1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>HTML Template/ WebQTL</TITLE>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<LINK REL="stylesheet" TYPE="text/css" HREF='/css/general.css'>
<LINK REL="stylesheet" TYPE="text/css" HREF='/css/menu.css'>
<SCRIPT SRC="/javascript/webqtl.js"></SCRIPT>
</HEAD>
<BODY bottommargin="2" leftmargin="2" rightmargin="2" topmargin="2" text=#000000 bgColor=#ffffff>
<TABLE cellSpacing=5 cellPadding=4 width="100%" border=0>
<TBODY>
<TR>
<script language="JavaScript" src="/javascript/header.js"></script>
</TR>
<TR>
<TD bgColor=#eeeeee class="solidBorder">
<Table width= "100%" cellSpacing=0 cellPadding=5><TR>
<!-- Body Start from Here -->
<TD vAlign=top width="100%" height=200 bgColor=#eeeeee>
<P class="title">HIQ Striatum M430v2 (Nov05) PDNN <A HREF="/webqtl/main.py?FormID=editHtml">
<img src="/images/modify.gif" alt="modify this page" border= 0 valign="middle"></A></P>
<P class="subtitle"> Summary:</P>
<blockquote>
This November 2005 data freeze provides estimates of mRNA expression in the <A HREf="http://www.nervenet.org/NetPapers/Rosen/Striatum2001/StriatumMain.html" target="_blank" class ="normal">striatum</A> (caudate nucleus of the forebrain) of NN lines of mice including C57BL/6J, DBA/2J, and NN BXD recombinant inbred strains. This data set incorporated 48 arrays from the April 2005 HBP/Rosen data sets (clean). Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (<A HREF="http://www.bidmc.harvard.edu/sites/bidmc/home.aspBIDMC" target="_blank" class ="normal">BIDMC</A>, Boston MA) by Glenn D. Rosen with the support of grant from the <A HREF="http://www.highqfoundation.org/" target="_empty" class="normal">High Q Foundation</A>. Approximately NNN brain samples (males and females) from NN strains were used to generate this data set. It consists of a total of NN arrays that passed stringent quality control procedures. Data were processed using the <a href="http://odin.mdacc.tmc.edu/~zhangli/PerfectMatch/" target="_blank" class="normal">PDNN</a> method of Zhang. To simplify comparison among transforms, PDNN values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.
</blockquote>
<P class="subtitle"> About the cases used to generate this set of data:</P>
<Blockquote>
<P>We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in the GeneNetwork incorporate approximately 1.75 million B vs D SNPs from <a href="http://www.celeradiscoverysystem.com/index.cfm" target="_blank" class ="normal">Celera</a>. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.</P>
</P>
</Blockquote>
<P class="subtitle"> About the tissue used to generate this set of data:</P>
<Blockquote><P>Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. It is of interest to note that roughly 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, <A HREF="http://www.nervenet.org/netpapers/gerfen/striatum92.html" target="_blank" class="normal">1992</A>, for a review of the structure and function of the neostriatum).
</Blockquote>
<Blockquote>RNA was extracted by Rosen and colleagues and was then processed by the <a href="https://www.bidmcgenomics.org/" target="_blank" class="normal">BIDMC Genomics Core</a>. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol.
<P><B>Replication and Sample Balance:</B> Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. NN of NN strains are represented by male and female samples. The remaining NN strains are still represented by single sex samples: ADD LIST HERE.
<P><B>Batch Structure:</B> This data set consists of the orginal April 2005 data set and new arrays processed in NN batches. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below.
</Blockquote>
<Blockquote>
The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days.
</Blockquote>
<Blockquote>
<table border="0" cellpadding="0" cellspacing="0" bgcolor="#000000" width="75%" align="Center">
<tr>
<td>
<table width="100%" border="0" cellpadding="5" cellspacing="1">
<tr bgcolor="royalblue"><td><font color=#FFFFFF>Id</font></td><td><font color=#FFFFFF>Strain</font></td>
<td><font color=#FFFFFF>Sex</font></td>
<td><font color=#FFFFFF>Sample_name</td>
<td><font color=#FFFFFF>BatchId</font></td></tr>
<tr bgcolor="#eeeeee"><td>1</td><td>C57BL/6J</td><td>M</td><td>Chip41_Batch02_B6_M_Str</td><td>Batch02</td></tr>
<!--<tr bgcolor="#eeeeee"><td>2</td><td>C57BL/6J</td><td>M</td><td>Chip11_Batch03_B6_M_Str</td><td>Batch03</td></tr>-->
<tr bgcolor="#eeeeee"><td>2</td><td>BXD1</td><td>F</td><td>Chip03_Batch03_BXD1_F_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>3</td><td>BXD1</td><td>M</td><td>Chip04_Batch03_BXD1_M_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>4</td><td>BXD2</td><td>F</td><td>Chip20_Rerun01_BXD2_F_Str</td><td>Rerun01</td></tr>
<tr bgcolor="#eeeeee"><td>5</td><td>BXD2</td><td>M</td><td>Chip05_Batch01_BXD2_M_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>6</td><td>BXD5</td><td>F</td><td>Chip10_Batch03_BXD5_F_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>7</td><td>BXD5</td><td>M</td><td>Chip12_Batch03_BXD5_M_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>8</td><td>BXD6</td><td>F</td><td>Chip38_Batch02_BXD6_F_Str</td><td>Batch02</td></tr>
<!--<tr bgcolor="#eeeeee"><td>10</td><td>BXD6</td><td>M</td><td>Chip39_Batch02_BXD6_M_Str</td><td>Batch02</td></tr>-->
<tr bgcolor="#eeeeee"><td>9</td><td>BXD8</td><td>F</td><td>Chip07_Batch03_BXD8_F_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>10</td><td>BXD8</td><td>M</td><td>Chip02_Batch03_BXD8_M_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>11</td><td>BXD9</td><td>F</td><td>Chip16_Batch01_BXD9_F_Str</td><td>Batch01</td></tr>
<!--<tr bgcolor="#eeeeee"><td>14</td><td>BXD9</td><td>M</td><td>Chip10_Batch01_BXD9_M_Str</td><td>Batch01</td></tr>-->
<tr bgcolor="#eeeeee"><td>12</td><td>BXD11</td><td>F</td><td>Chip31_Batch02_BXD11_F_Str</td><td>Batch02</td></tr>
<tr bgcolor="#eeeeee"><td>13</td><td>BXD12</td><td>F</td><td>Chip11_Batch01_BXD12_F_Str</td><td>Batch01</td></tr>
<!--<tr bgcolor="#eeeeee"><td>17</td><td>BXD12</td><td>M</td><td>Chip18_Batch03_BXD12_M_Str</td><td>Batch03</td></tr>-->
<tr bgcolor="#eeeeee"><td>14</td><td>BXD13</td><td>F</td><td>Chip33_Batch02_BXD13_F_Str</td><td>Batch02</td></tr>
<!--<tr bgcolor="#eeeeee"><td>19</td><td>BXD14</td><td>F</td><td>Chip48_Batch02_BXD14_F_Str</td><td>Batch02</td></tr>-->
<tr bgcolor="#eeeeee"><td>15</td><td>BXD14</td><td>M</td><td>Chip47_Rerun01_BXD14_M_Str</td><td>Rerun01</td></tr>
<tr bgcolor="#eeeeee"><td>16</td><td>BXD15</td><td>F</td><td>Chip21_Batch01_BXD15_F_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>17</td><td>BXD15</td><td>M</td><td>Chip13_Batch01_BXD15_M_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>18</td><td>BXD16</td><td>F</td><td>Chip36_Batch02_BXD16_F_Str</td><td>Batch02</td></tr>
<tr bgcolor="#eeeeee"><td>19</td><td>BXD16</td><td>M</td><td>Chip44_Rerun01_BXD16_M_Str</td><td>Rerun01</td></tr>
<tr bgcolor="#eeeeee"><td>20</td><td>BXD18</td><td>F</td><td>Chip15_Batch03_BXD18_F_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>21</td><td>BXD18</td><td>M</td><td>Chip19_Batch03_BXD18_M_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>22</td><td>BXD19</td><td>F</td><td>Chip19_Batch01_BXD19_F_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>23</td><td>BXD20</td><td>F</td><td>Chip14_Batch03_BXD20_F_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>24</td><td>BXD21</td><td>F</td><td>Chip18_Batch01_BXD21_F_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>25</td><td>BXD21</td><td>M</td><td>Chip09_Batch01_BXD21_M_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>26</td><td>BXD22</td><td>M</td><td>Chip13_Batch03_BXD22_M_Str</td><td>Batch03</td></tr>
<!--<tr bgcolor="#eeeeee"><td>32</td><td>BXD23</td><td>M</td><td>Chip01_Batch03_BXD23_M_Str</td><td>Batch03</td></tr>-->
<tr bgcolor="#eeeeee"><td>27</td><td>BXD24</td><td>M</td><td>Chip17_Batch03_BXD24_M_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>28</td><td>BXD27</td><td>F</td><td>Chip29_Batch02_BXD27_F_Str</td><td>Batch02</td></tr>
<!--<tr bgcolor="#eeeeee"><td>35</td><td>BXD27</td><td>M</td><td>Chip40_Batch02_BXD27_M_Str</td><td>Batch02</td></tr>-->
<tr bgcolor="#eeeeee"><td>29</td><td>BXD28</td><td>F</td><td>Chip06_Batch01_BXD28_F_Str</td><td>Batch01</td></tr>
<!--<tr bgcolor="#eeeeee"><td>37</td><td>BXD28</td><td>M</td><td>Chip23_Batch01_BXD28_M_Str</td><td>Batch01</td></tr>-->
<tr bgcolor="#eeeeee"><td>30</td><td>BXD29</td><td>F</td><td>Chip45_Batch02_BXD29_F_Str</td><td>Batch02</td></tr>
<tr bgcolor="#eeeeee"><td>31</td><td>BXD29</td><td>M</td><td>Chip42_Batch02_BXD29_M_Str</td><td>Batch02</td></tr>
<tr bgcolor="#eeeeee"><td>32</td><td>BXD31</td><td>F</td><td>Chip14_Batch01_BXD31_F_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>33</td><td>BXD31</td><td>M</td><td>Chip09_Batch03_BXD31_M_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>34</td><td>BXD32</td><td>M</td><td>Chip30_Batch02_BXD32_M_Str</td><td>Batch02</td></tr>
<tr bgcolor="#eeeeee"><td>35</td><td>BXD33</td><td>F</td><td>Chip27_Rerun01_BXD33_F_Str</td><td>Rerun01</td></tr>
<tr bgcolor="#eeeeee"><td>36</td><td>BXD33</td><td>M</td><td>Chip34_Batch02_BXD33_M_Str</td><td>Batch02</td></tr>
<tr bgcolor="#eeeeee"><td>37</td><td>BXD34</td><td>F</td><td>Chip03_Batch01_BXD34_F_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>38</td><td>BXD34</td><td>M</td><td>Chip07_Batch01_BXD34_M_Str</td><td>Batch01</td></tr>
<!--<tr bgcolor="#eeeeee"><td>47</td><td>BXD36</td><td>F</td><td>Chip22_Batch03_BXD36_F_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>39</td><td>BXD36</td><td>M</td><td>Chip24_Batch03_BXD36_M_Str</td><td>Batch03</td></tr> -->
<tr bgcolor="#eeeeee"><td>39</td><td>BXD38</td><td>F</td><td>Chip17_Batch01_BXD38_F_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>40</td><td>BXD38</td><td>M</td><td>Chip24_Batch01_BXD38_M_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>41</td><td>BXD39</td><td>M</td><td>Chip20_Batch03_BXD39_M_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>42</td><td>BXD39</td><td>F</td><td>Chip23_Batch03_BXD39_F_Str</td><td>Batch03</td></tr>
<tr bgcolor="#eeeeee"><td>43</td><td>BXD39</td><td>M</td><td>Chip43_Rerun01_BXD39_M_Str</td><td>Rerun01</td></tr>
<tr bgcolor="#eeeeee"><td>44</td><td>BXD40</td><td>F</td><td>Chip08_Rerun01_BXD40_F_Str</td><td>Rerun01</td></tr>
<tr bgcolor="#eeeeee"><td>45</td><td>BXD40</td><td>M</td><td>Chip22_Batch01_BXD40_M_Str</td><td>Batch01</td></tr>
<tr bgcolor="#eeeeee"><td>46</td><td>BXD42</td><td>F</td><td>Chip35_Batch02_BXD42_F_Str</td><td>Batch02</td></tr>
<tr bgcolor="#eeeeee"><td>47</td><td>BXD42</td><td>M</td><td>Chip32_Batch02_BXD42_M_Str</td><td>Batch02</td></tr>
<!--<tr bgcolor="#eeeeee"><td>58</td><td>DBA/2J</td><td>M</td><td>Chip02_Batch01_D2_M_Str</td><td>Batch01</td></tr>-->
<tr bgcolor="#eeeeee"><td>48</td><td>DBA/2J</td><td>M</td><td>Chip05_Batch03_D2_M_Str</td><td>Batch03</td></tr>
</table>
</td>
</tr>
</table>
</Blockquote>
<P class="subtitle"> About the array platfrom :</P>
<Blockquote>
<P><B>Affymetrix Mouse Genome 430 2.0 array: </B>The <A HREF="http://www.affymetrix.com/support/technical/byproduct.affx?product=moe430-20" target="_blank" class="normal">430v2</A> array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.</P>
</Blockquote>
<P class="subtitle"> About data processing:</P>
<Blockquote><B>Probe (cell) level data from the CEL file: </B>These CEL values produced by <a target="_blank" class="fs14" href="http://www.affymetrix.com/support/technical/product_updates/gcos_download.affx">GCOS</a> are 75% quantiles from a set of 91 pixel values per cell.
<UL>
<LI>Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell.
<LI>Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform.
<LI>Step 3: We computed the Z scores for each cell value.
<LI>Step 4: We multiplied all Z scores by 2.
<LI>Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference.
<LI>Step 6: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of all batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same.
<LI>Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables.
</UL>
<B>Probe set data from the CHP file: </B>The expression values were
generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. </Blockquote>
<Blockquote><B>Data quality control: </B>A total of 62 samples passed RNA quality control.
<P>Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03).
<P>Probe set level QC: The final normalized array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. </Blockquote>
<P class="subtitle"> Data source acknowledgment:</P>
<Blockquote><P>Data were generated with funds to RWW, KFM, and GDR from the High Q Foundation. The first 48 arrays were generated with support to <a
href="mailto:grosen@bidmc.harvard.edu" class="normal">Glenn Rosen</a> and colleagues from P20
MH62009. Samples and arrays were processed by the
<a href="https://www.bidmcgenomics.org/" target="_blank" class="normal">Genomics Core</a> at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.</P></Blockquote>
<P class="subtitle"> About this text file:</P>
<Blockquote><P>
This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 30, 2005.
</P></Blockquote>
<P></P>
</TD>
</TR>
<TR>
<TD colspan=2 align=center bgColor=#ddddff>
<!--Start of footer-->
<TABLE width="90%">
<script language='JavaScript' src='/javascript/footer.js'></script>
</TABLE>
<!--End of footer-->
</TD>
</TR>
</TABLE><!-- /Footer -->
<!-- menu script itself. you should not modify this file -->
<script language="JavaScript" src="/javascript/menu_new.js"></script>
<!-- items structure. menu hierarchy and links are stored there -->
<script language="JavaScript" src="/javascript/menu_items.js"></script>
<!-- files with geometry and styles structures -->
<script language="JavaScript" src="/javascript/menu_tpl.js"></script>
<script language="JavaScript">
<!--//
// Note where menu initialization block is located in HTML document.
// Don't try to position menu locating menu initialization block in
// some table cell or other HTML element. Always put it before </body>
// each menu gets two parameters (see demo files)
// 1. items structure
// 2. geometry structure
new menu (MENU_ITEMS, MENU_POS);
// make sure files containing definitions for these variables are linked to the document
// if you got some javascript error like "MENU_POS is not defined", then you've made syntax
// error in menu_tpl.js file or that file isn't linked properly.
// also take a look at stylesheets loaded in header in order to set styles
//-->
</script>
</BODY>
</HTML>
|