aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/marker_regression/rqtl_mapping.py624
-rw-r--r--wqflask/wqflask/marker_regression/run_mapping.py8
-rw-r--r--wqflask/wqflask/show_trait/show_trait.py7
3 files changed, 322 insertions, 317 deletions
diff --git a/wqflask/wqflask/marker_regression/rqtl_mapping.py b/wqflask/wqflask/marker_regression/rqtl_mapping.py
index 8c294460..ed63ad92 100644
--- a/wqflask/wqflask/marker_regression/rqtl_mapping.py
+++ b/wqflask/wqflask/marker_regression/rqtl_mapping.py
@@ -1,311 +1,313 @@
-import rpy2.robjects as ro
-import rpy2.robjects.numpy2ri as np2r
-import numpy as np
-
-from base.webqtlConfig import TMPDIR
-from base.trait import GeneralTrait
-from base.data_set import create_dataset
-from utility import webqtlUtil
-from utility.tools import locate, TEMPDIR
-
-import utility.logger
-logger = utility.logger.getLogger(__name__ )
-
-def run_rqtl_geno(vals, samples, dataset, mapping_scale, method, model, permCheck, num_perm, perm_strata_list, do_control, control_marker, manhattan_plot, pair_scan, cofactors):
- ## Get pointers to some common R functions
- r_library = ro.r["library"] # Map the library function
- r_c = ro.r["c"] # Map the c function
- plot = ro.r["plot"] # Map the plot function
- png = ro.r["png"] # Map the png function
- dev_off = ro.r["dev.off"] # Map the device off function
-
- print(r_library("qtl")) # Load R/qtl
-
- ## Get pointers to some R/qtl functions
- scanone = ro.r["scanone"] # Map the scanone function
- scantwo = ro.r["scantwo"] # Map the scantwo function
- calc_genoprob = ro.r["calc.genoprob"] # Map the calc.genoprob function
-
- crossname = dataset.group.name
- #try:
- # generate_cross_from_rdata(dataset)
- # read_cross_from_rdata = ro.r["generate_cross_from_rdata"] # Map the local read_cross_from_rdata function
- # genofilelocation = locate(crossname + ".RData", "genotype/rdata")
- # cross_object = read_cross_from_rdata(genofilelocation) # Map the local GENOtoCSVR function
- #except:
-
- if mapping_scale == "morgan":
- scale_units = "cM"
- else:
- scale_units = "Mb"
-
- generate_cross_from_geno(dataset, scale_units)
- GENOtoCSVR = ro.r["GENOtoCSVR"] # Map the local GENOtoCSVR function
- crossfilelocation = TMPDIR + crossname + ".cross"
- if dataset.group.genofile:
- genofilelocation = locate(dataset.group.genofile, "genotype")
- else:
- genofilelocation = locate(dataset.group.name + ".geno", "genotype")
- cross_object = GENOtoCSVR(genofilelocation, crossfilelocation) # TODO: Add the SEX if that is available
-
- if manhattan_plot:
- cross_object = calc_genoprob(cross_object)
- else:
- cross_object = calc_genoprob(cross_object, step=1, stepwidth="max")
-
- logger.debug("VAL LEN:", len(vals))
-
- pheno_string = sanitize_rqtl_phenotype(vals)
-
- cross_object = add_phenotype(cross_object, pheno_string, "the_pheno") # Add the phenotype
-
- # Scan for QTLs
- marker_covars = create_marker_covariates(control_marker, cross_object) # Create the additive covariate markers
-
- if cofactors != "":
- cross_object, trait_covars = add_cofactors(cross_object, dataset, cofactors, samples) # Create the covariates from selected traits
- ro.r('all_covars <- cbind(marker_covars, trait_covars)')
- else:
- ro.r('all_covars <- marker_covars')
-
- covars = ro.r['all_covars']
-
- if pair_scan:
- if do_control == "true":
- logger.info("Using covariate"); result_data_frame = scantwo(cross_object, pheno = "the_pheno", addcovar = covars, model=model, method=method, n_cluster = 16)
- else:
- logger.info("No covariates"); result_data_frame = scantwo(cross_object, pheno = "the_pheno", model=model, method=method, n_cluster = 16)
-
- pair_scan_filename = webqtlUtil.genRandStr("scantwo_") + ".png"
- png(file=TEMPDIR+pair_scan_filename)
- plot(result_data_frame)
- dev_off()
-
- return process_pair_scan_results(result_data_frame)
- else:
- if do_control == "true" or cofactors != "":
- logger.info("Using covariate"); result_data_frame = scanone(cross_object, pheno = "the_pheno", addcovar = covars, model=model, method=method)
- else:
- logger.info("No covariates"); result_data_frame = scanone(cross_object, pheno = "the_pheno", model=model, method=method)
-
- if num_perm > 0 and permCheck == "ON": # Do permutation (if requested by user)
- if len(perm_strata_list) > 0: #ZS: The strata list would only be populated if "Stratified" was checked on before mapping
- cross_object, strata_ob = add_perm_strata(cross_object, perm_strata_list)
- if do_control == "true" or cofactors != "":
- perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", addcovar = covars, n_perm = int(num_perm), perm_strata = strata_ob, model=model, method=method)
- else:
- perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", n_perm = num_perm, perm_strata = strata_ob, model=model, method=method)
- else:
- if do_control == "true" or cofactors != "":
- perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", addcovar = covars, n_perm = int(num_perm), model=model, method=method)
- else:
- perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", n_perm = num_perm, model=model, method=method)
-
- perm_output, suggestive, significant = process_rqtl_perm_results(num_perm, perm_data_frame) # Functions that sets the thresholds for the webinterface
- return perm_output, suggestive, significant, process_rqtl_results(result_data_frame, dataset.group.species)
- else:
- return process_rqtl_results(result_data_frame, dataset.group.species)
-
-def generate_cross_from_rdata(dataset):
- rdata_location = locate(dataset.group.name + ".RData", "genotype/rdata")
- ro.r("""
- generate_cross_from_rdata <- function(filename = '%s') {
- load(file=filename)
- cross = cunique
- return(cross)
- }
- """ % (rdata_location))
-
-def generate_cross_from_geno(dataset, scale_units): # TODO: Need to figure out why some genofiles have the wrong format and don't convert properly
-
- ro.r("""
- trim <- function( x ) { gsub("(^[[:space:]]+|[[:space:]]+$)", "", x) }
-
- getGenoCode <- function(header, name = 'unk'){
- mat = which(unlist(lapply(header,function(x){ length(grep(paste('@',name,sep=''), x)) })) == 1)
- return(trim(strsplit(header[mat],':')[[1]][2]))
- }
-
- GENOtoCSVR <- function(genotypes = '%s', out = 'cross.csvr', phenotype = NULL, sex = NULL, verbose = FALSE){
- header = readLines(genotypes, 40) # Assume a geno header is not longer than 40 lines
- toskip = which(unlist(lapply(header, function(x){ length(grep("Chr\t", x)) })) == 1)-1 # Major hack to skip the geno headers
-
- type <- getGenoCode(header, 'type')
- if(type == '4-way'){
- genocodes <- c('1','2','3','4')
- genodata <- read.csv(genotypes, sep='\t', skip=toskip, header=TRUE, na.strings=getGenoCode(header,'unk'), colClasses='character', comment.char = '#', crosstype="4way")
- } else {
- genocodes <- c(getGenoCode(header, 'mat'), getGenoCode(header, 'het'), getGenoCode(header, 'pat')) # Get the genotype codes
- genodata <- read.csv(genotypes, sep='\t', skip=toskip, header=TRUE, na.strings=getGenoCode(header,'unk'), colClasses='character', comment.char = '#')
- }
- cat('Genodata:', toskip, " ", dim(genodata), genocodes, '\n')
- if(is.null(phenotype)) phenotype <- runif((ncol(genodata)-4)) # If there isn't a phenotype, generate a random one
- if(is.null(sex)) sex <- rep('m', (ncol(genodata)-4)) # If there isn't a sex phenotype, treat all as males
- outCSVR <- rbind(c('Pheno', '', '', phenotype), # Phenotype
- c('sex', '', '', sex), # Sex phenotype for the mice
- cbind(genodata[,c('Locus','Chr', '%s')], genodata[, 5:ncol(genodata)])) # Genotypes
- write.table(outCSVR, file = out, row.names=FALSE, col.names=FALSE,quote=FALSE, sep=',') # Save it to a file
- require(qtl)
- if(type == '4-way'){
- cat('Loading in as 4-WAY\n')
- cross = read.cross(file=out, 'csvr', genotypes=genocodes)
- #cross = read.cross(file=out, 'csvr', genotypes=genocodes, crosstype="4way", convertXdata=FALSE) # Load the created cross file using R/qtl read.cross
- }else{
- cat('Loading in as normal\n')
- cross = read.cross(file=out, 'csvr', genotypes=genocodes) # Load the created cross file using R/qtl read.cross
- }
- if(type == 'riset'){
- cat('Converting to RISELF\n')
- cross <- convert2riself(cross) # If its a RIL, convert to a RIL in R/qtl
- }
- return(cross)
- }
- """ % (dataset.group.genofile, scale_units))
-
-def add_perm_strata(cross, perm_strata):
- col_string = 'c("the_strata")'
- perm_strata_string = "c("
- for item in perm_strata:
- perm_strata_string += str(item) + ","
-
- perm_strata_string = perm_strata_string[:-1] + ")"
-
- cross = add_phenotype(cross, perm_strata_string, "the_strata")
-
- strata_ob = pull_var("perm_strata", cross, col_string)
-
- return cross, strata_ob
-
-def sanitize_rqtl_phenotype(vals):
- pheno_as_string = "c("
- for i, val in enumerate(vals):
- if val == "x":
- if i < (len(vals) - 1):
- pheno_as_string += "NA,"
- else:
- pheno_as_string += "NA"
- else:
- if i < (len(vals) - 1):
- pheno_as_string += str(val) + ","
- else:
- pheno_as_string += str(val)
- pheno_as_string += ")"
-
- return pheno_as_string
-
-def add_phenotype(cross, pheno_as_string, col_name):
- ro.globalenv["the_cross"] = cross
- ro.r('the_cross$pheno <- cbind(pull.pheno(the_cross), ' + col_name + ' = '+ pheno_as_string +')')
- return ro.r["the_cross"]
-
-def pull_var(var_name, cross, var_string):
- ro.globalenv["the_cross"] = cross
- ro.r(var_name +' <- pull.pheno(the_cross, ' + var_string + ')')
-
- return ro.r[var_name]
-
-def add_cofactors(cross, this_dataset, covariates, samples):
- ro.numpy2ri.activate()
-
- covariate_list = covariates.split(",")
- covar_name_string = "c("
- for i, covariate in enumerate(covariate_list):
- this_covar_data = []
- covar_as_string = "c("
- trait_name = covariate.split(":")[0]
- dataset_ob = create_dataset(covariate.split(":")[1])
- trait_ob = GeneralTrait(dataset=dataset_ob,
- name=trait_name,
- cellid=None)
-
- this_dataset.group.get_samplelist()
- trait_samples = this_dataset.group.samplelist
- trait_sample_data = trait_ob.data
- for index, sample in enumerate(trait_samples):
- if sample in samples:
- if sample in trait_sample_data:
- sample_value = trait_sample_data[sample].value
- this_covar_data.append(sample_value)
- else:
- this_covar_data.append("NA")
-
- for j, item in enumerate(this_covar_data):
- if j < (len(this_covar_data) - 1):
- covar_as_string += str(item) + ","
- else:
- covar_as_string += str(item)
-
- covar_as_string += ")"
-
- col_name = "covar_" + str(i)
- cross = add_phenotype(cross, covar_as_string, col_name)
-
- if i < (len(covariate_list) - 1):
- covar_name_string += '"' + col_name + '", '
- else:
- covar_name_string += '"' + col_name + '"'
-
- covar_name_string += ")"
-
- covars_ob = pull_var("trait_covars", cross, covar_name_string)
-
- return cross, covars_ob
-
-def create_marker_covariates(control_marker, cross):
- ro.globalenv["the_cross"] = cross
- ro.r('genotypes <- pull.geno(the_cross)') # Get the genotype matrix
- userinputS = control_marker.replace(" ", "").split(",") # TODO: sanitize user input, Never Ever trust a user
- covariate_names = ', '.join('"{0}"'.format(w) for w in userinputS)
- ro.r('covnames <- c(' + covariate_names + ')')
- ro.r('covInGeno <- which(covnames %in% colnames(genotypes))')
- ro.r('covnames <- covnames[covInGeno]')
- ro.r("cat('covnames (purged): ', covnames,'\n')")
- ro.r('marker_covars <- genotypes[,covnames]') # Get the covariate matrix by using the marker name as index to the genotype file
-
- return ro.r["marker_covars"]
-
-def process_pair_scan_results(result):
- pair_scan_results = []
-
- result = result[1]
- output = [tuple([result[j][i] for j in range(result.ncol)]) for i in range(result.nrow)]
-
- for i, line in enumerate(result.iter_row()):
- marker = {}
- marker['name'] = result.rownames[i]
- marker['chr1'] = output[i][0]
- marker['Mb'] = output[i][1]
- marker['chr2'] = int(output[i][2])
- pair_scan_results.append(marker)
-
- return pair_scan_results
-
-def process_rqtl_perm_results(num_perm, results):
- perm_vals = []
- for line in str(results).split("\n")[1:(num_perm+1)]:
- #print("R/qtl permutation line:", line.split())
- perm_vals.append(float(line.split()[1]))
-
- perm_output = perm_vals
- suggestive = np.percentile(np.array(perm_vals), 67)
- significant = np.percentile(np.array(perm_vals), 95)
-
- return perm_output, suggestive, significant
-
-def process_rqtl_results(result, species_name): # TODO: how to make this a one liner and not copy the stuff in a loop
- qtl_results = []
- output = [tuple([result[j][i] for j in range(result.ncol)]) for i in range(result.nrow)]
-
- for i, line in enumerate(result.iter_row()):
- marker = {}
- marker['name'] = result.rownames[i]
- if species_name == "mouse" and output[i][0] == 20: #ZS: This is awkward, but I'm not sure how to change the 20s to Xs in the RData file
- marker['chr'] = "X"
- else:
- marker['chr'] = output[i][0]
- marker['cM'] = output[i][1]
- marker['Mb'] = output[i][1]
- marker['lod_score'] = output[i][2]
- qtl_results.append(marker)
-
- return qtl_results \ No newline at end of file
+import rpy2.robjects as ro
+import rpy2.robjects.numpy2ri as np2r
+import numpy as np
+
+from base.webqtlConfig import TMPDIR
+from base.trait import GeneralTrait
+from base.data_set import create_dataset
+from utility import webqtlUtil
+from utility.tools import locate, TEMPDIR
+
+import utility.logger
+logger = utility.logger.getLogger(__name__ )
+
+def run_rqtl_geno(vals, samples, dataset, method, model, permCheck, num_perm, perm_strata_list, do_control, control_marker, manhattan_plot, pair_scan, cofactors):
+ ## Get pointers to some common R functions
+ r_library = ro.r["library"] # Map the library function
+ r_c = ro.r["c"] # Map the c function
+ plot = ro.r["plot"] # Map the plot function
+ png = ro.r["png"] # Map the png function
+ dev_off = ro.r["dev.off"] # Map the device off function
+
+ print(r_library("qtl")) # Load R/qtl
+
+ ## Get pointers to some R/qtl functions
+ scanone = ro.r["scanone"] # Map the scanone function
+ scantwo = ro.r["scantwo"] # Map the scantwo function
+ calc_genoprob = ro.r["calc.genoprob"] # Map the calc.genoprob function
+
+ crossname = dataset.group.name
+ #try:
+ # generate_cross_from_rdata(dataset)
+ # read_cross_from_rdata = ro.r["generate_cross_from_rdata"] # Map the local read_cross_from_rdata function
+ # genofilelocation = locate(crossname + ".RData", "genotype/rdata")
+ # cross_object = read_cross_from_rdata(genofilelocation) # Map the local GENOtoCSVR function
+ #except:
+ generate_cross_from_geno(dataset)
+ GENOtoCSVR = ro.r["GENOtoCSVR"] # Map the local GENOtoCSVR function
+ crossfilelocation = TMPDIR + crossname + ".cross"
+ if dataset.group.genofile:
+ genofilelocation = locate(dataset.group.genofile, "genotype")
+ else:
+ genofilelocation = locate(dataset.group.name + ".geno", "genotype")
+ cross_object = GENOtoCSVR(genofilelocation, crossfilelocation) # TODO: Add the SEX if that is available
+
+ the_version = ro.r["packageVersion('qtl')"]
+ logger.debug("THE R VERSION:", the_version)
+
+ ro.r('save.image(file = "/home/zas1024/gn2-zach/tmp/HET3_cofactor_test2.RData")')
+
+ if manhattan_plot:
+ cross_object = calc_genoprob(cross_object)
+ else:
+ cross_object = calc_genoprob(cross_object, step=1, stepwidth="max")
+
+ pheno_string = sanitize_rqtl_phenotype(vals)
+
+ cross_object = add_phenotype(cross_object, pheno_string, "the_pheno") # Add the phenotype
+
+ # Scan for QTLs
+ marker_covars = create_marker_covariates(control_marker, cross_object) # Create the additive covariate markers
+
+ if cofactors != "":
+ cross_object, trait_covars = add_cofactors(cross_object, dataset, cofactors, samples) # Create the covariates from selected traits
+ ro.r('all_covars <- cbind(marker_covars, trait_covars)')
+ else:
+ ro.r('all_covars <- marker_covars')
+
+ covars = ro.r['all_covars']
+
+ if pair_scan:
+ if do_control == "true":
+ logger.info("Using covariate"); result_data_frame = scantwo(cross_object, pheno = "the_pheno", addcovar = covars, model=model, method=method, n_cluster = 16)
+ else:
+ logger.info("No covariates"); result_data_frame = scantwo(cross_object, pheno = "the_pheno", model=model, method=method, n_cluster = 16)
+
+ pair_scan_filename = webqtlUtil.genRandStr("scantwo_") + ".png"
+ png(file=TEMPDIR+pair_scan_filename)
+ plot(result_data_frame)
+ dev_off()
+
+ return process_pair_scan_results(result_data_frame)
+ else:
+ if do_control == "true" or cofactors != "":
+ logger.info("Using covariate"); result_data_frame = scanone(cross_object, pheno = "the_pheno", addcovar = covars, model=model, method=method)
+ else:
+ logger.info("No covariates"); result_data_frame = scanone(cross_object, pheno = "the_pheno", model=model, method=method)
+
+ if num_perm > 0 and permCheck == "ON": # Do permutation (if requested by user)
+ if len(perm_strata_list) > 0: #ZS: The strata list would only be populated if "Stratified" was checked on before mapping
+ cross_object, strata_ob = add_perm_strata(cross_object, perm_strata_list)
+ if do_control == "true" or cofactors != "":
+ perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", addcovar = covars, n_perm = int(num_perm), perm_strata = strata_ob, model=model, method=method)
+ else:
+ perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", n_perm = num_perm, perm_strata = strata_ob, model=model, method=method)
+ else:
+ if do_control == "true" or cofactors != "":
+ perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", addcovar = covars, n_perm = int(num_perm), model=model, method=method)
+ else:
+ perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", n_perm = num_perm, model=model, method=method)
+
+ perm_output, suggestive, significant = process_rqtl_perm_results(num_perm, perm_data_frame) # Functions that sets the thresholds for the webinterface
+ the_scale = check_mapping_scale(genofilelocation)
+ return perm_output, suggestive, significant, process_rqtl_results(result_data_frame, dataset.group.species), the_scale
+ else:
+ the_scale = check_mapping_scale(genofilelocation)
+ return process_rqtl_results(result_data_frame, dataset.group.species), the_scale
+
+def generate_cross_from_rdata(dataset):
+ rdata_location = locate(dataset.group.name + ".RData", "genotype/rdata")
+ ro.r("""
+ generate_cross_from_rdata <- function(filename = '%s') {
+ load(file=filename)
+ cross = cunique
+ return(cross)
+ }
+ """ % (rdata_location))
+
+def generate_cross_from_geno(dataset): # TODO: Need to figure out why some genofiles have the wrong format and don't convert properly
+
+ ro.r("""
+ trim <- function( x ) { gsub("(^[[:space:]]+|[[:space:]]+$)", "", x) }
+ getGenoCode <- function(header, name = 'unk'){
+ mat = which(unlist(lapply(header,function(x){ length(grep(paste('@',name,sep=''), x)) })) == 1)
+ return(trim(strsplit(header[mat],':')[[1]][2]))
+ }
+ GENOtoCSVR <- function(genotypes = '%s', out = 'cross.csvr', phenotype = NULL, sex = NULL, verbose = FALSE){
+ header = readLines(genotypes, 40) # Assume a geno header is not longer than 40 lines
+ toskip = which(unlist(lapply(header, function(x){ length(grep("Chr\t", x)) })) == 1)-1 # Major hack to skip the geno headers
+ type <- getGenoCode(header, 'type')
+ if(type == '4-way'){
+ genocodes <- c('1','2','3','4')
+ } else {
+ genocodes <- c(getGenoCode(header, 'mat'), getGenoCode(header, 'het'), getGenoCode(header, 'pat')) # Get the genotype codes
+ }
+ genodata <- read.csv(genotypes, sep='\t', skip=toskip, header=TRUE, na.strings=getGenoCode(header,'unk'), colClasses='character', comment.char = '#')
+ cat('Genodata:', toskip, " ", dim(genodata), genocodes, '\n')
+ if(is.null(phenotype)) phenotype <- runif((ncol(genodata)-4)) # If there isn't a phenotype, generate a random one
+ if(is.null(sex)) sex <- rep('m', (ncol(genodata)-4)) # If there isn't a sex phenotype, treat all as males
+ outCSVR <- rbind(c('Pheno', '', '', phenotype), # Phenotype
+ c('sex', '', '', sex), # Sex phenotype for the mice
+ cbind(genodata[,c('Locus','Chr', 'cM')], genodata[, 5:ncol(genodata)])) # Genotypes
+ write.table(outCSVR, file = out, row.names=FALSE, col.names=FALSE,quote=FALSE, sep=',') # Save it to a file
+ require(qtl)
+ cross = read.cross(file=out, 'csvr', genotypes=genocodes, crosstype="4way", convertXdata=FALSE) # Load the created cross file using R/qtl read.cross
+ #cross = read.cross(file=out, 'csvr', genotypes=genocodes) # Load the created cross file using R/qtl read.cross
+ if(type == 'riset') cross <- convert2riself(cross) # If its a RIL, convert to a RIL in R/qtl
+ return(cross)
+ }
+ """ % (dataset.group.genofile))
+
+def add_perm_strata(cross, perm_strata):
+ col_string = 'c("the_strata")'
+ perm_strata_string = "c("
+ for item in perm_strata:
+ perm_strata_string += str(item) + ","
+
+ perm_strata_string = perm_strata_string[:-1] + ")"
+
+ cross = add_phenotype(cross, perm_strata_string, "the_strata")
+
+ strata_ob = pull_var("perm_strata", cross, col_string)
+
+ return cross, strata_ob
+
+def sanitize_rqtl_phenotype(vals):
+ pheno_as_string = "c("
+ for i, val in enumerate(vals):
+ if val == "x":
+ if i < (len(vals) - 1):
+ pheno_as_string += "NA,"
+ else:
+ pheno_as_string += "NA"
+ else:
+ if i < (len(vals) - 1):
+ pheno_as_string += str(val) + ","
+ else:
+ pheno_as_string += str(val)
+ pheno_as_string += ")"
+
+ return pheno_as_string
+
+def add_phenotype(cross, pheno_as_string, col_name):
+ ro.globalenv["the_cross"] = cross
+ ro.r('the_cross$pheno <- cbind(pull.pheno(the_cross), ' + col_name + ' = '+ pheno_as_string +')')
+ return ro.r["the_cross"]
+
+def pull_var(var_name, cross, var_string):
+ ro.globalenv["the_cross"] = cross
+ ro.r(var_name +' <- pull.pheno(the_cross, ' + var_string + ')')
+
+ return ro.r[var_name]
+
+def add_cofactors(cross, this_dataset, covariates, samples):
+ ro.numpy2ri.activate()
+
+ covariate_list = covariates.split(",")
+ covar_name_string = "c("
+ for i, covariate in enumerate(covariate_list):
+ this_covar_data = []
+ covar_as_string = "c("
+ trait_name = covariate.split(":")[0]
+ dataset_ob = create_dataset(covariate.split(":")[1])
+ trait_ob = GeneralTrait(dataset=dataset_ob,
+ name=trait_name,
+ cellid=None)
+
+ this_dataset.group.get_samplelist()
+ trait_samples = this_dataset.group.samplelist
+ trait_sample_data = trait_ob.data
+ for index, sample in enumerate(trait_samples):
+ if sample in samples:
+ if sample in trait_sample_data:
+ sample_value = trait_sample_data[sample].value
+ this_covar_data.append(sample_value)
+ else:
+ this_covar_data.append("NA")
+
+ for j, item in enumerate(this_covar_data):
+ if j < (len(this_covar_data) - 1):
+ covar_as_string += str(item) + ","
+ else:
+ covar_as_string += str(item)
+
+ covar_as_string += ")"
+
+ col_name = "covar_" + str(i)
+ cross = add_phenotype(cross, covar_as_string, col_name)
+
+ if i < (len(covariate_list) - 1):
+ covar_name_string += '"' + col_name + '", '
+ else:
+ covar_name_string += '"' + col_name + '"'
+
+ covar_name_string += ")"
+
+ covars_ob = pull_var("trait_covars", cross, covar_name_string)
+
+ return cross, covars_ob
+
+def create_marker_covariates(control_marker, cross):
+ ro.globalenv["the_cross"] = cross
+ ro.r('genotypes <- pull.geno(the_cross)') # Get the genotype matrix
+ userinputS = control_marker.replace(" ", "").split(",") # TODO: sanitize user input, Never Ever trust a user
+ covariate_names = ', '.join('"{0}"'.format(w) for w in userinputS)
+ ro.r('covnames <- c(' + covariate_names + ')')
+ ro.r('covInGeno <- which(covnames %in% colnames(genotypes))')
+ ro.r('covnames <- covnames[covInGeno]')
+ ro.r("cat('covnames (purged): ', covnames,'\n')")
+ ro.r('marker_covars <- genotypes[,covnames]') # Get the covariate matrix by using the marker name as index to the genotype file
+
+ return ro.r["marker_covars"]
+
+def process_pair_scan_results(result):
+ pair_scan_results = []
+
+ result = result[1]
+ output = [tuple([result[j][i] for j in range(result.ncol)]) for i in range(result.nrow)]
+
+ for i, line in enumerate(result.iter_row()):
+ marker = {}
+ marker['name'] = result.rownames[i]
+ marker['chr1'] = output[i][0]
+ marker['Mb'] = output[i][1]
+ marker['chr2'] = int(output[i][2])
+ pair_scan_results.append(marker)
+
+ return pair_scan_results
+
+def process_rqtl_perm_results(num_perm, results):
+ perm_vals = []
+ for line in str(results).split("\n")[1:(num_perm+1)]:
+ #print("R/qtl permutation line:", line.split())
+ perm_vals.append(float(line.split()[1]))
+
+ perm_output = perm_vals
+ suggestive = np.percentile(np.array(perm_vals), 67)
+ significant = np.percentile(np.array(perm_vals), 95)
+
+ return perm_output, suggestive, significant
+
+def process_rqtl_results(result, species_name): # TODO: how to make this a one liner and not copy the stuff in a loop
+ qtl_results = []
+ output = [tuple([result[j][i] for j in range(result.ncol)]) for i in range(result.nrow)]
+
+ for i, line in enumerate(result.iter_row()):
+ marker = {}
+ marker['name'] = result.rownames[i]
+ if species_name == "mouse" and output[i][0] == 20: #ZS: This is awkward, but I'm not sure how to change the 20s to Xs in the RData file
+ marker['chr'] = "X"
+ else:
+ marker['chr'] = output[i][0]
+ marker['cM'] = output[i][1]
+ marker['Mb'] = output[i][1]
+ marker['lod_score'] = output[i][2]
+ qtl_results.append(marker)
+
+ return qtl_results
+
+def check_mapping_scale(genofile_location):
+ scale = "physic"
+ with open(genofile_location, "r") as geno_fh:
+ for line in geno_fh:
+ if line[0] == "@" or line[0] == "#":
+
+ if "@scale" in line:
+ scale = line.split(":")[1].strip()
+ break
+ else:
+ continue
+ else:
+ break
+
+ return scale \ No newline at end of file
diff --git a/wqflask/wqflask/marker_regression/run_mapping.py b/wqflask/wqflask/marker_regression/run_mapping.py
index 5f7710ab..8fea295f 100644
--- a/wqflask/wqflask/marker_regression/run_mapping.py
+++ b/wqflask/wqflask/marker_regression/run_mapping.py
@@ -257,9 +257,13 @@ class RunMapping(object):
#if start_vars['pair_scan'] == "true":
# self.pair_scan = True
if self.permCheck and self.num_perm > 0:
- self.perm_output, self.suggestive, self.significant, results= rqtl_mapping.run_rqtl_geno(self.vals, self.samples, self.dataset, self.mapping_scale, self.method, self.model, self.permCheck, self.num_perm, perm_strata, self.do_control, self.control_marker, self.manhattan_plot, self.pair_scan, self.covariates)
+ self.perm_output, self.suggestive, self.significant, results= rqtl_mapping.run_rqtl_geno(self.vals, self.samples, self.dataset, self.method, self.model, self.permCheck, self.num_perm, perm_strata, self.do_control, self.control_marker, self.manhattan_plot, self.pair_scan, self.covariates)
else:
- results = rqtl_mapping.run_rqtl_geno(self.vals, self.samples, self.dataset, self.mapping_scale, self.method, self.model, self.permCheck, self.num_perm, perm_strata, self.do_control, self.control_marker, self.manhattan_plot, self.pair_scan, self.covariates)
+ results = rqtl_mapping.run_rqtl_geno(self.vals, self.samples, self.dataset, self.method, self.model, self.permCheck, self.num_perm, perm_strata, self.do_control, self.control_marker, self.manhattan_plot, self.pair_scan, self.covariates)
+ # if self.permCheck and self.num_perm > 0:
+ # self.perm_output, self.suggestive, self.significant, results= rqtl_mapping.run_rqtl_geno(self.vals, self.samples, self.dataset, self.mapping_scale, self.method, self.model, self.permCheck, self.num_perm, perm_strata, self.do_control, self.control_marker, self.manhattan_plot, self.pair_scan, self.covariates)
+ # else:
+ # results = rqtl_mapping.run_rqtl_geno(self.vals, self.samples, self.dataset, self.mapping_scale, self.method, self.model, self.permCheck, self.num_perm, perm_strata, self.do_control, self.control_marker, self.manhattan_plot, self.pair_scan, self.covariates)
elif self.mapping_method == "reaper":
if "startMb" in start_vars: #ZS: Check if first time page loaded, so it can default to ON
if "additiveCheck" in start_vars:
diff --git a/wqflask/wqflask/show_trait/show_trait.py b/wqflask/wqflask/show_trait/show_trait.py
index 40e344b8..f73079f8 100644
--- a/wqflask/wqflask/show_trait/show_trait.py
+++ b/wqflask/wqflask/show_trait/show_trait.py
@@ -175,10 +175,7 @@ class ShowTrait(object):
if self.genofiles:
self.scales_in_geno = get_genotype_scales(self.genofiles)
else:
- self.scales_in_geno = get_genotype_scales(self.dataset.group + ".geno")
-
- if len(self.scales_in_geno) < 2:
- hddn['mapping_scale'] = self.scales_in_geno[self.scales_in_geno.keys()[0]][0]
+ self.scales_in_geno = get_genotype_scales(self.dataset.group.name + ".geno")
else:
self.scales_in_geno = {}
@@ -255,6 +252,8 @@ class ShowTrait(object):
hddn['compare_traits'] = []
hddn['export_data'] = ""
hddn['export_format'] = "excel"
+ if len(self.scales_in_geno) < 2:
+ hddn['mapping_scale'] = self.scales_in_geno[self.scales_in_geno.keys()[0]][0]
# We'll need access to this_trait and hddn in the Jinja2 Template, so we put it inside self
self.hddn = hddn