diff options
Diffstat (limited to 'wqflask')
-rw-r--r-- | wqflask/wqflask/my_pylmm/pyLMM/kinship.py | 14 | ||||
-rw-r--r-- | wqflask/wqflask/my_pylmm/pyLMM/lmm.py | 35 | ||||
-rw-r--r-- | wqflask/wqflask/my_pylmm/pyLMM/phenotype.py | 2 | ||||
-rw-r--r-- | wqflask/wqflask/my_pylmm/pyLMM/runlmm.py | 4 |
4 files changed, 29 insertions, 26 deletions
diff --git a/wqflask/wqflask/my_pylmm/pyLMM/kinship.py b/wqflask/wqflask/my_pylmm/pyLMM/kinship.py index 62f7be47..be12417e 100644 --- a/wqflask/wqflask/my_pylmm/pyLMM/kinship.py +++ b/wqflask/wqflask/my_pylmm/pyLMM/kinship.py @@ -28,17 +28,21 @@ import time from optmatrix import matrix_initialize, matrixMultT -def kinship_full(G): +def kinship_full(G,uses): """ Calculate the Kinship matrix using a full dot multiplication """ - print G.shape + info,mprint = uses('info','mprint') + + # mprint("kinship_full G",G) m = G.shape[0] # snps n = G.shape[1] # inds - sys.stderr.write(str(m)+" SNPs\n") - assert m>n, "n should be larger than m (snps>inds)" - m = np.dot(G.T,G) + info("%d SNPs",m) + assert m>n, "n should be larger than m (%d snps > %d inds)" % (m,n) + # m = np.dot(G.T,G) + m = matrixMultT(G.T) m = m/G.shape[0] + # mprint("kinship_full K",m) return m def compute_W(job,G,n,snps,compute_size): diff --git a/wqflask/wqflask/my_pylmm/pyLMM/lmm.py b/wqflask/wqflask/my_pylmm/pyLMM/lmm.py index e0fc8305..c040e3c2 100644 --- a/wqflask/wqflask/my_pylmm/pyLMM/lmm.py +++ b/wqflask/wqflask/my_pylmm/pyLMM/lmm.py @@ -65,7 +65,7 @@ except ImportError: sys.stderr.write("WARNING: LMM standalone version missing the Genenetwork2 environment\n") pass -progress,debug,info = uses('progress','debug','info') +progress,mprint,debug,info = uses('progress','mprint','debug','info') #np.seterr('raise') @@ -277,7 +277,7 @@ def run_other_old(pheno_vector, print("Running the original LMM engine in run_other (old)") print("REML=",restricted_max_likelihood," REFIT=",refit) with Bench("Calculate Kinship"): - kinship_matrix,genotype_matrix = calculate_kinship(genotype_matrix, tempdata) + kinship_matrix,genotype_matrix = calculate_kinship_old(genotype_matrix, tempdata) print("kinship_matrix: ", pf(kinship_matrix)) print("kinship_matrix.shape: ", pf(kinship_matrix.shape)) @@ -331,7 +331,7 @@ def run_other_new(pheno_vector, # G = np.apply_along_axis( genotype.normalize, axis=1, arr=G) with Bench("Calculate Kinship"): - K,G = calculate_kinship(G, tempdata) + K,G = calculate_kinship_new(G, tempdata) print("kinship_matrix: ", pf(K)) print("kinship_matrix.shape: ", pf(K.shape)) @@ -393,9 +393,9 @@ def calculate_kinship_new(genotype_matrix, temp_data=None): Call the new kinship calculation where genotype_matrix contains inds (columns) by snps (rows). """ - print("call genotype.normalize") + info("call genotype.normalize") G = np.apply_along_axis( genotype.normalize, axis=0, arr=genotype_matrix) - print("call calculate_kinship_new") + info("call calculate_kinship_new") return kinship(G.T,uses),G # G gets transposed, we'll turn this into an iterator (FIXME) def calculate_kinship_old(genotype_matrix, temp_data=None): @@ -406,11 +406,11 @@ def calculate_kinship_old(genotype_matrix, temp_data=None): normalizes the resulting vectors and returns the RRM matrix. """ - print("call calculate_kinship_old") + info("call calculate_kinship_old") n = genotype_matrix.shape[0] m = genotype_matrix.shape[1] - print("genotype 2D matrix n (inds) is:", n) - print("genotype 2D matrix m (snps) is:", m) + info("genotype 2D matrix n (inds) is: %d" % (n)) + info("genotype 2D matrix m (snps) is: %d" % (m)) assert m>n, "n should be larger than m (snps>inds)" keep = [] for counter in range(m): @@ -431,14 +431,13 @@ def calculate_kinship_old(genotype_matrix, temp_data=None): continue keep.append(counter) genotype_matrix[:,counter] = (genotype_matrix[:,counter] - values_mean) / np.sqrt(vr) - progress('kinship_old',counter,m) + progress('kinship_old normalize genotype',counter,m) genotype_matrix = genotype_matrix[:,keep] - print("After kinship (old) genotype_matrix: ", pf(genotype_matrix)) - kinship_matrix = np.dot(genotype_matrix, genotype_matrix.T) * 1.0/float(m) - return kinship_matrix,genotype_matrix - -calculate_kinship = calculate_kinship_new # alias + mprint("After kinship (old) genotype_matrix: ", genotype_matrix) + # kinship_matrix = np.dot(genotype_matrix, genotype_matrix.T) * 1.0/float(m) + # return kinship_matrix,genotype_matrix + return kinship_full(genotype_matrix.T,uses),genotype_matrix def GWAS(pheno_vector, genotype_matrix, @@ -464,9 +463,9 @@ def GWAS(pheno_vector, refit - refit the variance component for each SNP """ - if kinship_eigen_vals == None: + if kinship_eigen_vals is None: kinship_eigen_vals = [] - if kinship_eigen_vectors == None: + if kinship_eigen_vectors is None: kinship_eigen_vectors = [] n = genotype_matrix.shape[0] @@ -570,7 +569,7 @@ class LMM: When this parameter is not provided, the constructor will set X0 to an n x 1 matrix of all ones to represent a mean effect. """ - if X0 == None: X0 = np.ones(len(Y)).reshape(len(Y),1) + if X0 is None: X0 = np.ones(len(Y)).reshape(len(Y),1) self.verbose = verbose #x = Y != -9 @@ -663,7 +662,7 @@ class LMM: REML is computed by adding additional terms to the standard LL and can be computed by setting REML=True. """ - if X == None: + if X is None: X = self.X0t elif stack: self.X0t_stack[:,(self.q)] = matrixMult(self.Kve.T,X)[:,0] diff --git a/wqflask/wqflask/my_pylmm/pyLMM/phenotype.py b/wqflask/wqflask/my_pylmm/pyLMM/phenotype.py index 682ba371..4c8175f7 100644 --- a/wqflask/wqflask/my_pylmm/pyLMM/phenotype.py +++ b/wqflask/wqflask/my_pylmm/pyLMM/phenotype.py @@ -24,7 +24,7 @@ def remove_missing(y,g,verbose=False): Remove missing data from matrices, make sure the genotype data has individuals as rows """ - assert(y!=None) + assert(y is not None) assert(y.shape[0] == g.shape[0]) y1 = y diff --git a/wqflask/wqflask/my_pylmm/pyLMM/runlmm.py b/wqflask/wqflask/my_pylmm/pyLMM/runlmm.py index e3e8659c..6a38da56 100644 --- a/wqflask/wqflask/my_pylmm/pyLMM/runlmm.py +++ b/wqflask/wqflask/my_pylmm/pyLMM/runlmm.py @@ -134,7 +134,7 @@ elif cmd == 'redis': # Emulating the redis setup of GN2 G = g print "Original G",G.shape, "\n", G - if y != None and options.remove_missing_phenotypes: + if y is not None and options.remove_missing_phenotypes: gnt = np.array(g).T Y,g,keep = phenotype.remove_missing(y,g.T,options.verbose) G = g.T @@ -165,7 +165,7 @@ elif cmd == 'redis': assert p1==0.0897, "p1=%f" % p1 assert p2==0.0405, "p2=%f" % p2 if options.geno == 'data/test8000.geno': - assert round(sum(ps)) == 4070 + assert int(sum(ps)) == 4070 assert len(ps) == 8000 elif cmd == 'kinship': G = g |