aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/correlation/rust_correlation.py51
1 files changed, 44 insertions, 7 deletions
diff --git a/wqflask/wqflask/correlation/rust_correlation.py b/wqflask/wqflask/correlation/rust_correlation.py
index 161215c5..8431f179 100644
--- a/wqflask/wqflask/correlation/rust_correlation.py
+++ b/wqflask/wqflask/correlation/rust_correlation.py
@@ -11,8 +11,6 @@ from gn3.computations.rust_correlation import parse_tissue_corr_data
from gn3.db_utils import database_connector
-
-
def compute_top_n_lit(corr_results, this_dataset, this_trait):
(this_trait_geneid, geneid_dict, species) = do_lit_correlation(
this_trait, this_dataset)
@@ -31,9 +29,10 @@ def compute_top_n_lit(corr_results, this_dataset, this_trait):
return correlation_results
-
def compute_top_n_tissue(this_dataset, this_trait, traits, method):
+ # refactor lots of rpt
+
trait_symbol_dict = dict({trait_name: symbol for (
trait_name, symbol) in this_dataset.retrieve_genes("Symbol").items() if traits.get(trait_name)})
@@ -48,11 +47,32 @@ def compute_top_n_tissue(this_dataset, this_trait, traits, method):
if data:
return run_correlation(
- data[1], data[0], method, ",","tissue")
+ data[1], data[0], method, ",", "tissue")
return {}
+def merge_results(dict_a, dict_b, dict_c):
+ """code to merge diff corr into individual dicts
+ a"""
+
+ correlation_results = []
+
+ for (key, val) in dict_a.items():
+
+ if key in dict_b:
+
+ dict_a[key].update(dict_b[key])
+
+ if key in dict_c:
+
+ dict_a[key].update(dict_c[key])
+
+ correlation_results.append({key: dict_a[key]})
+
+ return correlation_results
+
+
def compute_correlation_rust(start_vars: dict, corr_type: str,
method: str = "pearson", n_top: int = 500):
"""function to compute correlation"""
@@ -75,10 +95,27 @@ def compute_correlation_rust(start_vars: dict, corr_type: str,
r = ",".join(lts)
target_data.append(r)
- results = run_correlation(target_data, ",".join(
- [str(x) for x in list(sample_data.values())]), method, ",")
+ results = run_correlation(target_data,
+ list(sample_data.values()),
+ method,
+ ",",
+ corr_type,
+ n_top)
+
+ # example compute of compute both correlation
+
+
+
+ top_tissue_results = compute_top_n_tissue(this_dataset,this_trait,results,method)
+
+
+ top_lit_results = compute_top_n_lit(results,this_dataset,this_trait)
+
+
+ # merging the results
+ results = merge_results(results,top_tissue_results,top_lit_results)
if corr_type == "tissue":
@@ -95,7 +132,7 @@ def compute_correlation_rust(start_vars: dict, corr_type: str,
if data:
results = run_correlation(
- data[1], data[0], method, ",","tissue")
+ data[1], data[0], method, ",", "tissue")
return {"correlation_results": results,
"this_trait": this_trait.name,