aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/correlation/show_corr_results.py346
1 files changed, 208 insertions, 138 deletions
diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py
index 5da8a6b9..56378d27 100644
--- a/wqflask/wqflask/correlation/show_corr_results.py
+++ b/wqflask/wqflask/correlation/show_corr_results.py
@@ -44,13 +44,10 @@ def set_template_vars(start_vars, correlation_data):
target_dataset_ob = create_dataset(correlation_data['target_dataset'])
correlation_data['target_dataset'] = target_dataset_ob.as_monadic_dict().data
-
- table_json = correlation_json_for_table(correlation_data,
- correlation_data['this_trait'],
- correlation_data['this_dataset'],
- target_dataset_ob)
-
- correlation_data['table_json'] = table_json
+ correlation_data['table_json'] = correlation_json_for_table(
+ start_vars,
+ correlation_data,
+ target_dataset_ob.as_monadic_dict().data)
if target_dataset_ob.type == "ProbeSet":
filter_cols = [7, 6]
@@ -69,151 +66,224 @@ def set_template_vars(start_vars, correlation_data):
return correlation_data
-def correlation_json_for_table(start_vars, correlation_data, this_trait, this_dataset, target_dataset_ob):
- """Return JSON data for use with the DataTable in the correlation result page
+def apply_filters(trait, target_trait, target_dataset, **filters):
+ def __p_val_filter__(p_lower, p_upper):
- Keyword arguments:
- correlation_data -- Correlation results
- this_trait -- Trait being correlated against a dataset, as a dict
- this_dataset -- Dataset of this_trait, as a monadic dict
- target_dataset_ob - Target dataset, as a Dataset ob
- """
- this_trait = correlation_data['this_trait']
- this_dataset = correlation_data['this_dataset']
- target_dataset = target_dataset_ob.as_monadic_dict().data
+ return not (p_lower <= float(trait.get("corr_coefficient",0.0)) <= p_upper)
+
+ def __min_filter__(min_expr):
+ if (target_dataset['type'] in ["ProbeSet", "Publish"] and target_trait['mean']):
+ return (min_expr != None) and (float(target_trait['mean']) < min_expr)
+
+ return False
- corr_results = correlation_data['correlation_results']
- results_list = []
+ def __location_filter__(location_type, location_chr,
+ min_location_mb, max_location_mb):
- new_traits_metadata = {}
+ if target_dataset["type"] in ["ProbeSet", "'Geno"] and location_type == "gene":
- dataset_metadata = correlation_data["traits_metadata"]
+ return (
+ ((location_chr!=None) and (target_trait["chr"]!=location_chr))
+ or
+ ((min_location_mb!= None) and (
+ float(target_trait['mb']) < min_location_mb)
+ )
- min_expr = get_float(start_vars, 'min_expr')
- p_range_lower = get_float(start_vars, 'p_range_lower', -1.0)
- p_range_upper = get_float(start_vars, 'p_range_upper', 1.0)
+ or
+ ((max_location_mb != None) and
+ (float(target_trait['mb']) > float(max_location_mb)
+ ))
- if ('loc_chr' in start_vars and
- 'min_loc_mb' in start_vars and
- 'max_loc_mb' in start_vars):
+ )
+ elif target_dataset["type"] in ["ProbeSet", "Publish"]:
+
+ return ((location_chr!=None) and (target_trait["lrs_chr"] != location_chr)
+ or
+ ((min_location_mb != None) and (
+ float(target_trait['lrs_mb']) < float(min_location_mb)))
+ or
+ ((max_location_mb != None) and (
+ float(target_trait['lrs_mb']) > float(max_location_mb))
+ )
+
+ )
+
+ return True
+
+ # check if one of the condition is not met i.e One is True
+
+ return (__p_val_filter__(
+ filters.get("p_range_lower"),
+ filters.get("p_range_upper")
+ )
+ or
+ (
+ __min_filter__(
+ filters.get("min_expr")
+ )
+ )
+ or
+ __location_filter__(
+ filters.get("location_type"),
+ filters.get("location_chr"),
+ filters.get("min_location_mb"),
+ filters.get("max_location_mb")
+
+
+ )
+ )
+
+
+def get_user_filters(start_vars):
+ (min_expr, p_min, p_max) = (
+ get_float(start_vars, 'min_expr'),
+ get_float(start_vars, 'p_range_lower', -1.0),
+ get_float(start_vars, 'p_range_upper', 1.0)
+ )
+
+ if all(keys in start_vars for keys in ["loc_chr",
+ "min_loc_mb",
+ "max_location_mb"]):
+
+ location_chr = get_string(start_vars, "loc_chr")
+ min_location_mb = get_int(start_vars, "min_loc_mb")
+ max_location_mb = get_int(start_vars, "max_loc_mb")
- location_chr = get_string(start_vars, 'loc_chr')
- min_location_mb = get_int(start_vars, 'min_loc_mb')
- max_location_mb = get_int(start_vars, 'max_loc_mb')
else:
location_chr = min_location_mb = max_location_mb = None
- for i, trait_dict in enumerate(corr_results):
- trait_name = list(trait_dict.keys())[0]
- trait = trait_dict[trait_name]
+ return {
+
+ "min_expr": min_expr,
+ "p_range_lower": p_min,
+ "p_range_upper": p_max,
+ "location_chr": location_chr,
+ "location_type": start_vars['location_type'],
+ "min_location_mb": min_location_mb,
+ "max_location_mb": max_location_mb
+
+ }
+
+def generate_table_metadata(all_traits, dataset_metadata, dataset_obj):
+
+ def __fetch_trait_data__(trait, dataset_obj):
+ target_trait_ob = create_trait(dataset=dataset_obj,
+ name=trait,
+ get_qtl_info=True)
+ return jsonable(target_trait_ob, dataset_obj)
+
+ metadata = [__fetch_trait_data__(trait, dataset_obj) for
+ trait in (all_traits ^ dataset_metadata.keys())]
+ return (dataset_metadata | ({trait["name"]: trait for trait in metadata}))
+
+
+def populate_table(dataset_metadata, target_dataset, this_dataset, corr_results, filters):
+
+ def __populate_trait__(idx, trait):
+
+ trait_name = list(trait.keys())[0]
target_trait = dataset_metadata.get(trait_name)
- if target_trait is None:
- target_trait_ob = create_trait(dataset=target_dataset_ob,
- name=trait_name,
- get_qtl_info=True)
- target_trait = jsonable(target_trait_ob, target_dataset_ob)
- new_traits_metadata[trait_name] = target_trait
-
- if (float(trait.get('corr_coefficient',0.0)) >= p_range_lower and
- float(trait.get('corr_coefficient',0.0)) <= p_range_upper):
-
- if (target_dataset['type'] == "ProbeSet" or target_dataset['type'] == "Publish") and bool(target_trait['mean']):
- if (min_expr != None) and (float(target_trait['mean']) < min_expr):
- continue
-
- if start_vars['location_type'] == "gene" and (target_dataset['type'] == "ProbeSet" or target_dataset['type'] == "Geno"):
- if location_chr != None and (target_trait['chr'] != location_chr):
- continue
- if (min_location_mb != None) and (float(target_trait['mb']) < float(min_location_mb)):
- continue
- if (max_location_mb != None) and (float(target_trait['mb']) > float(max_location_mb)):
- continue
- elif target_dataset['type'] == "ProbeSet" or target_dataset['type'] == "Publish":
- if location_chr != None and (target_trait['lrs_chr'] != location_chr):
- continue
- if (min_location_mb != None) and (float(target_trait['lrs_mb']) < float(min_location_mb)):
- continue
- if (max_location_mb != None) and (float(target_trait['lrs_mb']) > float(max_location_mb)):
- continue
- else:
- continue
- else:
- continue
-
- results_dict = {}
- results_dict['index'] = i + 1
- results_dict['trait_id'] = target_trait['name']
- results_dict['dataset'] = target_dataset['name']
- results_dict['hmac'] = hmac.data_hmac(
- '{}:{}'.format(target_trait['name'], target_dataset['name']))
- results_dict['sample_r'] = f"{float(trait.get('corr_coefficient',0.0)):.3f}"
- results_dict['num_overlap'] = trait.get('num_overlap',0)
- results_dict['sample_p'] = f"{float(trait.get('p_value',0)):.3e}"
- if target_dataset['type'] == "ProbeSet":
- results_dict['symbol'] = target_trait['symbol']
- results_dict['description'] = "N/A"
- results_dict['location'] = target_trait['location']
- results_dict['mean'] = "N/A"
- results_dict['additive'] = "N/A"
- if bool(target_trait['description']):
- results_dict['description'] = target_trait['description']
- if bool(target_trait['mean']):
- results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
- try:
- results_dict['lod_score'] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
- except:
- results_dict['lod_score'] = "N/A"
- results_dict['lrs_location'] = target_trait['lrs_location']
- if bool(target_trait['additive']):
- results_dict['additive'] = f"{float(target_trait['additive']):.3f}"
- results_dict['lit_corr'] = "--"
- results_dict['tissue_corr'] = "--"
- results_dict['tissue_pvalue'] = "--"
- if this_dataset['type'] == "ProbeSet":
- if 'lit_corr' in trait:
- results_dict['lit_corr'] = f"{float(trait['lit_corr']):.3f}"
- if 'tissue_corr' in trait:
- results_dict['tissue_corr'] = f"{float(trait['tissue_corr']):.3f}"
- results_dict['tissue_pvalue'] = f"{float(trait['tissue_p_val']):.3e}"
- elif target_dataset['type'] == "Publish":
- results_dict['abbreviation_display'] = "N/A"
- results_dict['description'] = "N/A"
- results_dict['mean'] = "N/A"
- results_dict['authors_display'] = "N/A"
- results_dict['additive'] = "N/A"
- results_dict['pubmed_link'] = "N/A"
- results_dict['pubmed_text'] = target_trait["pubmed_text"]
-
- if bool(target_trait['abbreviation']):
- results_dict['abbreviation_display'] = target_trait['abbreviation']
- if bool(target_trait['description']):
- results_dict['description'] = target_trait['description']
- if bool(target_trait['mean']):
- results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
- if bool(target_trait['authors']):
- authors_list = target_trait['authors'].split(',')
- if len(authors_list) > 6:
+ trait = trait[trait_name]
+ if not apply_filters(trait, target_trait, target_dataset, **filters):
+ results_dict = {}
+ results_dict['index'] = idx + 1 #
+ results_dict['trait_id'] = target_trait['name']
+ results_dict['dataset'] = target_dataset['name']
+ results_dict['hmac'] = hmac.data_hmac(
+ '{}:{}'.format(target_trait['name'], target_dataset['name']))
+ results_dict['sample_r'] = f"{float(trait.get('corr_coefficient',0.0)):.3f}"
+ results_dict['num_overlap'] = trait.get('num_overlap', 0)
+ results_dict['sample_p'] = f"{float(trait.get('p_value',0)):.3e}"
+ if target_dataset['type'] == "ProbeSet":
+ results_dict['symbol'] = target_trait['symbol']
+ results_dict['description'] = "N/A"
+ results_dict['location'] = target_trait['location']
+ results_dict['mean'] = "N/A"
+ results_dict['additive'] = "N/A"
+ if target_trait['description']:
+ results_dict['description'] = target_trait['description']
+ if target_trait['mean']:
+ results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
+ try:
+ results_dict['lod_score'] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
+ except:
+ results_dict['lod_score'] = "N/A"
+ results_dict['lrs_location'] = target_trait['lrs_location']
+ if target_trait['additive']:
+ results_dict['additive'] = f"{float(target_trait['additive']):.3f}"
+ results_dict['lit_corr'] = "--"
+ results_dict['tissue_corr'] = "--"
+ results_dict['tissue_pvalue'] = "--"
+ if this_dataset['type'] == "ProbeSet":
+ if 'lit_corr' in trait:
+ results_dict['lit_corr'] = f"{float(trait['lit_corr']):.3f}"
+ if 'tissue_corr' in trait:
+ results_dict['tissue_corr'] = f"{float(trait['tissue_corr']):.3f}"
+ results_dict['tissue_pvalue'] = f"{float(trait['tissue_p_val']):.3e}"
+ elif target_dataset['type'] == "Publish":
+ results_dict['abbreviation_display'] = "N/A"
+ results_dict['description'] = "N/A"
+ results_dict['mean'] = "N/A"
+ results_dict['authors_display'] = "N/A"
+ results_dict['additive'] = "N/A"
+ results_dict['pubmed_link'] = "N/A"
+ results_dict['pubmed_text'] = target_trait["pubmed_text"]
+
+ if target_trait["abbreviation"]:
+ results_dict = target_trait['abbreviation']
+
+ if target_trait["description"] == target_trait['description']:
+ results_dict['description'] = target_trait['description']
+
+ if target_trait["mean"]:
+ results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
+
+ if target_trait["authors"]:
+ authors_list = target_trait['authors'].split(',')
results_dict['authors_display'] = ", ".join(
- authors_list[:6]) + ", et al."
- else:
- results_dict['authors_display'] = target_trait['authors']
- if 'pubmed_id' in target_trait:
- results_dict['pubmed_link'] = target_trait['pubmed_link']
- results_dict['pubmed_text'] = target_trait['pubmed_text']
- try:
- results_dict['lod_score'] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
- except:
- results_dict['lod_score'] = "N/A"
- results_dict['lrs_location'] = target_trait['lrs_location']
- if bool(target_trait['additive']):
- results_dict['additive'] = f"{float(target_trait['additive']):.3f}"
- else:
- results_dict['location'] = target_trait['location']
+ authors_list[:6]) + ", et al." if len(authors_list) > 6 else target_trait['authors']
+
+ if "pubmed_id" in target_trait:
+ results_dict['pubmed_link'] = target_trait['pubmed_link']
+ results_dict['pubmed_text'] = target_trait['pubmed_text']
+ try:
+ results_dict["lod_score"] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
+ except ValueError:
+ results_dict['lod_score'] = "N/A"
+ else:
+ results_dict['lrs_location'] = target_trait['lrs_location']
+
+ return results_dict
+
+ return [__populate_trait__(idx, trait)
+ for (idx, trait) in enumerate(corr_results)]
+
+
+def correlation_json_for_table(start_vars, correlation_data, target_dataset_ob):
+ """Return JSON data for use with the DataTable in the correlation result page
+
+ Keyword arguments:
+ correlation_data -- Correlation results
+ this_trait -- Trait being correlated against a dataset, as a dict
+ this_dataset -- Dataset of this_trait, as a monadic dict
+ target_dataset_ob - Target dataset, as a Dataset ob
+ """
+ this_dataset = correlation_data['this_dataset']
- results_list.append(results_dict)
+ traits = set()
+ for trait in correlation_data["correlation_results"]:
+ traits.add(list(trait)[0])
- return json.dumps(results_list)
+ dataset_metadata = generate_table_metadata(traits,
+ correlation_data["traits_metadata"],
+ target_dataset_ob)
+ return json.dumps([result for result in (
+ populate_table(dataset_metadata=dataset_metadata,
+ target_dataset=target_dataset_ob.as_dict(),
+ this_dataset=correlation_data['this_dataset'],
+ corr_results=correlation_data['correlation_results'],
+ filters=get_user_filters(start_vars))) if result])
def get_formatted_corr_type(corr_type, corr_method):
@@ -315,4 +385,4 @@ def get_header_fields(data_type, corr_method):
'N',
'Sample p(r)']
- return header_fields
+ return header_fields \ No newline at end of file