aboutsummaryrefslogtreecommitdiff
path: root/wqflask/maintenance/quantile_normalize.py
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask/maintenance/quantile_normalize.py')
-rw-r--r--wqflask/maintenance/quantile_normalize.py18
1 files changed, 0 insertions, 18 deletions
diff --git a/wqflask/maintenance/quantile_normalize.py b/wqflask/maintenance/quantile_normalize.py
index 0cc963e5..32780ca6 100644
--- a/wqflask/maintenance/quantile_normalize.py
+++ b/wqflask/maintenance/quantile_normalize.py
@@ -5,14 +5,10 @@ import urllib.parse
import numpy as np
import pandas as pd
-from elasticsearch import Elasticsearch, TransportError
-from elasticsearch.helpers import bulk
from flask import Flask, g, request
from wqflask import app
-from utility.elasticsearch_tools import get_elasticsearch_connection
-from utility.tools import ELASTICSEARCH_HOST, ELASTICSEARCH_PORT, SQL_URI
def parse_db_uri():
@@ -106,20 +102,6 @@ if __name__ == '__main__':
Conn = MySQLdb.Connect(**parse_db_uri())
Cursor = Conn.cursor()
- # es = Elasticsearch([{
- # "host": ELASTICSEARCH_HOST, "port": ELASTICSEARCH_PORT
- # }], timeout=60) if (ELASTICSEARCH_HOST and ELASTICSEARCH_PORT) else None
-
- es = get_elasticsearch_connection(for_user=False)
-
- #input_filename = "/home/zas1024/cfw_data/" + sys.argv[1] + ".txt"
- #input_df = create_dataframe(input_filename)
- #output_df = quantileNormalize(input_df)
-
- #output_df.to_csv('quant_norm.csv', sep='\t')
-
- #out_filename = sys.argv[1][:-4] + '_quantnorm.txt'
-
success, _ = bulk(es, set_data(sys.argv[1]))
response = es.search(