aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/correlation_matrix/show_corr_matrix.py35
1 files changed, 20 insertions, 15 deletions
diff --git a/wqflask/wqflask/correlation_matrix/show_corr_matrix.py b/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
index efe4ecea..1bc2fb2f 100644
--- a/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
+++ b/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
@@ -33,8 +33,6 @@ import math
import collections
import resource
-import numarray
-import numarray.linear_algebra as la
import numpy as np
import scipy
@@ -117,7 +115,6 @@ class CorrelationMatrix(object):
self.corr_results = []
self.pca_corr_results = []
- self.trait_data_array = []
self.shared_samples_list = self.all_sample_list
for trait_db in self.trait_list:
this_trait = trait_db[0]
@@ -126,13 +123,6 @@ class CorrelationMatrix(object):
this_db_samples = this_db.group.all_samples_ordered()
this_sample_data = this_trait.data
- this_trait_vals = []
- for index, sample in enumerate(this_db_samples):
- if (sample in this_sample_data):
- sample_value = this_sample_data[sample].value
- this_trait_vals.append(sample_value)
- self.trait_data_array.append(this_trait_vals)
-
corr_result_row = []
pca_corr_result_row = []
is_spearman = False #ZS: To determine if it's above or below the diagonal
@@ -146,12 +136,13 @@ class CorrelationMatrix(object):
target_vals = []
for index, sample in enumerate(target_samples):
if (sample in this_sample_data) and (sample in target_sample_data):
- if sample not in self.shared_samples_list:
- self.shared_samples_list.remove(sample)
sample_value = this_sample_data[sample].value
target_sample_value = target_sample_data[sample].value
this_trait_vals.append(sample_value)
target_vals.append(target_sample_value)
+ else:
+ if sample in self.shared_samples_list:
+ self.shared_samples_list.remove(sample)
this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(this_trait_vals, target_vals)
@@ -175,7 +166,21 @@ class CorrelationMatrix(object):
self.corr_results.append(corr_result_row)
self.pca_corr_results.append(pca_corr_result_row)
- corr_result_eigen = la.eigenvectors(numarray.array(self.pca_corr_results))
+ self.trait_data_array = []
+ for trait_db in self.trait_list:
+ this_trait = trait_db[0]
+ this_db = trait_db[1]
+ this_db_samples = this_db.group.all_samples_ordered()
+ this_sample_data = this_trait.data
+
+ this_trait_vals = []
+ for index, sample in enumerate(this_db_samples):
+ if (sample in this_sample_data) and (sample in self.shared_samples_list):
+ sample_value = this_sample_data[sample].value
+ this_trait_vals.append(sample_value)
+ self.trait_data_array.append(this_trait_vals)
+
+ corr_result_eigen = np.linalg.eig(np.array(self.pca_corr_results))
corr_eigen_value, corr_eigen_vectors = sortEigenVectors(corr_result_eigen)
groups = []
@@ -226,7 +231,7 @@ class CorrelationMatrix(object):
self.scale = pca.rx('scale')
trait_array = zScore(self.trait_data_array)
- trait_array = np.array(trait_array)
+ trait_array = trait_array
trait_array_vectors = np.dot(corr_eigen_vectors, trait_array)
pca_traits = []
@@ -307,6 +312,6 @@ def sortEigenVectors(vector):
B.append(item[1])
sum = reduce(lambda x,y: x+y, A, 0.0)
A = map(lambda x:x*100.0/sum, A)
- return [A,B]
+ return [A, B]
except:
return [] \ No newline at end of file