aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/my_pylmm/pyLMM/lmm.py107
1 files changed, 64 insertions, 43 deletions
diff --git a/wqflask/wqflask/my_pylmm/pyLMM/lmm.py b/wqflask/wqflask/my_pylmm/pyLMM/lmm.py
index e5978933..3344b024 100644
--- a/wqflask/wqflask/my_pylmm/pyLMM/lmm.py
+++ b/wqflask/wqflask/my_pylmm/pyLMM/lmm.py
@@ -59,68 +59,89 @@ def run_human(pheno_vector,
# Buffers for pvalues and t-stats
p_values = []
t_stats = []
-
+
plink_input.getSNPIterator()
total_snps = plink_input.numSNPs
with Bench("snp iterator loop"):
count = 0
for snp, this_id in plink_input:
- if count > 5000:
+ if count > 10000:
break
count += 1
-
percent_complete = (float(count) / total_snps) * 100
#print("percent_complete: ", percent_complete)
temp_data.store("percent_complete", percent_complete)
+
+ ps, ts = human_association(snp,
+ n,
+ keep,
+ lmm_ob,
+ pheno_vector,
+ covariate_matrix,
+ kinship_matrix,
+ refit)
- x = snp[keep].reshape((n,1))
- #x[[1,50,100,200,3000],:] = np.nan
- v = np.isnan(x).reshape((-1,))
-
- # Check SNPs for missing values
- if v.sum():
- keeps = True - v
- xs = x[keeps,:]
- # If no variation at this snp or all genotypes missing
- if keeps.sum() <= 1 or xs.var() <= 1e-6:
- p_values.append(np.nan)
- t_stats.append(np.nan)
- continue
-
- # Its ok to center the genotype - I used options.normalizeGenotype to
- # force the removal of missing genotypes as opposed to replacing them with MAF.
-
- #if not options.normalizeGenotype:
- # xs = (xs - xs.mean()) / np.sqrt(xs.var())
-
- filtered_pheno = pheno_vector[keeps]
- filtered_covariate_matrix = covariate_matrix[keeps,:]
- filtered_kinship_matrix = kinship_matrix[keeps,:][:,keeps]
- filtered_lmm_ob = lmm.LMM(filtered_pheno,filtered_kinship_matrix,X0=filtered_covariate_matrix)
- if refit:
- filtered_lmm_ob.fit(X=xs)
- else:
- #try:
- filtered_lmm_ob.fit()
- #except: pdb.set_trace()
- ts,ps,beta,betaVar = Ls.association(xs,returnBeta=True)
- else:
- if x.var() == 0:
- p_values.append(np.nan)
- t_stats.append(np.nan)
- continue
- if refit:
- lmm_ob.fit(X=x)
- ts, ps, beta, betaVar = lmm_ob.association(x)
-
p_values.append(ps)
t_stats.append(ts)
return p_values, t_stats
+def human_association(snp,
+ n,
+ keep,
+ lmm_ob,
+ pheno_vector,
+ covariate_matrix,
+ kinship_matrix,
+ refit):
+
+ x = snp[keep].reshape((n,1))
+ #x[[1,50,100,200,3000],:] = np.nan
+ v = np.isnan(x).reshape((-1,))
+
+ # Check SNPs for missing values
+ if v.sum():
+ keeps = True - v
+ xs = x[keeps,:]
+ # If no variation at this snp or all genotypes missing
+ if keeps.sum() <= 1 or xs.var() <= 1e-6:
+ return np.nan, np.nan
+ #p_values.append(np.nan)
+ #t_stats.append(np.nan)
+ #continue
+
+ # Its ok to center the genotype - I used options.normalizeGenotype to
+ # force the removal of missing genotypes as opposed to replacing them with MAF.
+
+ #if not options.normalizeGenotype:
+ # xs = (xs - xs.mean()) / np.sqrt(xs.var())
+
+ filtered_pheno = pheno_vector[keeps]
+ filtered_covariate_matrix = covariate_matrix[keeps,:]
+ filtered_kinship_matrix = kinship_matrix[keeps,:][:,keeps]
+ filtered_lmm_ob = lmm.LMM(filtered_pheno,filtered_kinship_matrix,X0=filtered_covariate_matrix)
+ if refit:
+ filtered_lmm_ob.fit(X=xs)
+ else:
+ #try:
+ filtered_lmm_ob.fit()
+ #except: pdb.set_trace()
+ ts,ps,beta,betaVar = Ls.association(xs,returnBeta=True)
+ else:
+ if x.var() == 0:
+ return np.nan, np.nan
+ #p_values.append(np.nan)
+ #t_stats.append(np.nan)
+ #continue
+ if refit:
+ lmm_ob.fit(X=x)
+ ts, ps, beta, betaVar = lmm_ob.association(x)
+ return ps, ts
+
+
def run(pheno_vector,
genotype_matrix,
restricted_max_likelihood=True,