about summary refs log tree commit diff
path: root/wqflask/wqflask/api/mapping.py
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask/wqflask/api/mapping.py')
-rw-r--r--wqflask/wqflask/api/mapping.py263
1 files changed, 141 insertions, 122 deletions
diff --git a/wqflask/wqflask/api/mapping.py b/wqflask/wqflask/api/mapping.py
index 83c61796..d830cefc 100644
--- a/wqflask/wqflask/api/mapping.py
+++ b/wqflask/wqflask/api/mapping.py
@@ -1,122 +1,141 @@
-from __future__ import absolute_import, division, print_function

-

-import string

-

-from base import data_set

-from base import webqtlConfig

-from base.trait import GeneralTrait, retrieve_sample_data

-

-from utility import helper_functions

-from wqflask.marker_regression import gemma_mapping, rqtl_mapping, qtlreaper_mapping, plink_mapping

-

-import utility.logger

-logger = utility.logger.getLogger(__name__ )

-

-def do_mapping_for_api(start_vars):

-    assert('db' in start_vars)

-    assert('trait_id' in start_vars)

-

-    dataset = data_set.create_dataset(dataset_name = start_vars['db'])

-    dataset.group.get_markers()

-    this_trait = GeneralTrait(dataset = dataset, name = start_vars['trait_id'])

-    this_trait = retrieve_sample_data(this_trait, dataset)

-

-    samples = []

-    vals = []

-

-    for sample in dataset.group.samplelist:

-        in_trait_data = False

-        for item in this_trait.data:

-            if this_trait.data[item].name == sample:

-                value = str(this_trait.data[item].value)

-                samples.append(item)

-                vals.append(value)

-                in_trait_data = True

-                break

-        if not in_trait_data:

-            vals.append("x")

-

-    mapping_params = initialize_parameters(start_vars, dataset, this_trait)

-

-    covariates = "" #ZS: It seems to take an empty string as default. This should probably be changed.

-

-    if mapping_params['mapping_method'] == "gemma":

-        header_row = ["name", "chr", "Mb", "lod_score", "p_value"]

-        if mapping_params['use_loco'] == "True": #ZS: gemma_mapping returns both results and the filename for LOCO, so need to only grab the former for api

-            result_markers = gemma_mapping.run_gemma(this_trait, dataset, samples, vals, covariates, mapping_params['use_loco'], mapping_params['maf'])[0]

-        else:

-            result_markers = gemma_mapping.run_gemma(this_trait, dataset, samples, vals, covariates, mapping_params['use_loco'], mapping_params['maf'])

-    elif mapping_params['mapping_method'] == "rqtl":

-        header_row = ["name", "chr", "Mb", "lod_score"]

-        if mapping_params['num_perm'] > 0:

-            _sperm_output, _suggestive, _significant, result_markers = rqtl_mapping.run_rqtl_geno(vals, dataset, mapping_params['rqtl_method'], mapping_params['rqtl_model'], 

-                                                                                        mapping_params['perm_check'], mapping_params['num_perm'], 

-                                                                                        mapping_params['do_control'], mapping_params['control_marker'], 

-                                                                                        mapping_params['manhattan_plot'], mapping_params['pair_scan'])

-        else:

-            result_markers = rqtl_mapping.run_rqtl_geno(vals, dataset, mapping_params['rqtl_method'], mapping_params['rqtl_model'], 

-                                                 mapping_params['perm_check'], mapping_params['num_perm'], 

-                                                 mapping_params['do_control'], mapping_params['control_marker'], 

-                                                 mapping_params['manhattan_plot'], mapping_params['pair_scan'])

-

-    output_rows = []

-    output_rows.append(header_row)

-    for marker in result_markers:

-        this_row = [marker[header] for header in header_row]

-        output_rows.append(this_row)

-

-    return output_rows

-

-

-def initialize_parameters(start_vars, dataset, this_trait):

-    mapping_params = {}

-    mapping_params['mapping_method'] = "gemma"

-    if 'method' in start_vars:

-        mapping_params['mapping_method'] = start_vars['method']

-

-    if mapping_params['mapping_method'] == "rqtl":

-        mapping_params['rqtl_method'] = "hk"

-        mapping_params['rqtl_model'] = "normal"

-        mapping_params['do_control'] = False

-        mapping_params['control_marker'] = ""

-        mapping_params['manhattan_plot'] = True

-        mapping_params['pair_scan'] = False

-        if 'rqtl_method' in start_vars:

-            mapping_params['rqtl_method'] = start_vars['rqtl_method']

-        if 'rqtl_model' in start_vars:

-            mapping_params['rqtl_model'] = start_vars['rqtl_model']

-        if 'control_marker' in start_vars:

-            mapping_params['control_marker'] = start_vars['control_marker']

-            mapping_params['do_control'] = True

-        if 'pair_scan' in start_vars:

-            if start_vars['pair_scan'].lower() == "true":

-                mapping_params['pair_scan'] = True

-

-        if 'interval_mapping' in start_vars:

-            if start_vars['interval_mapping'].lower() == "true":

-                mapping_params['manhattan_plot'] = False

-        elif 'manhattan_plot' in start_vars:

-            if start_vars['manhattan_plot'].lower() != "true":

-                mapping_params['manhattan_plot'] = False

-

-    mapping_params['maf'] = 0.01

-    if 'maf' in start_vars:

-        mapping_params['maf'] = start_vars['maf'] # Minor allele frequency

-

-    mapping_params['use_loco'] = False

-    if 'use_loco' in start_vars:

-        if start_vars['use_loco'].lower() != "false":

-            mapping_params['use_loco'] = start_vars['use_loco']

-

-    mapping_params['num_perm'] = 0

-    mapping_params['perm_check'] = False

-    if 'num_perm' in start_vars:

-        try:

-            mapping_params['num_perm'] = int(start_vars['num_perm'])

-            mapping_params['perm_check'] = "ON"

-        except:

-            mapping_params['perm_check'] = False

-

-    return mapping_params

-    

-

+from __future__ import absolute_import, division, print_function
+
+import string
+
+from base import data_set
+from base import webqtlConfig
+from base.trait import GeneralTrait, retrieve_sample_data
+
+from utility import helper_functions
+from wqflask.marker_regression import gemma_mapping, rqtl_mapping, qtlreaper_mapping, plink_mapping
+
+import utility.logger
+logger = utility.logger.getLogger(__name__ )
+
+def do_mapping_for_api(start_vars):
+    assert('db' in start_vars)
+    assert('trait_id' in start_vars)
+
+    dataset = data_set.create_dataset(dataset_name = start_vars['db'])
+    dataset.group.get_markers()
+    this_trait = GeneralTrait(dataset = dataset, name = start_vars['trait_id'])
+    this_trait = retrieve_sample_data(this_trait, dataset)
+
+    samples = []
+    vals = []
+
+    for sample in dataset.group.samplelist:
+        in_trait_data = False
+        for item in this_trait.data:
+            if this_trait.data[item].name == sample:
+                value = str(this_trait.data[item].value)
+                samples.append(item)
+                vals.append(value)
+                in_trait_data = True
+                break
+        if not in_trait_data:
+            vals.append("x")
+
+    mapping_params = initialize_parameters(start_vars, dataset, this_trait)
+
+    covariates = "" #ZS: It seems to take an empty string as default. This should probably be changed.
+
+    if mapping_params['mapping_method'] == "gemma":
+        header_row = ["name", "chr", "Mb", "lod_score", "p_value"]
+        if mapping_params['use_loco'] == "True": #ZS: gemma_mapping returns both results and the filename for LOCO, so need to only grab the former for api
+            result_markers = gemma_mapping.run_gemma(this_trait, dataset, samples, vals, covariates, mapping_params['use_loco'], mapping_params['maf'])[0]
+        else:
+            result_markers = gemma_mapping.run_gemma(this_trait, dataset, samples, vals, covariates, mapping_params['use_loco'], mapping_params['maf'])
+    elif mapping_params['mapping_method'] == "rqtl":
+        header_row = ["name", "chr", "cM", "lod_score"]
+        if mapping_params['num_perm'] > 0:
+            _sperm_output, _suggestive, _significant, result_markers = rqtl_mapping.run_rqtl_geno(vals, dataset, mapping_params['rqtl_method'], mapping_params['rqtl_model'],
+                                                                                        mapping_params['perm_check'], mapping_params['num_perm'],
+                                                                                        mapping_params['do_control'], mapping_params['control_marker'],
+                                                                                        mapping_params['manhattan_plot'], mapping_params['pair_scan'])
+        else:
+            result_markers = rqtl_mapping.run_rqtl_geno(vals, dataset, mapping_params['rqtl_method'], mapping_params['rqtl_model'],
+                                                 mapping_params['perm_check'], mapping_params['num_perm'],
+                                                 mapping_params['do_control'], mapping_params['control_marker'],
+                                                 mapping_params['manhattan_plot'], mapping_params['pair_scan'])
+
+    if mapping_params['limit_to']:
+        result_markers = result_markers[:mapping_params['limit_to']]
+
+    if mapping_params['format'] == "csv":
+        output_rows = []
+        output_rows.append(header_row)
+        for marker in result_markers:
+            this_row = [marker[header] for header in header_row]
+            output_rows.append(this_row)
+
+        return output_rows, mapping_params['format']
+    elif mapping_params['format'] == "json":
+        return result_markers, mapping_params['format']
+    else:
+        return result_markers, None
+
+
+
+def initialize_parameters(start_vars, dataset, this_trait):
+    mapping_params = {}
+
+    mapping_params['format'] = "json"
+    if 'format' in start_vars:
+        mapping_params['format'] = start_vars['format']
+
+    mapping_params['limit_to'] = False
+    if 'limit_to' in start_vars:
+        if start_vars['limit_to'].isdigit():
+            mapping_params['limit_to'] = int(start_vars['limit_to'])
+
+    mapping_params['mapping_method'] = "gemma"
+    if 'method' in start_vars:
+        mapping_params['mapping_method'] = start_vars['method']
+
+    if mapping_params['mapping_method'] == "rqtl":
+        mapping_params['rqtl_method'] = "hk"
+        mapping_params['rqtl_model'] = "normal"
+        mapping_params['do_control'] = False
+        mapping_params['control_marker'] = ""
+        mapping_params['manhattan_plot'] = True
+        mapping_params['pair_scan'] = False
+        if 'rqtl_method' in start_vars:
+            mapping_params['rqtl_method'] = start_vars['rqtl_method']
+        if 'rqtl_model' in start_vars:
+            mapping_params['rqtl_model'] = start_vars['rqtl_model']
+        if 'control_marker' in start_vars:
+            mapping_params['control_marker'] = start_vars['control_marker']
+            mapping_params['do_control'] = True
+        if 'pair_scan' in start_vars:
+            if start_vars['pair_scan'].lower() == "true":
+                mapping_params['pair_scan'] = True
+
+        if 'interval_mapping' in start_vars:
+            if start_vars['interval_mapping'].lower() == "true":
+                mapping_params['manhattan_plot'] = False
+        elif 'manhattan_plot' in start_vars:
+            if start_vars['manhattan_plot'].lower() != "true":
+                mapping_params['manhattan_plot'] = False
+
+    mapping_params['maf'] = 0.01
+    if 'maf' in start_vars:
+        mapping_params['maf'] = start_vars['maf'] # Minor allele frequency
+
+    mapping_params['use_loco'] = True
+    if 'use_loco' in start_vars:
+        if (start_vars['use_loco'].lower() == "false") or (start_vars['use_loco'].lower() == "no"):
+            mapping_params['use_loco'] = False
+
+    mapping_params['num_perm'] = 0
+    mapping_params['perm_check'] = False
+    if 'num_perm' in start_vars:
+        try:
+            mapping_params['num_perm'] = int(start_vars['num_perm'])
+            mapping_params['perm_check'] = "ON"
+        except:
+            mapping_params['perm_check'] = False
+
+    return mapping_params
+
+