aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rwxr-xr-xwqflask/base/data_set.py20
-rw-r--r--wqflask/maintenance/quick_search_table.py4
-rw-r--r--wqflask/wqflask/interval_mapping/interval_mapping.py53
3 files changed, 67 insertions, 10 deletions
diff --git a/wqflask/base/data_set.py b/wqflask/base/data_set.py
index 96e04df0..befbd518 100755
--- a/wqflask/base/data_set.py
+++ b/wqflask/base/data_set.py
@@ -168,13 +168,13 @@ class Markers(object):
for marker, p_value in itertools.izip(self.markers, p_values):
marker['p_value'] = p_value
- if marker['p_value'] == 0:
- marker['lod_score'] = 0
- marker['lrs_value'] = 0
- else:
- marker['lod_score'] = -math.log10(marker['p_value'])
- #Using -log(p) for the LRS; need to ask Rob how he wants to get LRS from p-values
- marker['lrs_value'] = -math.log10(marker['p_value']) * 4.61
+ if math.isnan(marker['p_value']):
+ print("p_value is:", marker['p_value'])
+ marker['lod_score'] = -math.log10(marker['p_value'])
+ #Using -log(p) for the LRS; need to ask Rob how he wants to get LRS from p-values
+ marker['lrs_value'] = -math.log10(marker['p_value']) * 4.61
+
+
class HumanMarkers(Markers):
@@ -189,6 +189,8 @@ class HumanMarkers(Markers):
marker['name'] = splat[1]
marker['Mb'] = float(splat[3]) / 1000000
self.markers.append(marker)
+
+ #print("markers is: ", pf(self.markers))
def add_pvalues(self, p_values):
@@ -315,10 +317,10 @@ class DatasetGroup(object):
#determine default genotype object
if self.incparentsf1 and genotype_1.type != "intercross":
- genotype = genotype_2
+ self.genotype = genotype_2
else:
self.incparentsf1 = 0
- genotype = genotype_1
+ self.genotype = genotype_1
self.samplelist = list(genotype.prgy)
diff --git a/wqflask/maintenance/quick_search_table.py b/wqflask/maintenance/quick_search_table.py
index 9cd792ef..23bd505c 100644
--- a/wqflask/maintenance/quick_search_table.py
+++ b/wqflask/maintenance/quick_search_table.py
@@ -11,8 +11,10 @@ each trait, its dataset, and several columns determined by its trait type (pheno
"""
-from __future__ import print_function, division, absolute_import
+from __future__ import absolute_import, division, print_function
+# We do this here so we can use zach_settings
+# Not to avoid other absoulte_imports
import sys
sys.path.append("../../..")
diff --git a/wqflask/wqflask/interval_mapping/interval_mapping.py b/wqflask/wqflask/interval_mapping/interval_mapping.py
index 48e8018e..5d660224 100644
--- a/wqflask/wqflask/interval_mapping/interval_mapping.py
+++ b/wqflask/wqflask/interval_mapping/interval_mapping.py
@@ -12,6 +12,7 @@ import collections
import numpy as np
from scipy import linalg
+import rpy2.robjects
import simplejson as json
@@ -83,6 +84,28 @@ class IntervalMapping(object):
"""Generates qtl results for plotting interval map"""
self.dataset.group.get_markers()
+ self.dataset.read_genotype_file()
+
+ samples, values, variances = self.trait.export_informative()
+ if self.control_locus:
+ if self.weighted_regression:
+ qtl_result = self.dataset.genotype.regression(strains = samples,
+ trait = values,
+ variance = variances,
+ control = self.control_locus)
+ else:
+ qtl_result = self.dataset.genotype.regression(strains = samples,
+ trait = values,
+ control = self.control_locus)
+ else:
+ if self.weighted_regression:
+ qtl_result = self.dataset.genotype.regression(strains = samples,
+ trait = values,
+ variance = variances)
+ else:
+ qtl_result = self.dataset.genotype.regression(strains = samples,
+ trait = values)
+
pheno_vector = np.array([val == "x" and np.nan or float(val) for val in self.vals])
@@ -108,6 +131,36 @@ class IntervalMapping(object):
self.qtl_results = self.dataset.group.markers.markers
+ #def gen_qtl_results_2(self, tempdata):
+ # """Generates qtl results for plotting interval map"""
+ #
+ # self.dataset.group.get_markers()
+ # self.dataset.read_genotype_file()
+ #
+ # pheno_vector = np.array([val == "x" and np.nan or float(val) for val in self.vals])
+ #
+ # #if self.dataset.group.species == "human":
+ # # p_values, t_stats = self.gen_human_results(pheno_vector, tempdata)
+ # #else:
+ # genotype_data = [marker['genotypes'] for marker in self.dataset.group.markers.markers]
+ #
+ # no_val_samples = self.identify_empty_samples()
+ # trimmed_genotype_data = self.trim_genotypes(genotype_data, no_val_samples)
+ #
+ # genotype_matrix = np.array(trimmed_genotype_data).T
+ #
+ # t_stats, p_values = lmm.run(
+ # pheno_vector,
+ # genotype_matrix,
+ # restricted_max_likelihood=True,
+ # refit=False,
+ # temp_data=tempdata
+ # )
+ #
+ # self.dataset.group.markers.add_pvalues(p_values)
+ #
+ # self.qtl_results = self.dataset.group.markers.markers
+
def identify_empty_samples(self):
no_val_samples = []