aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/marker_regression/marker_regression_old.py576
1 files changed, 0 insertions, 576 deletions
diff --git a/wqflask/wqflask/marker_regression/marker_regression_old.py b/wqflask/wqflask/marker_regression/marker_regression_old.py
deleted file mode 100644
index 36331250..00000000
--- a/wqflask/wqflask/marker_regression/marker_regression_old.py
+++ /dev/null
@@ -1,576 +0,0 @@
-from __future__ import absolute_import, print_function, division
-
-from base.trait import GeneralTrait
-from base import data_set #import create_dataset
-
-from pprint import pformat as pf
-
-import string
-import sys
-import datetime
-import os
-import collections
-import uuid
-
-import numpy as np
-from scipy import linalg
-
-import cPickle as pickle
-
-import simplejson as json
-
-from redis import Redis
-Redis = Redis()
-
-from flask import Flask, g
-
-from base.trait import GeneralTrait
-from base import data_set
-from base import species
-from base import webqtlConfig
-from utility import webqtlUtil
-from wqflask.my_pylmm.data import prep_data
-from wqflask.my_pylmm.pyLMM import lmm
-from wqflask.my_pylmm.pyLMM import input
-from utility import helper_functions
-from utility import Plot, Bunch
-from utility import temp_data
-
-from utility.benchmark import Bench
-
-
-class MarkerRegression(object):
-
- def __init__(self, start_vars, temp_uuid):
-
- helper_functions.get_species_dataset_trait(self, start_vars)
-
- #tempdata = temp_data.TempData(temp_uuid)
-
- self.samples = [] # Want only ones with values
- self.vals = []
-
- for sample in self.dataset.group.samplelist:
- value = start_vars['value:' + sample]
- self.samples.append(str(sample))
- self.vals.append(value)
-
- self.mapping_method = start_vars['method']
- self.maf = start_vars['maf'] # Minor allele frequency
- print("self.maf:", self.maf)
-
- self.dataset.group.get_markers()
- if self.mapping_method == "gemma":
- qtl_results = self.run_gemma()
- elif self.mapping_method == "plink":
- qtl_results = self.run_plink()
- #print("qtl_results:", pf(qtl_results))
- elif self.mapping_method == "pylmm":
- print("RUNNING PYLMM")
- #self.qtl_results = self.gen_data(tempdata)
- qtl_results = self.gen_data(str(temp_uuid))
- else:
- print("RUNNING NOTHING")
-
- self.lod_cutoff = 2
- self.filtered_markers = []
- for marker in qtl_results:
- if marker['chr'] > 0:
- self.filtered_markers.append(marker)
-
- #Get chromosome lengths for drawing the manhattan plot
- chromosome_mb_lengths = {}
- for key in self.species.chromosomes.chromosomes.keys():
- chromosome_mb_lengths[key] = self.species.chromosomes.chromosomes[key].mb_length
-
- self.js_data = dict(
- this_trait = self.this_trait.name,
- data_set = self.dataset.name,
- maf = self.maf,
- chromosomes = chromosome_mb_lengths,
- qtl_results = self.filtered_markers,
- )
-
- def run_gemma(self):
- """Generates p-values for each marker using GEMMA"""
-
- #filename = webqtlUtil.genRandStr("{}_{}_".format(self.dataset.group.name, self.this_trait.name))
- self.gen_pheno_txt_file()
-
- os.chdir("/home/zas1024/gene/web/gemma")
-
- gemma_command = './gemma -bfile %s -k output_%s.cXX.txt -lmm 1 -o %s_output' % (
- self.dataset.group.name,
- self.dataset.group.name,
- self.dataset.group.name)
- print("gemma_command:" + gemma_command)
-
- os.system(gemma_command)
-
- included_markers, p_values = self.parse_gemma_output()
-
- self.dataset.group.get_specified_markers(markers = included_markers)
-
- #for marker in self.dataset.group.markers.markers:
- # if marker['name'] not in included_markers:
- # print("marker:", marker)
- # self.dataset.group.markers.markers.remove(marker)
- # #del self.dataset.group.markers.markers[marker]
-
- self.dataset.group.markers.add_pvalues(p_values)
-
- return self.dataset.group.markers.markers
-
-
- def parse_gemma_output(self):
- included_markers = []
- p_values = []
- with open("/home/zas1024/gene/web/gemma/output/{}_output.assoc.txt".format(self.dataset.group.name)) as output_file:
- for line in output_file:
- if line.startswith("chr"):
- continue
- else:
- included_markers.append(line.split("\t")[1])
- p_values.append(float(line.split("\t")[10]))
- #p_values[line.split("\t")[1]] = float(line.split("\t")[10])
- print("p_values: ", p_values)
- return included_markers, p_values
-
- def gen_pheno_txt_file(self):
- """Generates phenotype file for GEMMA"""
-
- #with open("/home/zas1024/gene/web/gemma/tmp_pheno/{}.txt".format(filename), "w") as outfile:
- # for sample, i in enumerate(self.samples):
- # print("sample:" + str(i))
- # print("self.vals[i]:" + str(self.vals[sample]))
- # outfile.write(str(i) + "\t" + str(self.vals[sample]) + "\n")
-
- with open("/home/zas1024/gene/web/gemma/{}.fam".format(self.dataset.group.name), "w") as outfile:
- for i, sample in enumerate(self.samples):
- outfile.write(str(sample) + " " + str(sample) + " 0 0 0 " + str(self.vals[i]) + "\n")
-
- #def gen_plink_for_gemma(self, filename):
- #
- # make_bed = "/home/zas1024/plink/plink --file /home/zas1024/plink/%s --noweb --no-fid --no-parents --no-sex --no-pheno --pheno %s%s.txt --out %s%s --make-bed" % (webqtlConfig.HTMLPATH,
- # webqtlConfig.HTMLPATH,
- # self.dataset.group.name,
- # webqtlConfig.TMPDIR,
- # filename,
- # webqtlConfig.TMPDIR,
- # filename)
- #
- #
-
- def run_plink(self):
-
- os.chdir("/home/zas1024/plink")
-
- plink_output_filename = webqtlUtil.genRandStr("%s_%s_"%(self.dataset.group.name, self.this_trait.name))
-
- self.gen_pheno_txt_file_plink(pheno_filename = plink_output_filename)
-
- plink_command = './plink --noweb --ped %s.ped --no-fid --no-parents --no-sex --no-pheno --map %s.map --pheno %s/%s.txt --pheno-name %s --maf %s --missing-phenotype -9999 --out %s%s --assoc ' % (self.dataset.group.name, self.dataset.group.name, webqtlConfig.TMPDIR, plink_output_filename, self.this_trait.name, self.maf, webqtlConfig.TMPDIR, plink_output_filename)
-
- os.system(plink_command)
-
- count, p_values = self.parse_plink_output(plink_output_filename)
- #gemma_command = './gemma -bfile %s -k output_%s.cXX.txt -lmm 1 -o %s_output' % (
- # self.dataset.group.name,
- # self.dataset.group.name,
- # self.dataset.group.name)
- #print("gemma_command:" + gemma_command)
- #
- #os.system(gemma_command)
- #
- #included_markers, p_values = self.parse_gemma_output()
- #
- #self.dataset.group.get_specified_markers(markers = included_markers)
-
- #for marker in self.dataset.group.markers.markers:
- # if marker['name'] not in included_markers:
- # print("marker:", marker)
- # self.dataset.group.markers.markers.remove(marker)
- # #del self.dataset.group.markers.markers[marker]
-
- print("p_values:", pf(p_values))
-
- self.dataset.group.markers.add_pvalues(p_values)
-
- return self.dataset.group.markers.markers
-
-
- def gen_pheno_txt_file_plink(self, pheno_filename = ''):
- ped_sample_list = self.get_samples_from_ped_file()
- output_file = open("%s%s.txt" % (webqtlConfig.TMPDIR, pheno_filename), "wb")
- header = 'FID\tIID\t%s\n' % self.this_trait.name
- output_file.write(header)
-
- new_value_list = []
-
- #if valueDict does not include some strain, value will be set to -9999 as missing value
- for i, sample in enumerate(ped_sample_list):
- try:
- value = self.vals[i]
- value = str(value).replace('value=','')
- value = value.strip()
- except:
- value = -9999
-
- new_value_list.append(value)
-
-
- new_line = ''
- for i, sample in enumerate(ped_sample_list):
- j = i+1
- value = new_value_list[i]
- new_line += '%s\t%s\t%s\n'%(sample, sample, value)
-
- if j%1000 == 0:
- output_file.write(newLine)
- new_line = ''
-
- if new_line:
- output_file.write(new_line)
-
- output_file.close()
-
- # get strain name from ped file in order
- def get_samples_from_ped_file(self):
-
- os.chdir("/home/zas1024/plink")
-
- ped_file= open("{}.ped".format(self.dataset.group.name),"r")
- line = ped_file.readline()
- sample_list=[]
-
- while line:
- lineList = string.split(string.strip(line), '\t')
- lineList = map(string.strip, lineList)
-
- sample_name = lineList[0]
- sample_list.append(sample_name)
-
- line = ped_file.readline()
-
- return sample_list
-
- ################################################################
- # Generate Chr list, Chr OrderId and Retrieve Length Information
- ################################################################
- #def getChrNameOrderIdLength(self,RISet=''):
- # try:
- # query = """
- # Select
- # Chr_Length.Name,Chr_Length.OrderId,Length from Chr_Length, InbredSet
- # where
- # Chr_Length.SpeciesId = InbredSet.SpeciesId AND
- # InbredSet.Name = '%s'
- # Order by OrderId
- # """ % (self.dataset.group.name)
- # results =g.db.execute(query).fetchall()
- # ChrList=[]
- # ChrLengthMbList=[]
- # ChrNameOrderIdDict={}
- # ChrOrderIdNameDict={}
- #
- # for item in results:
- # ChrList.append(item[0])
- # ChrNameOrderIdDict[item[0]]=item[1] # key is chr name, value is orderId
- # ChrOrderIdNameDict[item[1]]=item[0] # key is orderId, value is chr name
- # ChrLengthMbList.append(item[2])
- #
- # except:
- # ChrList=[]
- # ChrNameOrderIdDict={}
- # ChrLengthMbList=[]
- #
- # return ChrList,ChrNameOrderIdDict,ChrOrderIdNameDict,ChrLengthMbList
-
-
- def parse_plink_output(self, output_filename):
- plink_results={}
-
- threshold_p_value = 0.01
-
- result_fp = open("%s%s.qassoc"% (webqtlConfig.TMPDIR, output_filename), "rb")
-
- header_line = result_fp.readline()# read header line
- line = result_fp.readline()
-
- value_list = [] # initialize value list, this list will include snp, bp and pvalue info
- p_value_dict = {}
- count = 0
-
- while line:
- #convert line from str to list
- line_list = self.build_line_list(line=line)
-
- # only keep the records whose chromosome name is in db
- if self.species.chromosomes.chromosomes.has_key(int(line_list[0])) and line_list[-1] and line_list[-1].strip()!='NA':
-
- chr_name = self.species.chromosomes.chromosomes[int(line_list[0])]
- snp = line_list[1]
- BP = line_list[2]
- p_value = float(line_list[-1])
- if threshold_p_value >= 0 and threshold_p_value <= 1:
- if p_value < threshold_p_value:
- p_value_dict[snp] = p_value
-
- if plink_results.has_key(chr_name):
- value_list = plink_results[chr_name]
-
- # pvalue range is [0,1]
- if threshold_p_value >=0 and threshold_p_value <= 1:
- if p_value < threshold_p_value:
- value_list.append((snp, BP, p_value))
- count += 1
-
- plink_results[chr_name] = value_list
- value_list = []
- else:
- if threshold_p_value >= 0 and threshold_p_value <= 1:
- if p_value < threshold_p_value:
- value_list.append((snp, BP, p_value))
- count += 1
-
- if value_list:
- plink_results[chr_name] = value_list
-
- value_list=[]
-
- line = result_fp.readline()
- else:
- line = result_fp.readline()
-
- #if p_value_list:
- # min_p_value = min(p_value_list)
- #else:
- # min_p_value = 0
-
- return count, p_value_dict
-
- ######################################################
- # input: line: str,one line read from file
- # function: convert line from str to list;
- # output: lineList list
- #######################################################
- def build_line_list(self, line=None):
-
- line_list = string.split(string.strip(line),' ')# irregular number of whitespaces between columns
- line_list = [item for item in line_list if item <>'']
- line_list = map(string.strip, line_list)
-
- return line_list
-
- #def gen_data(self, tempdata):
- def gen_data(self, temp_uuid):
- """Generates p-values for each marker"""
-
- pheno_vector = np.array([val == "x" and np.nan or float(val) for val in self.vals])
-
- #lmm_uuid = str(uuid.uuid4())
-
- key = "pylmm:input:" + temp_uuid
- print("key is:", pf(key))
- #with Bench("Loading cache"):
- # result = Redis.get(key)
-
- if self.dataset.group.species == "human":
- p_values, t_stats = self.gen_human_results(pheno_vector, key, temp_uuid)
- #p_values = self.trim_results(p_values)
-
- else:
- print("NOW CWD IS:", os.getcwd())
- genotype_data = [marker['genotypes'] for marker in self.dataset.group.markers.markers]
-
- no_val_samples = self.identify_empty_samples()
- trimmed_genotype_data = self.trim_genotypes(genotype_data, no_val_samples)
-
- genotype_matrix = np.array(trimmed_genotype_data).T
-
- #print("pheno_vector: ", pf(pheno_vector))
- #print("genotype_matrix: ", pf(genotype_matrix))
- #print("genotype_matrix.shape: ", pf(genotype_matrix.shape))
-
- #params = {"pheno_vector": pheno_vector,
- # "genotype_matrix": genotype_matrix,
- # "restricted_max_likelihood": True,
- # "refit": False,
- # "temp_data": tempdata}
-
- params = dict(pheno_vector = pheno_vector.tolist(),
- genotype_matrix = genotype_matrix.tolist(),
- restricted_max_likelihood = True,
- refit = False,
- temp_uuid = temp_uuid,
-
- # meta data
- timestamp = datetime.datetime.now().isoformat(),
- )
-
- json_params = json.dumps(params)
- #print("json_params:", json_params)
- Redis.set(key, json_params)
- Redis.expire(key, 60*60)
- print("before printing command")
-
- command = 'python /home/zas1024/gene/wqflask/wqflask/my_pylmm/pyLMM/lmm.py --key {} --species {}'.format(key,
- "other")
- print("command is:", command)
- print("after printing command")
-
- os.system(command)
-
- #t_stats, p_values = lmm.run(key)
- #lmm.run(key)
-
- json_results = Redis.blpop("pylmm:results:" + temp_uuid, 45*60)
- results = json.loads(json_results[1])
- p_values = [float(result) for result in results['p_values']]
- print("p_values:", p_values)
- #p_values = self.trim_results(p_values)
- t_stats = results['t_stats']
-
- #t_stats, p_values = lmm.run(
- # pheno_vector,
- # genotype_matrix,
- # restricted_max_likelihood=True,
- # refit=False,
- # temp_data=tempdata
- #)
- #print("p_values:", p_values)
-
- self.dataset.group.markers.add_pvalues(p_values)
-
- #self.get_lod_score_cutoff()
-
- return self.dataset.group.markers.markers
-
- def trim_results(self, p_values):
- print("len_p_values:", len(p_values))
- if len(p_values) > 500:
- p_values.sort(reverse=True)
- trimmed_values = p_values[:500]
-
- return trimmed_values
-
- #def gen_human_results(self, pheno_vector, tempdata):
- def gen_human_results(self, pheno_vector, key, temp_uuid):
- file_base = os.path.join(webqtlConfig.PYLMM_PATH, self.dataset.group.name)
-
- plink_input = input.plink(file_base, type='b')
- input_file_name = os.path.join(webqtlConfig.SNP_PATH, self.dataset.group.name + ".snps.gz")
-
- pheno_vector = pheno_vector.reshape((len(pheno_vector), 1))
- covariate_matrix = np.ones((pheno_vector.shape[0],1))
- kinship_matrix = np.fromfile(open(file_base + '.kin','r'),sep=" ")
- kinship_matrix.resize((len(plink_input.indivs),len(plink_input.indivs)))
-
- print("Before creating params")
-
- params = dict(pheno_vector = pheno_vector.tolist(),
- covariate_matrix = covariate_matrix.tolist(),
- input_file_name = input_file_name,
- kinship_matrix = kinship_matrix.tolist(),
- refit = False,
- temp_uuid = temp_uuid,
-
- # meta data
- timestamp = datetime.datetime.now().isoformat(),
- )
-
- print("After creating params")
-
- json_params = json.dumps(params)
- Redis.set(key, json_params)
- Redis.expire(key, 60*60)
-
- print("Before creating the command")
-
- command = 'python /home/zas1024/gene/wqflask/wqflask/my_pylmm/pyLMM/lmm.py --key {} --species {}'.format(key,
- "human")
-
- print("command is:", command)
-
- os.system(command)
-
- json_results = Redis.blpop("pylmm:results:" + temp_uuid, 45*60)
- results = json.loads(json_results[1])
- t_stats = results['t_stats']
- p_values = results['p_values']
-
-
- #p_values, t_stats = lmm.run_human(key)
-
- #p_values, t_stats = lmm.run_human(
- # pheno_vector,
- # covariate_matrix,
- # input_file_name,
- # kinship_matrix,
- # loading_progress=tempdata
- # )
-
- return p_values, t_stats
-
- def get_lod_score_cutoff(self):
- print("INSIDE GET LOD CUTOFF")
- high_qtl_count = 0
- for marker in self.dataset.group.markers.markers:
- if marker['lod_score'] > 1:
- high_qtl_count += 1
-
- if high_qtl_count > 1000:
- return 1
- else:
- return 0
-
- def identify_empty_samples(self):
- no_val_samples = []
- for sample_count, val in enumerate(self.vals):
- if val == "x":
- no_val_samples.append(sample_count)
- return no_val_samples
-
- def trim_genotypes(self, genotype_data, no_value_samples):
- trimmed_genotype_data = []
- for marker in genotype_data:
- new_genotypes = []
- for item_count, genotype in enumerate(marker):
- if item_count in no_value_samples:
- continue
- try:
- genotype = float(genotype)
- except ValueError:
- genotype = np.nan
- pass
- new_genotypes.append(genotype)
- trimmed_genotype_data.append(new_genotypes)
- return trimmed_genotype_data
-
-def create_snp_iterator_file(group):
- plink_file_base = os.path.join(webqtlConfig.PYLMM_PATH, group)
- plink_input = input.plink(plink_file_base, type='b')
-
- data = dict(plink_input = list(plink_input),
- numSNPs = plink_input.numSNPs)
-
- #input_dict = {}
- #
- #input_dict['plink_input'] = list(plink_input)
- #input_dict['numSNPs'] = plink_input.numSNPs
- #
-
- snp_file_base = os.path.join(webqtlConfig.SNP_PATH, group + ".snps.gz")
-
- with gzip.open(snp_file_base, "wb") as fh:
- pickle.dump(data, fh, pickle.HIGHEST_PROTOCOL)
-
-#if __name__ == '__main__':
-# import cPickle as pickle
-# import gzip
-# create_snp_iterator_file("HLC")
-
-if __name__ == '__main__':
- import cPickle as pickle
- import gzip
- create_snp_iterator_file("HLC")