRS,
						ProbeSet.Chr_num as TCHR_NUM,
						ProbeSet.Mb as TMB,
						ProbeSet.Symbol as TSYMBOL,
						ProbeSet.name_num as TNAME_NUM
						FROM  ProbeSetXRef, ProbeSetFreeze, ProbeSet
					where 
						( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol,
						alias,GenbankId,UniGeneId, Probe_Target_Description)
						AGAINST ('%s' IN BOOLEAN MODE) )
						and ProbeSet.symbol = '%s'
						and ProbeSet.Id = ProbeSetXRef.ProbeSetId
						and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id
						and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1)
				""" % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseC))

				resC = cursor.fetchall()
				if resC:
					myFields = ['dummyC','probesetC','meanC','newlrsC','probesetchrC','probesetmbC','probesetsymbolC','probesetnamenumC']

#					fpText = open(os.path.join(webqtlConfig.TMPDIR, "res") + '.txt','wb')
					#fpText.write("newdictgeneid  '%s'  \n" % newdict["GeneId"])
					for j, item in enumerate(myFields):
						temp = []
						for k in resC:
							#							fpText.write("j: result:  '%s'  \n" % k[j])
							temp.append(k[j])
						newdict[item] = temp 
					#					fpText.close()


					# put probesetcisC here
					cursor.execute("""
					select 
						distinct 0,
						if( (ProbeSet.Chr = Geno.Chr AND ProbeSetXRef.LRS > 10.0000000  and ABS(ProbeSet.Mb-Geno.Mb) < 10.0000000  ) , concat('yes(',round(ProbeSetXRef.LRS,1),')') , 'no') as cis
						FROM  Geno, ProbeSetXRef, ProbeSetFreeze, ProbeSet
					where 
						( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol,
						alias,GenbankId,UniGeneId, Probe_Target_Description)
						AGAINST ('%s' IN BOOLEAN MODE) )
						and ProbeSet.symbol = '%s'
						and ProbeSet.Id = ProbeSetXRef.ProbeSetId
						and Geno.SpeciesId=1 #XZ: I add this line to speed up query
						and ProbeSetXRef.Locus = Geno.name
						and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id
						and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1)
						""" % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseC))

					resC2 = cursor.fetchall()
					if resC2:
						myFields = ['dummyC2','probesetcisC']
						for j, item in enumerate(myFields):
							temp = []
							for k in resC2:
								#							fpText.write("j: result:  '%s'  \n" % k[j])
								temp.append(k[j])
							newdict[item] = temp 
					else:
						newdict['probesetcisC'] = ''

			else:
				myFields = ['dummyC','probesetC,''meanC','newlrsC','probesetchrC','probesetmbC','probesetsymbolC','probesetnamenumC', 'probesetcisC']
				for j, item in enumerate(myFields):
					newdict[item] = "--"


			             
			
			


			
			#load gene from other Species by the same name
			
			
			for item in otherSpecies:
				othSpec, othSpecId = item
				newdict2 = {}
				
				cursor.execute("SELECT %s from GeneList where SpeciesId = %d and geneSymbol= '%s' limit 1" % 
							(string.join(fetchFields, ", "), othSpecId, newdict["GeneSymbol"]))
				resultsOther = cursor.fetchone()
				if resultsOther:
					for j, item in enumerate(fetchFields):
						newdict2[item] = resultsOther[j]
							
					#count SNPs if possible, could be a separate function	
					if diffCol and othSpec == 'mouse':
						cursor.execute("""
							select
								count(*) from BXDSnpPosition
							where
								Chr = '%s' AND Mb >= %2.6f AND Mb < %2.6f AND
								StrainId1 = %d AND StrainId2 = %d
							""" % (chrName, newdict["TxStart"], newdict["TxEnd"], diffCol[0], diffCol[1]))


						newdict2["snpCount"] = cursor.fetchone()[0]
						newdict2["snpDensity"] = newdict2["snpCount"]/(newdict2["TxEnd"]-newdict2["TxStart"])/1000.0
					else:
						newdict2["snpDensity"] = newdict2["snpCount"] = 0
						
					try:
						newdict2['GeneLength'] = 1000.0*(newdict2['TxEnd'] - newdict2['TxStart'])
					except:
						pass
						
				newdict['%sGene' % othSpec] = newdict2

			#newdict['RUDI']='hallo allemaal'
				
			GeneList.append(newdict)

					
	return GeneList