aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/correlation/show_corr_results.py30
-rw-r--r--wqflask/wqflask/correlation_matrix/show_corr_matrix.py124
-rw-r--r--wqflask/wqflask/templates/show_trait_calculate_correlations.html2
3 files changed, 79 insertions, 77 deletions
diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py
index 2f3df67a..f1cf3733 100644
--- a/wqflask/wqflask/correlation/show_corr_results.py
+++ b/wqflask/wqflask/correlation/show_corr_results.py
@@ -22,7 +22,7 @@ import collections
import json
import scipy
import numpy
-# import rpy2.robjects as ro # R Objects
+import rpy2.robjects as ro # R Objects
import utility.logger
import utility.webqtlUtil
@@ -459,9 +459,9 @@ class CorrelationResults:
if num_overlap > 5:
# ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/
- # if self.corr_method == 'bicor':
- # sample_r, sample_p = do_bicor(
- # self.this_trait_vals, target_vals)
+ if self.corr_method == 'bicor':
+ sample_r, sample_p = do_bicor(
+ self.this_trait_vals, target_vals)
if self.corr_method == 'pearson':
sample_r, sample_p = scipy.stats.pearsonr(
self.this_trait_vals, target_vals)
@@ -487,22 +487,22 @@ class CorrelationResults:
self.sample_data[str(sample)] = float(value)
-# def do_bicor(this_trait_vals, target_trait_vals):
-# r_library = ro.r["library"] # Map the library function
-# r_options = ro.r["options"] # Map the options function
+def do_bicor(this_trait_vals, target_trait_vals):
+ r_library = ro.r["library"] # Map the library function
+ r_options = ro.r["options"] # Map the options function
-# r_library("WGCNA")
-# r_bicor = ro.r["bicorAndPvalue"] # Map the bicorAndPvalue function
+ r_library("WGCNA")
+ r_bicor = ro.r["bicorAndPvalue"] # Map the bicorAndPvalue function
-# r_options(stringsAsFactors=False)
+ r_options(stringsAsFactors=False)
-# this_vals = ro.Vector(this_trait_vals)
-# target_vals = ro.Vector(target_trait_vals)
+ this_vals = ro.FloatVector(this_trait_vals)
+ target_vals = ro.FloatVector(target_trait_vals)
-# the_r, the_p, _fisher_transform, _the_t, _n_obs = [
-# numpy.asarray(x) for x in r_bicor(x=this_vals, y=target_vals)]
+ the_r, the_p, _fisher_transform, _the_t, _n_obs = [
+ numpy.asarray(x) for x in r_bicor(x=this_vals, y=target_vals)]
-# return the_r, the_p
+ return the_r, the_p
def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api=False):
diff --git a/wqflask/wqflask/correlation_matrix/show_corr_matrix.py b/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
index 9ac02ac5..e7b16e77 100644
--- a/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
+++ b/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
@@ -23,6 +23,9 @@ import math
import random
import string
+import rpy2.robjects as ro
+from rpy2.robjects.packages import importr
+
import numpy as np
import scipy
@@ -160,23 +163,22 @@ class CorrelationMatrix:
for sample in self.all_sample_list:
groups.append(1)
- # Not doing PCA until rpy2 is excised
self.pca_works = "False"
- # try:
- # corr_result_eigen = np.linalg.eig(np.array(self.pca_corr_results))
- # corr_eigen_value, corr_eigen_vectors = sortEigenVectors(
- # corr_result_eigen)
-
- # if self.do_PCA == True:
- # self.pca_works = "True"
- # self.pca_trait_ids = []
- # pca = self.calculate_pca(
- # list(range(len(self.traits))), corr_eigen_value, corr_eigen_vectors)
- # self.loadings_array = self.process_loadings()
- # else:
- # self.pca_works = "False"
- # except:
- # self.pca_works = "False"
+ try:
+ corr_result_eigen = np.linalg.eig(np.array(self.pca_corr_results))
+ corr_eigen_value, corr_eigen_vectors = sortEigenVectors(
+ corr_result_eigen)
+
+ if self.do_PCA == True:
+ self.pca_works = "True"
+ self.pca_trait_ids = []
+ pca = self.calculate_pca(
+ list(range(len(self.traits))), corr_eigen_value, corr_eigen_vectors)
+ self.loadings_array = self.process_loadings()
+ else:
+ self.pca_works = "False"
+ except:
+ self.pca_works = "False"
self.js_data = dict(traits=[trait.name for trait in self.traits],
groups=groups,
@@ -185,51 +187,51 @@ class CorrelationMatrix:
samples=self.all_sample_list,
sample_data=self.sample_data,)
- # def calculate_pca(self, cols, corr_eigen_value, corr_eigen_vectors):
- # base = importr('base')
- # stats = importr('stats')
-
- # corr_results_to_list = robjects.FloatVector(
- # [item for sublist in self.pca_corr_results for item in sublist])
-
- # m = robjects.r.matrix(corr_results_to_list, nrow=len(cols))
- # eigen = base.eigen(m)
- # pca = stats.princomp(m, cor="TRUE")
- # self.loadings = pca.rx('loadings')
- # self.scores = pca.rx('scores')
- # self.scale = pca.rx('scale')
-
- # trait_array = zScore(self.trait_data_array)
- # trait_array_vectors = np.dot(corr_eigen_vectors, trait_array)
-
- # pca_traits = []
- # for i, vector in enumerate(trait_array_vectors):
- # # ZS: Check if below check is necessary
- # # if corr_eigen_value[i-1] > 100.0/len(self.trait_list):
- # pca_traits.append((vector * -1.0).tolist())
-
- # this_group_name = self.trait_list[0][1].group.name
- # temp_dataset = data_set.create_dataset(
- # dataset_name="Temp", dataset_type="Temp", group_name=this_group_name)
- # temp_dataset.group.get_samplelist()
- # for i, pca_trait in enumerate(pca_traits):
- # trait_id = "PCA" + str(i + 1) + "_" + temp_dataset.group.species + "_" + \
- # this_group_name + "_" + datetime.datetime.now().strftime("%m%d%H%M%S")
- # this_vals_string = ""
- # position = 0
- # for sample in temp_dataset.group.all_samples_ordered():
- # if sample in self.shared_samples_list:
- # this_vals_string += str(pca_trait[position])
- # this_vals_string += " "
- # position += 1
- # else:
- # this_vals_string += "x "
- # this_vals_string = this_vals_string[:-1]
-
- # Redis.set(trait_id, this_vals_string, ex=THIRTY_DAYS)
- # self.pca_trait_ids.append(trait_id)
-
- # return pca
+ def calculate_pca(self, cols, corr_eigen_value, corr_eigen_vectors):
+ base = importr('base')
+ stats = importr('stats')
+
+ corr_results_to_list = ro.FloatVector(
+ [item for sublist in self.pca_corr_results for item in sublist])
+
+ m = ro.r.matrix(corr_results_to_list, nrow=len(cols))
+ eigen = base.eigen(m)
+ pca = stats.princomp(m, cor="TRUE")
+ self.loadings = pca.rx('loadings')
+ self.scores = pca.rx('scores')
+ self.scale = pca.rx('scale')
+
+ trait_array = zScore(self.trait_data_array)
+ trait_array_vectors = np.dot(corr_eigen_vectors, trait_array)
+
+ pca_traits = []
+ for i, vector in enumerate(trait_array_vectors):
+ # ZS: Check if below check is necessary
+ # if corr_eigen_value[i-1] > 100.0/len(self.trait_list):
+ pca_traits.append((vector * -1.0).tolist())
+
+ this_group_name = self.trait_list[0][1].group.name
+ temp_dataset = data_set.create_dataset(
+ dataset_name="Temp", dataset_type="Temp", group_name=this_group_name)
+ temp_dataset.group.get_samplelist()
+ for i, pca_trait in enumerate(pca_traits):
+ trait_id = "PCA" + str(i + 1) + "_" + temp_dataset.group.species + "_" + \
+ this_group_name + "_" + datetime.datetime.now().strftime("%m%d%H%M%S")
+ this_vals_string = ""
+ position = 0
+ for sample in temp_dataset.group.all_samples_ordered():
+ if sample in self.shared_samples_list:
+ this_vals_string += str(pca_trait[position])
+ this_vals_string += " "
+ position += 1
+ else:
+ this_vals_string += "x "
+ this_vals_string = this_vals_string[:-1]
+
+ Redis.set(trait_id, this_vals_string, ex=THIRTY_DAYS)
+ self.pca_trait_ids.append(trait_id)
+
+ return pca
def process_loadings(self):
loadings_array = []
diff --git a/wqflask/wqflask/templates/show_trait_calculate_correlations.html b/wqflask/wqflask/templates/show_trait_calculate_correlations.html
index e623a968..59f9b47c 100644
--- a/wqflask/wqflask/templates/show_trait_calculate_correlations.html
+++ b/wqflask/wqflask/templates/show_trait_calculate_correlations.html
@@ -70,7 +70,7 @@
<select name="corr_sample_method" class="form-control">
<option value="pearson">Pearson</option>
<option value="spearman">Spearman Rank</option>
- <!-- <option value="bicor">Biweight Midcorrelation</option> -->
+ <option value="bicor">Biweight Midcorrelation</option>
</select>
</div>
</div>