aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/correlation/correlation_gn3_api.py131
-rw-r--r--wqflask/wqflask/correlation/show_corr_results.py174
-rw-r--r--wqflask/wqflask/views.py5
3 files changed, 177 insertions, 133 deletions
diff --git a/wqflask/wqflask/correlation/correlation_gn3_api.py b/wqflask/wqflask/correlation/correlation_gn3_api.py
index 4cf6533c..7e269e41 100644
--- a/wqflask/wqflask/correlation/correlation_gn3_api.py
+++ b/wqflask/wqflask/correlation/correlation_gn3_api.py
@@ -1,20 +1,17 @@
"""module that calls the gn3 api's to do the correlation """
-from base import data_set
-from base.trait import create_trait
-from base.trait import retrieve_sample_data
+import json
+import requests
+from wqflask.wqflask.correlation import correlation_functions
+from wqflask.base import data_set
+from wqflask.base.trait import create_trait
+from wqflask.base.trait import retrieve_sample_data
+GN3_CORRELATION_API = "http://127.0.0.1:8080/api/correlation"
-
-
-
-def compute_sample_r(start_vars,target_dataset, trait_data, target_samplelist, method="pearson"):
- import requests
- from wqflask.correlation.correlation_gn3_api import compute_correlation
-
- cor_results = compute_correlation(start_vars)
-
+def compute_sample(target_dataset, trait_data, target_samplelist, method="pearson"):
+ """integration for integrating sample_r api correlation"""
data = {
"target_dataset": target_dataset,
"target_samplelist": target_samplelist,
@@ -29,33 +26,60 @@ def compute_sample_r(start_vars,target_dataset, trait_data, target_samplelist, m
data = results.json()
- print(data)
-
return data
-def process_samples(start_vars,sample_names,excluded_samples=None):
+def get_tissue_correlation_input(this_trait, trait_symbol_dict):
+ """Gets tissue expression values for the primary trait and target tissues values"""
+ primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
+ symbol_list=[this_trait.symbol])
+
+ if this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
+ primary_trait_tissue_values = primary_trait_tissue_vals_dict[this_trait.symbol.lower(
+ )]
+
+ corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
+ symbol_list=list(trait_symbol_dict.values()))
+
+ target_tissue_data = []
+ for trait, symbol in list(trait_symbol_dict.items()):
+ if symbol and symbol.lower() in corr_result_tissue_vals_dict:
+ this_trait_tissue_values = corr_result_tissue_vals_dict[symbol.lower(
+ )]
+
+ this_trait_data = {"trait_id": trait,
+ "tissue_values": this_trait_tissue_values}
+
+ target_tissue_data.append(this_trait_data)
+
+ primary_tissue_data = {
+ "this_id": "TT",
+ "tissue_values": primary_trait_tissue_values
+
+ }
+
+ return (primary_tissue_data, target_tissue_data)
+
+ return None
+
+
+def process_samples(start_vars, sample_names, excluded_samples=None):
+ """process samples method"""
sample_data = {}
if not excluded_samples:
excluded_samples = ()
- sample_vals_dict = json.loads(start_vars["sample_vals"])
+ sample_vals_dict = json.loads(start_vars["sample_vals"])
for sample in sample_names:
if sample not in excluded_samples:
- val = sample_val_dict[sample]
+ val = sample_vals_dict[sample]
if not val.strip().lower() == "x":
- sample_data[str(sample)]=float(value)
+ sample_data[str(sample)] = float(val)
return sample_data
-def create_fetch_dataset_data(dataset_name):
- this_dataset = data_set.create_dataset(dataset_name=dataset_name)
-
- this_dataset.get_trait_data()
-
-
def create_target_this_trait(start_vars):
"""this function prefetch required data for correlation"""
@@ -66,12 +90,61 @@ def create_target_this_trait(start_vars):
this_trait = create_trait(dataset=this_dataset,
name=start_vars['trait_id'])
+ sample_data = process_samples(start_vars, this_dataset.group.samplelist)
+ # target_dataset.get_trait_data(list(self.sample_data.keys()))
+
this_trait = retrieve_sample_data(this_trait, this_dataset)
- target_dataset.get_trait_data()
+ target_dataset.get_trait_data(list(sample_data.keys()))
+
+ return (this_dataset, this_trait, target_dataset, sample_data)
+
+
+def compute_correlation(start_vars, method="pearson"):
+ """compute correlation for to call gn3 api"""
+
+ corr_type = start_vars['corr_type']
+
+ (this_dataset, this_trait, target_dataset,
+ sample_data) = create_target_this_trait(start_vars)
+
+ # cor_results = compute_correlation(start_vars)
+
+ method = start_vars['corr_sample_method']
+
+ corr_input_data = {}
- return (this_dataset,this_trait,target_dataset)
-def compute_correlation(start_vars):
+ if corr_type == "sample":
+ corr_input_data = {
+ "target_dataset": target_dataset.trait_data,
+ "target_samplelist": target_dataset.samplelist,
+ "trait_data": {
+ "trait_sample_data": sample_data,
+ "trait_id": start_vars["trait_id"]
+ }
+ }
+
+ requests_url = f"{GN3_CORRELATION_API}/sample_x/{method}"
+
+ elif corr_type == "tissue":
+ trait_symbol_dict = this_dataset.retrieve_genes("Symbol")
+ primary_tissue_data, target_tissue_data = get_tissue_correlation_input(
+ this_trait, trait_symbol_dict)
+
+ corr_input_data = {
+ "primary_tissue": primary_tissue_data,
+ "target_tissues": target_tissue_data
+ }
- this_dataset, this_trait, target_dataset = create_target_this_trait(
- start_vars=start_vars)
+ requests_url = f"{GN3_CORRELATION_API}/tissue_corr/{method}"
+
+ else:
+ pass
+ # lit correlation/literature
+ # can fetch values in gn3 not set up in gn3
+
+ corr_results = requests.post(requests_url, json=corr_input_data)
+
+ data = corr_results.json()
+
+ return data
diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py
index a817a4a4..50b3ba26 100644
--- a/wqflask/wqflask/correlation/show_corr_results.py
+++ b/wqflask/wqflask/correlation/show_corr_results.py
@@ -57,32 +57,6 @@ TISSUE_METHODS = [METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK]
TISSUE_MOUSE_DB = 1
-
-def compute_sample_r(start_vars,target_dataset, trait_data, target_samplelist, method="pearson"):
- import requests
- from wqflask.correlation.correlation_gn3_api import compute_correlation
-
- # cor_results = compute_correlation(start_vars)
-
- data = {
- "target_dataset": target_dataset,
- "target_samplelist": target_samplelist,
- "trait_data": {
- "trait_sample_data": trait_data,
- "trait_id": "HC_Q"
- }
- }
- requests_url = f"http://127.0.0.1:8080/api/correlation/sample_x/{method}"
-
- results = requests.post(requests_url, json=data)
-
- data = results.json()
-
- print(data)
-
- return data
-
-
class CorrelationResults(object):
def __init__(self, start_vars):
# get trait list from db (database name)
@@ -197,81 +171,78 @@ class CorrelationResults(object):
trait, self.target_dataset.trait_data[trait])
elif self.corr_type == "sample":
-
- compute_sample_r(start_vars,
- self.target_dataset.trait_data, self.sample_data, self.target_dataset.samplelist)
- # for trait, values in list(self.target_dataset.trait_data.items()):
- # self.get_sample_r_and_p_values(trait, values)
-
- # self.correlation_data = collections.OrderedDict(sorted(list(self.correlation_data.items()),
- # key=lambda t: -abs(t[1][0])))
-
- # # ZS: Convert min/max chromosome to an int for the location range option
- # range_chr_as_int = None
- # for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
- # if 'loc_chr' in start_vars:
- # if chr_info.name == self.location_chr:
- # range_chr_as_int = order_id
-
- # for _trait_counter, trait in enumerate(list(self.correlation_data.keys())[:self.return_number]):
- # trait_object = create_trait(
- # dataset=self.target_dataset, name=trait, get_qtl_info=True, get_sample_info=False)
- # if not trait_object:
- # continue
-
- # chr_as_int = 0
- # for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
- # if self.location_type == "highest_lod":
- # if chr_info.name == trait_object.locus_chr:
- # chr_as_int = order_id
- # else:
- # if chr_info.name == trait_object.chr:
- # chr_as_int = order_id
-
- # if (float(self.correlation_data[trait][0]) >= self.p_range_lower and
- # float(self.correlation_data[trait][0]) <= self.p_range_upper):
-
- # if (self.target_dataset.type == "ProbeSet" or self.target_dataset.type == "Publish") and bool(trait_object.mean):
- # if (self.min_expr != None) and (float(trait_object.mean) < self.min_expr):
- # continue
-
- # if range_chr_as_int != None and (chr_as_int != range_chr_as_int):
- # continue
- # if self.location_type == "highest_lod":
- # if (self.min_location_mb != None) and (float(trait_object.locus_mb) < float(self.min_location_mb)):
- # continue
- # if (self.max_location_mb != None) and (float(trait_object.locus_mb) > float(self.max_location_mb)):
- # continue
- # else:
- # if (self.min_location_mb != None) and (float(trait_object.mb) < float(self.min_location_mb)):
- # continue
- # if (self.max_location_mb != None) and (float(trait_object.mb) > float(self.max_location_mb)):
- # continue
-
- # (trait_object.sample_r,
- # trait_object.sample_p,
- # trait_object.num_overlap) = self.correlation_data[trait]
-
- # # Set some sane defaults
- # trait_object.tissue_corr = 0
- # trait_object.tissue_pvalue = 0
- # trait_object.lit_corr = 0
- # if self.corr_type == "tissue" and tissue_corr_data != None:
- # trait_object.tissue_corr = tissue_corr_data[trait][1]
- # trait_object.tissue_pvalue = tissue_corr_data[trait][2]
- # elif self.corr_type == "lit":
- # trait_object.lit_corr = lit_corr_data[trait][1]
-
- # self.correlation_results.append(trait_object)
-
- # if self.corr_type != "lit" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
- # self.do_lit_correlation_for_trait_list()
-
- # if self.corr_type != "tissue" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
- # self.do_tissue_correlation_for_trait_list()
-
- # self.json_results = generate_corr_json(
- # self.correlation_results, self.this_trait, self.dataset, self.target_dataset)
+ for trait, values in list(self.target_dataset.trait_data.items()):
+ self.get_sample_r_and_p_values(trait, values)
+
+ self.correlation_data = collections.OrderedDict(sorted(list(self.correlation_data.items()),
+ key=lambda t: -abs(t[1][0])))
+
+ # ZS: Convert min/max chromosome to an int for the location range option
+ range_chr_as_int = None
+ for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
+ if 'loc_chr' in start_vars:
+ if chr_info.name == self.location_chr:
+ range_chr_as_int = order_id
+
+ for _trait_counter, trait in enumerate(list(self.correlation_data.keys())[:self.return_number]):
+ trait_object = create_trait(
+ dataset=self.target_dataset, name=trait, get_qtl_info=True, get_sample_info=False)
+ if not trait_object:
+ continue
+
+ chr_as_int = 0
+ for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
+ if self.location_type == "highest_lod":
+ if chr_info.name == trait_object.locus_chr:
+ chr_as_int = order_id
+ else:
+ if chr_info.name == trait_object.chr:
+ chr_as_int = order_id
+
+ if (float(self.correlation_data[trait][0]) >= self.p_range_lower and
+ float(self.correlation_data[trait][0]) <= self.p_range_upper):
+
+ if (self.target_dataset.type == "ProbeSet" or self.target_dataset.type == "Publish") and bool(trait_object.mean):
+ if (self.min_expr != None) and (float(trait_object.mean) < self.min_expr):
+ continue
+
+ if range_chr_as_int != None and (chr_as_int != range_chr_as_int):
+ continue
+ if self.location_type == "highest_lod":
+ if (self.min_location_mb != None) and (float(trait_object.locus_mb) < float(self.min_location_mb)):
+ continue
+ if (self.max_location_mb != None) and (float(trait_object.locus_mb) > float(self.max_location_mb)):
+ continue
+ else:
+ if (self.min_location_mb != None) and (float(trait_object.mb) < float(self.min_location_mb)):
+ continue
+ if (self.max_location_mb != None) and (float(trait_object.mb) > float(self.max_location_mb)):
+ continue
+
+ (trait_object.sample_r,
+ trait_object.sample_p,
+ trait_object.num_overlap) = self.correlation_data[trait]
+
+ # Set some sane defaults
+ trait_object.tissue_corr = 0
+ trait_object.tissue_pvalue = 0
+ trait_object.lit_corr = 0
+ if self.corr_type == "tissue" and tissue_corr_data != None:
+ trait_object.tissue_corr = tissue_corr_data[trait][1]
+ trait_object.tissue_pvalue = tissue_corr_data[trait][2]
+ elif self.corr_type == "lit":
+ trait_object.lit_corr = lit_corr_data[trait][1]
+
+ self.correlation_results.append(trait_object)
+
+ if self.corr_type != "lit" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
+ self.do_lit_correlation_for_trait_list()
+
+ if self.corr_type != "tissue" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
+ self.do_tissue_correlation_for_trait_list()
+
+ self.json_results = generate_corr_json(
+ self.correlation_results, self.this_trait, self.dataset, self.target_dataset)
############################################################################################################################################
@@ -465,7 +436,6 @@ class CorrelationResults(object):
return mouse_gene_id
-
def get_sample_r_and_p_values(self, trait, target_samples):
"""Calculates the sample r (or rho) and p-value
diff --git a/wqflask/wqflask/views.py b/wqflask/wqflask/views.py
index 2c0ba586..6ca9b23f 100644
--- a/wqflask/wqflask/views.py
+++ b/wqflask/wqflask/views.py
@@ -46,6 +46,7 @@ from wqflask.marker_regression import run_mapping
from wqflask.marker_regression import display_mapping_results
from wqflask.network_graph import network_graph
from wqflask.correlation import show_corr_results
+from wqflask.correlation.correlation_gn3_api import compute_correlation
from wqflask.correlation_matrix import show_corr_matrix
from wqflask.correlation import corr_scatter_plot
from wqflask.wgcna import wgcna_analysis
@@ -880,8 +881,8 @@ def network_graph_page():
def corr_compute_page():
logger.info("In corr_compute, request.form is:", pf(request.form))
logger.info(request.url)
- template_vars = show_corr_results.CorrelationResults(request.form)
- return render_template("correlation_page.html", **template_vars.__dict__)
+ correlation_results = compute_correlation(request.form)
+ return render_template("demo_correlation_page.html",correlation_results=correlation_results)
@app.route("/corr_matrix", methods=('POST',))
def corr_matrix_page():