diff options
Diffstat (limited to 'wqflask')
-rw-r--r-- | wqflask/wqflask/wgcna/wgcna_analysis.py | 50 |
1 files changed, 40 insertions, 10 deletions
diff --git a/wqflask/wqflask/wgcna/wgcna_analysis.py b/wqflask/wqflask/wgcna/wgcna_analysis.py index 84cdc241..5316fcd4 100644 --- a/wqflask/wqflask/wgcna/wgcna_analysis.py +++ b/wqflask/wqflask/wgcna/wgcna_analysis.py @@ -1,9 +1,10 @@ # WGCNA analysis for GN2 # Author / Maintainer: Danny Arends <Danny.Arends@gmail.com> - +import sys from numpy import * import scipy as sp # SciPy import rpy2.robjects as ro # R Objects +import rpy2.rinterface as ri from utility import helper_functions @@ -16,6 +17,13 @@ r_options = ro.r["options"] # Map the options function r_read_csv = ro.r["read.csv"] # Map the read.csv function r_dim = ro.r["dim"] # Map the dim function r_c = ro.r["c"] # Map the c function +r_cat = ro.r["cat"] # Map the cat function +r_paste = ro.r["paste"] # Map the paste function +r_unlist = ro.r["unlist"] # Map the unlist function +r_unique = ro.r["unique"] # Map the unique function +r_length = ro.r["length"] # Map the length function +r_matrix = ro.r["matrix"] # Map the matrix function +r_list = ro.r["list"] # Map the list function r_seq = ro.r["seq"] # Map the seq function r_table = ro.r["table"] # Map the table function r_names = ro.r["names"] # Map the names function @@ -46,25 +54,47 @@ class WGCNA(object): self.trait_db_list = [trait.strip() for trait in requestform['trait_list'].split(',')] print("Retrieved phenotype data from database", requestform['trait_list']) helper_functions.get_trait_db_obs(self, self.trait_db_list) - self.results = {} - for t in self.trait_list: - strains = [] - for s in t[0].data: - strains.append(s) - self.results[t] = strains - print("Retrieved phenotype data from database") + self.input = {} # self.input contains the phenotype values we need to send to R + strains = [] # All the strains we have data for (contains duplicates) + traits = [] # All the traits we have data for (should not contain duplicates) + for trait in self.trait_list: + traits.append(trait[0].name) + self.input[trait[0].name] = {} + for strain in trait[0].data: + strains.append(strain) + self.input[trait[0].name][strain] = trait[0].data[strain].value + + # Transfer the load data from python to R + uStrainsR = r_unique(ro.Vector(strains)) # Unique strains in R vector + uTraitsR = r_unique(ro.Vector(traits)) # Unique traits in R vector + + r_cat("The number of unique strains:", r_length(uStrainsR), "\n") + r_cat("The number of unique traits:", r_length(uTraitsR), "\n") + + # rM is the datamatrix holding all the data in R /rows = strains columns = traits + rM = ro.r.matrix(ri.NA_Real, nrow=r_length(uStrainsR), ncol=r_length(uTraitsR), dimnames = r_list(uStrainsR, uTraitsR)) + for t in uTraitsR: + trait = t[0] # R uses vectors every single element is a vector + for s in uStrainsR: + strain = s[0] # R uses vectors every single element is a vector + rM.rx[strain, trait] = self.input[trait].get(strain) # Update the matrix location + print(trait, strain, " in python: ", self.input[trait].get(strain), "in R:", rM.rx(strain,trait)[0]) + sys.stdout.flush() + # TODO: - # Load data into R + self.results = {} # Calculate a good soft threshold # Create block wise modules using WGCNA # How many modules and how many gene per module ? # Show the iconic WCGNA plot of the modules in the hanging tree + sys.stdout.flush() def process_results(self, results): print("Processing WGCNA output") template_vars = {} - template_vars["result"] = self.results + template_vars["input"] = self.input + template_vars["results"] = self.results #r_sink(type = "message") # This restores R output to the stdout/stderr #r_sink() # We should end the Rpy session more or less return(dict(template_vars)) |