aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/wgcna/wgcna_analysis.py5
1 files changed, 4 insertions, 1 deletions
diff --git a/wqflask/wqflask/wgcna/wgcna_analysis.py b/wqflask/wqflask/wgcna/wgcna_analysis.py
index 9ab7950b..0cf4eeaf 100644
--- a/wqflask/wqflask/wgcna/wgcna_analysis.py
+++ b/wqflask/wqflask/wgcna/wgcna_analysis.py
@@ -74,6 +74,7 @@ class WGCNA(object):
# Transfer the load data from python to R
uStrainsR = r_unique(ro.Vector(strains)) # Unique strains in R vector
uTraitsR = r_unique(ro.Vector(traits)) # Unique traits in R vector
+ self.phenotypes = uTraitsR
r_cat("The number of unique strains:", r_length(uStrainsR), "\n")
r_cat("The number of unique traits:", r_length(uTraitsR), "\n")
@@ -93,7 +94,7 @@ class WGCNA(object):
self.results = {}
# Calculate a good soft threshold
powers = r_c(r_c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), r_seq(12, 20, 2))
- sft = self.r_pickSoftThreshold(rM, powerVector = powers, verbose = 5)
+ self.sft = self.r_pickSoftThreshold(rM, powerVector = powers, verbose = 5)
# Create block wise modules using WGCNA
network = self.r_blockwiseModules(rM, power = 6, verbose = 3)
@@ -125,6 +126,8 @@ class WGCNA(object):
print("Processing WGCNA output")
template_vars = {}
template_vars["input"] = self.input
+ template_vars["phenotypes"] = self.phenotypes
+ template_vars["powers"] = self.sft[1:] # Results from the soft threshold analysis
template_vars["results"] = self.results
self.render_image(results)
sys.stdout.flush()