aboutsummaryrefslogtreecommitdiff
path: root/web/webqtl/networkGraph/networkGraphUtils.py
blob: fd0e748450cb0be3a3e5256a47272732cdb4341f (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License
# as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero General Public License for more details.
#
# This program is available from Source Forge: at GeneNetwork Project
# (sourceforge.net/projects/genenetwork/).
#
# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
#
#
#
# This module is used by GeneNetwork project (www.genenetwork.org)
#
# Created by GeneNetwork Core Team 2010/08/10
#
# Last updated by GeneNetwork Core Team 2010/10/20

# graphviz:
# a library for sending trait data to the graphviz utilities to get
# graphed

# ParamDict: a dictionary of strings that map to strings where the keys are
#     valid parameters and the values are validated versions of those parameters
#
# The list below also works for visualize.py; different parameters apply to different
# functions in the pipeline. See visualize.py for more details.
#
# parameters:
# filename: an input file with comma-delimited data to visualize
# kValue:
#    how to filter the edges; edges with correlation coefficents in
#    [-k, k] are not drawn
# whichValue: which of the two correlation coefficents are used;
#     0 means the top half (pearson) and
#     1 means the bottom half (spearman)
# width: the width of the graph in inches
# height: the height of the graph in inches
# --scale: an amount to multiply the length factors by to space out the nodes
# spline: whether to use splines instead of straight lines to draw graphs
# tune: whether to automatically pick intelligent default values for
#     kValue and spline based on the number of edges in the input data
# whichVersion: whether to display the graph zoomed or fullscreen
#     0 means zoom
#     1 means fullscreen
# printIslands: whether to display nodes with no visible edges
# 

# DataMatrix: a one-dimensional array of DataPoints in sorted order by i first



import copy
import os
#import os.path
import math
import string

from base import webqtlConfig
from utility import webqtlUtil
#import trait
from nGraphException import nGraphException
from ProcessedPoint import ProcessedPoint


# processDataMatrix: DataMatrix -> ParamDict -> void
# this is the second part after filterDataMatrix
# To process the set of points in a DataMatrix as follows
#    1) choose an appropriate color for the data point
#    2) filter those between k values
#    3) to use an r-to-Z transform to spread out the correlation
#       values from [-1,1] to (-inf, inf)
#    4) to invert the values so that higher correlations result in
#       shorter edges
#
# Note: this function modifies the matrix in-place. My functional
# programming instincts tell me that this is a bad idea.
def processDataMatrix(matrix, p):
    for pt2 in matrix:
        # filter using k
        if (-p["kValue"] <= pt2.value) and (pt2.value <= p["kValue"]):
            pt2.value = 0.00
            
        # Lei Yan
        # 05/28/2009
        # fix color
        
        # pick a color
        if pt2.value >= 0.7:
            pt2.color = p["cL6Name"]
            pt2.style = p["L6style"]
        elif pt2.value >= 0.5:
            pt2.color = p["cL5Name"]
            pt2.style = p["L5style"]
        elif pt2.value >= 0.0:
            pt2.color = p["cL4Name"]
            pt2.style = p["L4style"]
        elif pt2.value >= -0.5:
            pt2.color = p["cL3Name"]
            pt2.style = p["L3style"]
        elif pt2.value >= -0.7:
            pt2.color = p["cL2Name"]
            pt2.style = p["L2style"]
        else:
            pt2.color = p["cL1Name"]
            pt2.style = p["L1style"]
        
        # r to Z transform to generate the length
        # 0 gets transformed to infinity, which we can't
        # represent here, and 1 gets transformed to 0
        if p["lock"] == "no":
            if -0.01 < pt2.value and pt2.value < 0.01:
                pt2.length = 1000
            elif pt2.value > 0.99 or pt2.value < -0.99:
                pt2.length = 0
            else:
                pt2.length = pt2.value
                pt2.length = 0.5 * math.log((1 + pt2.length)/(1 - pt2.length))
        
                # invert so higher correlations mean closer edges
                #pt2.length = abs(p["scale"] * 1/pt2.length)
                pt2.length = abs(1/pt2.length)
        else:
            pt2.length = 2
            

# tuneParamDict: ParamDict -> Int -> Int -> ParamDict
# to adjust the parameter dictionary for a first-time run
# so that the graphing doesn't take so long, especially since
# small parameter changes can make a big performance difference
# note: you can pass this function an empty dictionary and
# get back a good set of default parameters for your
# particular graph
def tuneParamDict(p, nodes, edges):
    newp = copy.deepcopy(p)
    
    if nodes > 50:
        newp["splines"] = "no"
    else:
        newp["splines"] = "yes"
        
    if edges > 1000:
        newp["printIslands"] = 0
    else:
        newp["printIslands"] = 1
        
    if edges > 1000:
        newp["kValue"] = 0.8
    elif edges > 500:
        newp["kValue"] = 0.7
    elif edges > 250:
        newp["kValue"] = 0.6

    if nodes > 50:
        # there's no magic here; this formula
        # just seems to work
        dim = 3*math.sqrt(nodes)
        newp["width"] = round(dim,2)
        newp["height"] = round(dim,2)

        # the two values below shouldn't change 
        #        newp["scale"] = round(dim/10.0,2)
        #        newp["fontsize"] = round(14*newp["scale"],0)
        
    else:
        newp["width"] = 40.0
        newp["height"] = 40.0
        
    return newp

# fixLabel : string -> string
def fixLabel(lbl):
    """
    To split a label with newlines so it looks a bit better
    Note: we send the graphing program literal '\n' strings and
    it converts these into newlines
    """
    lblparts = lbl.split(" ")
    newlbl = ""
    i = 0
    for part in lblparts:
        if 10*(i+1) < len(newlbl):
            i += 1
            newlbl = newlbl + r"\n" + part
        else:
            newlbl = newlbl + " " + part
    return newlbl
    #return "\N"

def writeGraphFile(matrix, traits, filename, p):
    """
    Expresses the same information as the neato file, only in 
    eXtensible Graph Markup and Modeling Language (XGMML) so the user can develop his/her
    own graph in a program such as Cytoscape
    """
    inputFile1 = open(filename + "_xgmml_symbol.txt", "w")
    inputFile2 = open(filename + "_xgmml_name.txt", "w")
    inputFile3 = open(filename + "_plain_symbol.txt", "w")
    inputFile4 = open(filename + "_plain_name.txt", "w")
        
    inputFile1.write("<graph directed=\"1\" label=\"Network Graph\">\n")
    inputFile2.write("<graph directed=\"1\" label=\"Network Graph\">\n")
    
    #Write out nodes
    traitEdges = []
    for i in range(0, len(traits)):
        traitEdges.append(0)
    
    for i in range(0, len(traits)):
            
        labelName = traits[i].symbol
        inputFile1.write("\t<node id=\"%s\" label=\"%s\"></node>\n" % (i, labelName))
    
    for i in range(0, len(traits)):
        
        labelName = traits[i].name
        inputFile2.write("\t<node id=\"%s\" label=\"%s\"></node>\n" % (i, labelName))
            
    #Write out edges
    for point in matrix:

        traitEdges[point.i] = 1
        traitEdges[point.j] = 1
        if p["edges"] == "complex":
            _traitValue = "%.3f" % point.value
            inputFile1.write("\t<edge source=\"%s\" target=\"%s\" label=\"%s\"></edge>\n"
                             % (point.i,
                                point.j, 
                                _traitValue))
            inputFile2.write("\t<edge source=\"%s\" target=\"%s\" label=\"%s\"></edge>\n"
                             % (point.i,
                                point.j, 
                                _traitValue))
    
    inputFile1.write("</graph>")
    inputFile2.write("</graph>")
            
    for edge in matrix:
        inputFile3.write("%s\t%s\t%s\n" % (traits[edge.i].symbol, edge.value, traits[edge.j].symbol))    
    

    for edge in matrix:
        inputFile4.write("%s\t%s\t%s\n" % (traits[edge.i].name, edge.value, traits[edge.j].name))         
                
    inputFile1.close()
    inputFile2.close()
    inputFile3.close()
    inputFile4.close()
    
    return (os.path.split(filename))[1]

# writeNeatoFile : DataMatrix -> arrayof Traits -> String -> ParamDict -> String
def writeNeatoFile(matrix, traits, filename, GeneIdArray, p):
    """
    Given input data, to write a valid input file for neato, optionally
    writing entries for nodes that have no edges.
    
    NOTE: There is a big difference between removing an edge and zeroing
    its value. Because writeNeatoFile is edge-driven, zeroing an edge's value
    will still result in its node being written.
    """
    inputFile = open(filename, "w")
    
    """
    This file (inputFile_pdf) is rotated 90 degrees. This is because of a bug in graphviz 
    that causes pdf output onto a non-landscape layout to often be cut off at the edge
    of the page. This second filename (which is just the first + "_pdf" is then read
    in the "visualizePage" class in networkGraph.py and used to generate the postscript
    file that is converted to pdf.
    """
    inputFile_pdf = open(filename + "_pdf", "w")
    
    
    if p["splines"] == "yes":
        splines = "true"
    else:
        splines = "false"
    
    # header        
    inputFile.write('''graph webqtlGraph {
    overlap="false";
    start="regular";
    splines="%s";
    ratio="auto";
    fontpath = "%s";
    node [fontname="%s", fontsize=%s, shape="%s"];
    edge [fontname="%s", fontsize=%s];
    ''' % (splines, webqtlConfig.PIDDLE_FONT_PATH,
           p["nfont"], p["nfontsize"], p["nodeshapeType"],
           p["cfont"], p["cfontsize"]))
    
    inputFile_pdf.write('''graph webqtlGraph {
    overlap="false";
    start="regular";
    splines="%s";
    rotate="90";
    center="true";
    size="11,8.5";
    margin="0";
    ratio="fill";
    fontpath = "%s";
    node [fontname="%s", fontsize=%s, shape="%s"];
    edge [fontname="%s", fontsize=%s];
    ''' % (splines, webqtlConfig.PIDDLE_FONT_PATH,
           p["nfont"], p["nfontsize"], p["nodeshapeType"],
           p["cfont"], p["cfontsize"]))

    # traitEdges stores whether a particular trait has edges
    traitEdges = []
    for i in range(0, len(traits)):
        traitEdges.append(0)
       
    if p["dispcorr"] == "yes":
        _dispCorr = 1
    else:
        _dispCorr = 0
    # print edges first while keeping track of nodes
    for point in matrix:
        if point.value != 0:
            traitEdges[point.i] = 1
            traitEdges[point.j] = 1
            if p["edges"] == "complex":
                if _dispCorr:
                    _traitValue = "%.3f" % point.value
                else:
                    _traitValue = ""
                if p["correlationName"] == "Pearson":
                    inputFile.write('%s -- %s [len=%s, weight=%s, label=\"%s\", color=\"%s\", style=\"%s\", edgeURL=\"javascript:showCorrelationPlot2(db=\'%s\',ProbeSetID=\'%s\',CellID=\'\',db2=\'%s\',ProbeSetID2=\'%s\',CellID2=\'\',rank=\'%s\');\", edgetooltip="%s"];\n'
                                    % (point.i,
                                       point.j, 
                                       point.length,
                                       point.length, 
                                       _traitValue,
                                       point.color,
                                       point.style,
                                       str(traits[point.i].datasetName()),
                                       str(traits[point.i].nameNoDB()),
                                       str(traits[point.j].datasetName()),
                                       str(traits[point.j].nameNoDB()),
                                       "0",
    				                   "Pearson Correlation Plot between " + str(traits[point.i].symbol) + " and " + str(traits[point.j].symbol)))
                elif p["correlationName"] == "Spearman":
                    inputFile.write('%s -- %s [len=%s, weight=%s, label=\"%s\", color=\"%s\", style=\"%s\", edgeURL=\"javascript:showCorrelationPlot2(db=\'%s\',ProbeSetID=\'%s\',CellID=\'\',db2=\'%s\',ProbeSetID2=\'%s\',CellID2=\'\',rank=\'%s\');\", edgetooltip="%s"];\n'
                                    % (point.i,
                                       point.j, 
                                       point.length,
                                       point.length, 
                                       _traitValue,
                                       point.color,
                                       point.style,
                                       str(traits[point.j].datasetName()),
                                       str(traits[point.j].nameNoDB()),
                                       str(traits[point.i].datasetName()),
                                       str(traits[point.i].nameNoDB()),
                                       "1",
                                       "Spearman Correlation Plot between " + str(traits[point.i].symbol) + " and " + str(traits[point.j].symbol)))    
                elif p["correlationName"] == "Tissue":
                    inputFile.write('%s -- %s [len=%s, weight=%s, label=\"%s\", color=\"%s\", style=\"%s\", edgeURL=\"javascript:showTissueCorrPlot(fmName=\'showDatabase\', X_geneSymbol=\'%s\', Y_geneSymbol=\'%s\', rank=\'0\');\", edgetooltip="%s"];\n'
                                    % (point.i,
                                       point.j, 
                                       point.length,
                                       point.length, 
                                       _traitValue,
                                       point.color,
                                       point.style,
                                       str(traits[point.i].symbol),
                                       str(traits[point.j].symbol),
                                       "Tissue Correlation Plot between " + str(traits[point.i].symbol) + " and " + str(traits[point.j].symbol)))      
                else:
                    inputFile.write('%s -- %s [len=%s, weight=%s, label=\"%s\", color=\"%s\", style=\"%s\", edgeURL=\"javascript:showCorrelationPlot2(db=\'%s\',ProbeSetID=\'%s\',CellID=\'\',db2=\'%s\',ProbeSetID2=\'%s\',CellID2=\'\',rank=\'%s\');\", edgetooltip="%s"];\n'
                                    % (point.i,
                                       point.j, 
                                       point.length,
                                       point.length, 
                                       _traitValue,
                                       point.color,
                                       point.style,
                                       str(traits[point.i].datasetName()),
                                       str(traits[point.i].nameNoDB()),
                                       str(traits[point.j].datasetName()),
                                       str(traits[point.j].nameNoDB()),
                                       "0",
                                       "Correlation Plot between " + str(traits[point.i].symbol) + " and " + str(traits[point.j].symbol)))         
                inputFile_pdf.write('%s -- %s [len=%s, weight=%s, label=\"%s\", color=\"%s\", style=\"%s\", edgetooltip="%s"];\n'
                                % (point.i,
                                   point.j, 
                                   point.length,
                                   point.length, 
                                   _traitValue,
                                   point.color,
                                   point.style,
                                   "Correlation Plot between " + str(traits[point.i].symbol) + " and " + str(traits[point.j].symbol)))
					
            else:
                inputFile.write('%s -- %s [color="%s", style="%s"];\n'
                                % (point.i, 
                                   point.j, 
                                   point.color,
                                   point.style))
                inputFile_pdf.write('%s -- %s [color="%s", style="%s"];\n'
                                % (point.i, 
                                   point.j, 
                                   point.color,
                                   point.style))

    # now print nodes
    # the target attribute below is undocumented; I found it by looking
    # in the neato code
    for i in range(0, len(traits)):
        if traitEdges[i] == 1 or p["printIslands"] == 1:
            _tname = str(traits[i])
            if _tname.find("Publish") > 0:
            	plotColor = p["cPubName"]
            elif _tname.find("Geno") > 0:
            	plotColor = p["cGenName"]
            else:
            	plotColor = p["cMicName"]
            if p['nodelabel'] == 'yes':
            	labelName = _tname
            else:
            	labelName = traits[i].symbol

            inputFile.write('%s [label="%s", href="javascript:showDatabase2(\'%s\',\'%s\',\'\');", color="%s", style = "filled"];\n'
                            % (i, labelName, traits[i].datasetName(), traits[i].nameNoDB(), plotColor))# traits[i].color
            inputFile_pdf.write('%s [label="%s", href="javascript:showDatabase2(\'%s\',\'%s\',\'\');", color="%s", style = "filled"];\n'
                            % (i, labelName, traits[i].datasetName(), traits[i].nameNoDB(), plotColor))# traits[i].color
            
    # footer
    inputFile.write("}\n")
    inputFile_pdf.write("]\n")
    inputFile.close()
    inputFile_pdf.close()

    # return only the filename portion, omitting the directory
    return (os.path.split(filename))[1]

# runNeato : string -> string -> string
def runNeato(filename, extension, format, gType):
    """
    to run neato on the dataset in the given filename and produce an image file
    in the given format whose name we will return. Right now we assume
    that format is a valid neato output (see graphviz docs) and a valid extension
    for the source datafile. For example,
    runNeato('input1', 'png') will produce a file called 'input1.png'
    by invoking 'neato input1 -Tpng -o input1.png'
    """
    # trim extension off of filename before adding output extension
    if filename.find(".") > 0:
        filenameBase = filename[:filename.find(".")]
    else:
        filenameBase = filename
        
    imageFilename = filenameBase + "." + extension

    #choose which algorithm to run depended upon parameter gType
    #neato: energy based algorithm
    #circular: nodes given circular structure determined by which nodes are most closely correlated
    #radial: first node listed (when you search) is center of the graph, all other nodes are in a circular structure around it
    #fdp: force based algorithm

    if gType == "none":
    # to keep the output of neato from going to stdout, we open a pipe
    # and then wait for it to terminate
    
        if format in ('gif', 'cmapx', 'ps'):
            neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/neato", "/usr/local/bin/neato", "-s", "-T", format, webqtlConfig.IMGDIR + filename, "-o", webqtlConfig.IMGDIR + imageFilename)
    
        else:
            neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/neato", "/usr/local/bin/neato", webqtlConfig.IMGDIR + filename, "-T", format, "-o", webqtlConfig.IMGDIR + imageFilename)

        if neatoExit == 0:
            return imageFilename
        
        return imageFilename


    elif gType == "neato":
    # to keep the output of neato from going to stdout, we open a pipe
    # and then wait for it to terminate
        if format in ('gif', 'cmapx', 'ps'):
            neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/neato", "/usr/local/bin/neato", "-s", "-T", format, webqtlConfig.IMGDIR + filename, "-o", webqtlConfig.IMGDIR + imageFilename)
    
        else:
            neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/neato", "/usr/local/bin/neato", webqtlConfig.IMGDIR + filename, "-T", format, "-o", webqtlConfig.IMGDIR + imageFilename)

        if neatoExit == 0:
            return imageFilename
        
        return imageFilename

    elif gType == "circular":
	
        if format in ('gif', 'cmapx', 'ps'):
            neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/circo", "/usr/local/bin/circo", "-s", "-T", format, webqtlConfig.IMGDIR + filename, "-o", webqtlConfig.IMGDIR + imageFilename)
        
        else:
            neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/circo", "/usr/local/bin/circo", webqtlConfig.IMGDIR + filename, "-T", format, "-o", webqtlConfig.IMGDIR + imageFilename)

        if neatoExit == 0:
            return imageFilename
        
        return imageFilename

    elif gType == "radial":
	
        if format in ('gif', 'cmapx', 'ps'):
            neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/twopi", "/usr/local/bin/twopi", "-s", "-T", format, webqtlConfig.IMGDIR + filename, "-o", webqtlConfig.IMGDIR + imageFilename)
        
        else:
            neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/twopi", "/usr/local/bin/twopi", webqtlConfig.IMGDIR + filename, "-T", format, "-o", webqtlConfig.IMGDIR + imageFilename)

        if neatoExit == 0:
            return imageFilename
        
        return imageFilename

    elif gType == "fdp":

        if format in ('gif', 'cmapx', 'ps'):
            neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/fdp", "/usr/local/bin/fdp", "-s", "-T", format, webqtlConfig.IMGDIR + filename, "-o", webqtlConfig.IMGDIR + imageFilename)
        
        else:
            neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/fdp", "/usr/local/bin/fdp", webqtlConfig.IMGDIR + filename, "-T", format, "-o", webqtlConfig.IMGDIR + imageFilename)

        if neatoExit == 0:
            return imageFilename
        
        return imageFilename
    

    return imageFilename
# runPsToPdf: string -> int -> intstring
# to run Ps2Pdf to convert the given input postscript file to an 8.5 by 11
# pdf file The width and height should be specified in inches. We assume
# that the PS files output by GraphViz are 72 dpi.
def runPsToPdf(psfile, width, height):
    # we add 1 for padding b/c sometimes a small part of the graph gets
    # cut off
    newwidth = int((width + 1) * 720)
    newheight = int((height + 1) * 720)

    # replace the ps extension with a pdf one
    pdffile = psfile[:-2] + "pdf"

    os.spawnlp(os.P_WAIT, "ps2pdf", 
               "-g%sx%s" % (newwidth, newheight),
               webqtlConfig.IMGDIR + psfile, webqtlConfig.IMGDIR + pdffile)

    return pdffile

# buildParamDict: void -> ParamDict
# to process and validate CGI arguments,
# looking up human-readable names where necessary
# see the comment at the top of the file for valid cgi parameters
def buildParamDict(fs, sessionfile):
    params = {}
       
    params["inputFile"] = fs.formdata.getvalue("inputFile", "")
    params["progress"] = fs.formdata.getvalue("progress", "1")
    params["filename"] = fs.formdata.getvalue("filename", "")
    params["session"] = sessionfile
    
    if type("1") != type(fs.formdata.getvalue("searchResult")):
        params["searchResult"] = string.join(fs.formdata.getvalue("searchResult"),'\t')
    else:
        params["searchResult"] = fs.formdata.getvalue("searchResult")
        
    params["riset"] = fs.formdata.getvalue("RISet", "")
    #if params["filename"] == "":
    #    raise nGraphException("Required parameter filename missing")
   
    #parameter determining whether export button returns an xgmml graph file or plain text file
    params["exportFormat"] = fs.formdata.getvalue("exportFormat", "xgmml")
    
    #parameter determining whether or not traits in the graph file are listed by their symbol or name
    params["traitType"] = fs.formdata.getvalue("traitType", "symbol")
   
    #parameter saying whether or not graph structure should be locked when you redraw the graph
    params["lock"] = fs.formdata.getvalue("lock", "no")
    
    #parameter saying what algorithm should be used to draw the graph
    params["gType"] = fs.formdata.getvalue("gType", "none")

    params["kValue"] = webqtlUtil.safeFloat(fs.formdata.getvalue("kValue", "0.5"), 0.5)
    params["whichValue"] = webqtlUtil.safeInt(fs.formdata.getvalue("whichValue","0"),0)
    
    # 1 inch = 2.54 cm
    # 1 cm = 0.3937 inch
    
    params["width"] = webqtlUtil.safeFloat(fs.formdata.getvalue("width", "40.0"), 40.0)
    params["height"] = webqtlUtil.safeFloat(fs.formdata.getvalue("height", "40.0"), 40.0)
    
    yesno = ["yes", "no"]
    
    params["tune"] = webqtlUtil.safeString(fs.formdata.getvalue("tune", "yes"), yesno, "yes")
    
    params["printIslands"] = webqtlUtil.safeInt(fs.formdata.getvalue("printIslands", "1"),1)
    params["nodeshape"] = webqtlUtil.safeString(fs.formdata.getvalue("nodeshape","yes"), yesno, "yes")
    params["nodelabel"] = webqtlUtil.safeString(fs.formdata.getvalue("nodelabel","no"), yesno, "no")
    params["nfont"] = fs.formdata.getvalue("nfont","Arial")
    params["nfontsize"] = webqtlUtil.safeFloat(fs.formdata.getvalue("nfontsize", "10.0"), 10.0)

    params["splines"] = webqtlUtil.safeString(fs.formdata.getvalue("splines","yes"), yesno, "yes")    
    params["dispcorr"] = webqtlUtil.safeString(fs.formdata.getvalue("dispcorr","no"), yesno, "no")
    params["cfont"] = fs.formdata.getvalue("cfont","Arial")
    params["cfontsize"] = webqtlUtil.safeFloat(fs.formdata.getvalue("cfontsize", "10.0"), 10.0)
    
    params["cPubName"] = fs.formdata.getvalue("cPubName","palegreen")
    params["cMicName"] = fs.formdata.getvalue("cMicName","lightblue")
    params["cGenName"] = fs.formdata.getvalue("cGenName","lightcoral")
    
    params["cPubColor"] = fs.formdata.getvalue("cPubColor","98fb98")
    params["cMicColor"] = fs.formdata.getvalue("cMicColor","add8e6")
    params["cGenColor"] = fs.formdata.getvalue("cGenColor","f08080")
    
    params["cL1Name"] = fs.formdata.getvalue("cL1Name","blue")
    params["cL2Name"] = fs.formdata.getvalue("cL2Name","green")
    params["cL3Name"] = fs.formdata.getvalue("cL3Name","black")
    params["cL4Name"] = fs.formdata.getvalue("cL4Name","pink")
    params["cL5Name"] = fs.formdata.getvalue("cL5Name","orange")
    params["cL6Name"] = fs.formdata.getvalue("cL6Name","red")
    
    params["cL1Color"] = fs.formdata.getvalue("cL1Color","0000ff")
    params["cL2Color"] = fs.formdata.getvalue("cL2Color","00ff00")
    params["cL3Color"] = fs.formdata.getvalue("cL3Color","000000")
    params["cL4Color"] = fs.formdata.getvalue("cL4Color","ffc0cb")
    params["cL5Color"] = fs.formdata.getvalue("cL5Color","ffa500")
    params["cL6Color"] = fs.formdata.getvalue("cL6Color","ff0000")
    
    params["L1style"] = fs.formdata.getvalue("L1style","bold")
    params["L2style"] = fs.formdata.getvalue("L2style","")
    params["L3style"] = fs.formdata.getvalue("L3style","dashed")
    params["L4style"] = fs.formdata.getvalue("L4style","dashed")
    params["L5style"] = fs.formdata.getvalue("L5style","")
    params["L6style"] = fs.formdata.getvalue("L6style","bold")
    
    if params["splines"] == "yes":
        params["splineName"] = "curves"
    else:
        params["splineName"] = "lines"
        
    if params["nodeshape"] == "yes":
        params["nodeshapeType"] = "box"
    else:
        params["nodeshapeType"] = "ellipse"
        
    if params["whichValue"] == 0:
        params["correlationName"] = "Pearson"
    elif params["whichValue"] == 1:
        params["correlationName"] = "Spearman"
    elif params["whichValue"] == 2:
        params["correlationName"] = "Literature"
    else:
        params["correlationName"] = "Tissue"

    # see graphviz::writeNeatoFile to find out what this done
    params["edges"] = "complex"
    
    return params        

def optimalRadialNode(matrix):
    """
    Automatically determines the node with the most/strongest correlations with 
    other nodes. If the user selects "radial" for Graph Type and then "Auto" for the
    central node then this node is used as the central node. The algorithm is simply a sum of 
    each node's correlations that fall above the threshold set by the user.
    """
    
    optMatrix = [0]*(len(matrix)+1)
    
    for pt in matrix:
	 if abs(pt.value) > 0.5:
            optMatrix[pt.i] += abs(pt.value)
            optMatrix[pt.j] += abs(pt.value)
    
    optPoint = 0
    optCorrTotal = 0
    
    j = 0
    
    for point in optMatrix:
        if (float(point) > float(optCorrTotal)):
            optPoint = j
            optCorrTotal = point
        j += 1
    
    
    return optPoint    
    
# filterDataMatrix : DataMatrix -> ParamDict -> DataMatrix
def filterDataMatrix(matrix, p):
    """
    To convert a set of input RawPoints to a set of
    ProcessedPoints and to choose the appropriate
    correlation coefficent.
    """
    newmatrix = []
    for pt in matrix:
        pt2 = ProcessedPoint(pt.i, pt.j) # XZ, 09/11/2008: add module name
        
        # pick right value
        if p["whichValue"] == 0:
            pt2.value = pt.pearson
        elif p["whichValue"] == 1:
            pt2.value = pt.spearman
        elif p["whichValue"] == 2:
            pt2.value = pt.literature
        elif p["whichValue"] == 3:
            pt2.value = pt.tissue
        else:
            raise nGraphException("whichValue should be either 0, 1, 2 or 3")

        try:
            pt2.value = float(pt2.value)
        except:
            pt2.value = 0.00

        newmatrix.append(pt2)
        
        

    return newmatrix
   
def generateSymbolList(traits):
    """ 
    Generates a list of trait symbols to be displayed in the central node 
    selection drop-down menu when plotting a radial graph
    """
        
    traitList = traits
    
    symbolList = [None]*len(traitList)
    
    i=0
    for trait in traitList:
        symbolList[i] = str(trait.symbol)
        i = i+1
        
    symbolListString = "\t".join(symbolList)
    
    return symbolListString