aboutsummaryrefslogtreecommitdiff
path: root/web/webqtl/correlation
diff options
context:
space:
mode:
Diffstat (limited to 'web/webqtl/correlation')
-rwxr-xr-xweb/webqtl/correlation/CorrelationPage.py1958
-rwxr-xr-xweb/webqtl/correlation/PartialCorrDBPage.py1359
-rwxr-xr-xweb/webqtl/correlation/PartialCorrInputPage.py484
-rwxr-xr-xweb/webqtl/correlation/PartialCorrTraitPage.py310
-rwxr-xr-xweb/webqtl/correlation/PlotCorrelationPage.py683
-rwxr-xr-xweb/webqtl/correlation/__init__.py0
-rwxr-xr-xweb/webqtl/correlation/correlationFunction.py923
7 files changed, 5717 insertions, 0 deletions
diff --git a/web/webqtl/correlation/CorrelationPage.py b/web/webqtl/correlation/CorrelationPage.py
new file mode 100755
index 00000000..8ce669cb
--- /dev/null
+++ b/web/webqtl/correlation/CorrelationPage.py
@@ -0,0 +1,1958 @@
+# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+#
+# This program is free software: you can redistribute it and/or modify it
+# under the terms of the GNU Affero General Public License
+# as published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+# See the GNU Affero General Public License for more details.
+#
+# This program is available from Source Forge: at GeneNetwork Project
+# (sourceforge.net/projects/genenetwork/).
+#
+# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
+# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
+#
+#
+#
+# This module is used by GeneNetwork project (www.genenetwork.org)
+#
+# Created by GeneNetwork Core Team 2010/08/10
+#
+# Last updated by NL 2011/02/11
+
+import string
+from math import *
+import cPickle
+import os
+import time
+import pyXLWriter as xl
+import pp
+import math
+
+from htmlgen import HTMLgen2 as HT
+import reaper
+
+from base import webqtlConfig
+from utility.THCell import THCell
+from utility.TDCell import TDCell
+from base.webqtlTrait import webqtlTrait
+from base.webqtlDataset import webqtlDataset
+from base.templatePage import templatePage
+from utility import webqtlUtil
+from dbFunction import webqtlDatabaseFunction
+import utility.webqtlUtil #this is for parallel computing only.
+from correlation import correlationFunction
+
+
+class CorrelationPage(templatePage):
+
+ corrMinInformative = 4
+
+ def __init__(self, fd):
+
+ #XZ, 01/14/2009: This method is for parallel computing only.
+ #XZ: It is supposed to be called when "Genetic Correlation, Pearson's r" (method 1)
+ #XZ: or "Genetic Correlation, Spearman's rho" (method 2) is selected
+ def compute_corr( input_nnCorr, input_trait, input_list, computing_method):
+
+ allcorrelations = []
+
+ for line in input_list:
+ tokens = line.split('","')
+ tokens[-1] = tokens[-1][:-2] #remove the last "
+ tokens[0] = tokens[0][1:] #remove the first "
+
+ traitdataName = tokens[0]
+ database_trait = tokens[1:]
+
+ if computing_method == "1": #XZ: Pearson's r
+ corr,nOverlap = utility.webqtlUtil.calCorrelationText(input_trait, database_trait, input_nnCorr)
+ else: #XZ: Spearman's rho
+ corr,nOverlap = utility.webqtlUtil.calCorrelationRankText(input_trait, database_trait, input_nnCorr)
+ traitinfo = [traitdataName,corr,nOverlap]
+ allcorrelations.append(traitinfo)
+
+ return allcorrelations
+
+
+ templatePage.__init__(self, fd)
+
+ if not self.openMysql():
+ return
+
+ if not fd.genotype:
+ fd.readGenotype()
+
+ #XZ, 09/18/2008: get the information such as value, variance of the input strain names from the form.
+ if fd.allstrainlist:
+ mdpchoice = fd.formdata.getvalue('MDPChoice')
+ #XZ, in HTML source code, it is "BXD Only" or "BXH only", and so on
+ if mdpchoice == "1":
+ strainlist = fd.f1list + fd.strainlist
+ #XZ, in HTML source code, it is "MDP Only"
+ elif mdpchoice == "2":
+ strainlist = []
+ strainlist2 = fd.f1list + fd.strainlist
+ for strain in fd.allstrainlist:
+ if strain not in strainlist2:
+ strainlist.append(strain)
+ #So called MDP Panel
+ if strainlist:
+ strainlist = fd.f1list+fd.parlist+strainlist
+ #XZ, in HTML source code, it is "All Cases"
+ else:
+ strainlist = fd.allstrainlist
+ #XZ, 09/18/2008: put the trait data into dictionary fd.allTraitData
+ fd.readData(fd.allstrainlist)
+ else:
+ mdpchoice = None
+ strainlist = fd.strainlist
+ #XZ, 09/18/2008: put the trait data into dictionary fd.allTraitData
+ fd.readData()
+
+ #XZ, 3/16/2010: variable RISet must be pass by the form
+ RISet = fd.RISet
+ #XZ, 12/12/2008: get species infomation
+ species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=RISet)
+
+ #XZ, 09/18/2008: get all information about the user selected database.
+ self.target_db_name = fd.formdata.getvalue('database')
+
+ try:
+ self.db = webqtlDataset(self.target_db_name, self.cursor)
+ except:
+ heading = "Correlation Table"
+ detail = ["The database you just requested has not been established yet."]
+ self.error(heading=heading,detail=detail)
+ return
+
+ #XZ, 09/18/2008: check if user has the authority to get access to the database.
+ if self.db.type == 'ProbeSet':
+ self.cursor.execute('SELECT Id, Name, FullName, confidentiality, AuthorisedUsers FROM ProbeSetFreeze WHERE Name = "%s"' % self.target_db_name)
+ indId, indName, indFullName, confidential, AuthorisedUsers = self.cursor.fetchall()[0]
+
+ if confidential == 1:
+ access_to_confidential_dataset = 0
+
+ #for the dataset that confidentiality is 1
+ #1. 'admin' and 'root' can see all of the dataset
+ #2. 'user' can see the dataset that AuthorisedUsers contains his id(stored in the Id field of User table)
+ if webqtlConfig.USERDICT[self.privilege] > webqtlConfig.USERDICT['user']:
+ access_to_confidential_dataset = 1
+ else:
+ AuthorisedUsersList=AuthorisedUsers.split(',')
+ if AuthorisedUsersList.__contains__(self.userName):
+ access_to_confidential_dataset = 1
+
+ if not access_to_confidential_dataset:
+ #Error, Confidential Database
+ heading = "Correlation Table"
+ detail = ["The %s database you selected is not open to the public at this time, please go back and select other database." % indFullName]
+ self.error(heading=heading,detail=detail,error="Confidential Database")
+ return
+
+ #XZ, 09/18/2008: filter out the strains that have no value.
+ _strains, _vals, _vars, N = fd.informativeStrains(strainlist)
+
+ N = len(_strains)
+
+ if N < self.corrMinInformative:
+ heading = "Correlation Table"
+ detail = ['Fewer than %d strain data were entered for %s data set. No calculation of correlation has been attempted.' % (self.corrMinInformative, RISet)]
+ self.error(heading=heading,detail=detail)
+ return
+
+ #XZ, 09/28/2008: if user select "1", then display 1, 3 and 4.
+ #XZ, 09/28/2008: if user select "2", then display 2, 3 and 5.
+ #XZ, 09/28/2008: if user select "3", then display 1, 3 and 4.
+ #XZ, 09/28/2008: if user select "4", then display 1, 3 and 4.
+ #XZ, 09/28/2008: if user select "5", then display 2, 3 and 5.
+ methodDict = {"1":"Genetic Correlation (Pearson's r)","2":"Genetic Correlation (Spearman's rho)","3":"SGO Literature Correlation","4":"Tissue Correlation (Pearson's r)", "5":"Tissue Correlation (Spearman's rho)"}
+ self.method = fd.formdata.getvalue('method')
+ if self.method not in ("1","2","3","4","5"):
+ self.method = "1"
+
+ self.returnNumber = int(fd.formdata.getvalue('criteria'))
+
+ myTrait = fd.formdata.getvalue('fullname')
+ if myTrait:
+ myTrait = webqtlTrait(fullname=myTrait, cursor=self.cursor)
+ myTrait.retrieveInfo()
+
+ # We will not get Literature Correlations if there is no GeneId because there is nothing to look against
+ try:
+ input_trait_GeneId = int(fd.formdata.getvalue('GeneId'))
+ except:
+ input_trait_GeneId = None
+
+ # We will not get Tissue Correlations if there is no gene symbol because there is nothing to look against
+ try:
+ input_trait_symbol = myTrait.symbol
+ except:
+ input_trait_symbol = None
+
+
+ #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid
+ input_trait_mouse_geneid = self.translateToMouseGeneID(species, input_trait_GeneId)
+
+
+ #XZ: As of Nov/13/2010, this dataset is 'UTHSC Illumina V6.2 RankInv B6 D2 average CNS GI average (May 08)'
+ TissueProbeSetFreezeId = 1
+
+ #XZ, 09/22/2008: If we need search by GeneId,
+ #XZ, 09/22/2008: we have to check if this GeneId is in the literature or tissue correlation table.
+ #XZ, 10/15/2008: We also to check if the selected database is probeset type.
+ if self.method == "3" or self.method == "4" or self.method == "5":
+ if self.db.type != "ProbeSet":
+ self.error(heading="Wrong correlation type",detail="It is not possible to compute the %s between your trait and data in this %s database. Please try again after selecting another type of correlation." % (methodDict[self.method],self.db.name),error="Correlation Type Error")
+ return
+
+ """
+ if not input_trait_GeneId:
+ self.error(heading="No Associated GeneId",detail="This trait has no associated GeneId, so we are not able to show any literature or tissue related information.",error="No GeneId Error")
+ return
+ """
+
+ #XZ: We have checked geneid did exist
+
+ if self.method == "3":
+ if not input_trait_GeneId or not self.checkForLitInfo(input_trait_mouse_geneid):
+ self.error(heading="No Literature Info",detail="This gene does not have any associated Literature Information.",error="Literature Correlation Error")
+ return
+
+ if self.method == "4" or self.method == "5":
+ if not input_trait_symbol:
+ self.error(heading="No Tissue Correlation Information",detail="This gene does not have any associated Tissue Correlation Information.",error="Tissue Correlation Error")
+ return
+
+ if not self.checkSymbolForTissueCorr(TissueProbeSetFreezeId, myTrait.symbol):
+ self.error(heading="No Tissue Correlation Information",detail="This gene does not have any associated Tissue Correlation Information.",error="Tissue Correlation Error")
+ return
+
+############################################################################################################################################
+
+ allcorrelations = []
+ nnCorr = len(_vals)
+
+ #XZ: Use the fast method only for probeset dataset, and this dataset must have been created.
+ #XZ: Otherwise, use original method
+
+ useFastMethod = False
+
+ if self.db.type == "ProbeSet":
+
+ DatabaseFileName = self.getFileName( target_db_name=self.target_db_name )
+ DirectoryList = os.listdir(webqtlConfig.TEXTDIR) ### List of existing text files. Used to check if a text file already exists
+
+ if DatabaseFileName in DirectoryList:
+ useFastMethod = True
+
+ if useFastMethod:
+ if 1:
+ #try:
+ useLit = False
+ if self.method == "3":
+ litCorrs = self.fetchLitCorrelations(species=species, GeneId=input_trait_GeneId, db=self.db, returnNumber=self.returnNumber)
+ useLit = True
+
+ useTissueCorr = False
+ if self.method == "4" or self.method == "5":
+ tissueCorrs = self.fetchTissueCorrelations(db=self.db, primaryTraitSymbol=input_trait_symbol, TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=self.method, returnNumber = self.returnNumber)
+ useTissueCorr = True
+
+ datasetFile = open(webqtlConfig.TEXTDIR+DatabaseFileName,'r')
+
+ #XZ, 01/08/2009: read the first line
+ line = datasetFile.readline()
+ dataset_strains = webqtlUtil.readLineCSV(line)[1:]
+
+ #XZ, 01/08/2009: This step is critical. It is necessary for this new method.
+ #XZ: The original function fetchAllDatabaseData uses all strains stored in variable _strains to
+ #XZ: retrieve the values of each strain from database in real time.
+ #XZ: The new method uses all strains stored in variable dataset_strains to create a new variable
+ #XZ: _newvals. _newvals has the same length as dataset_strains. The items in _newvals is in
+ #XZ: the same order of items in dataset_strains. The value of each item in _newvals is either
+ #XZ: the value of correspinding strain in _vals or 'None'.
+ _newvals = []
+ for item in dataset_strains:
+ if item in _strains:
+ _newvals.append(_vals[_strains.index(item)])
+ else:
+ _newvals.append('None')
+
+ nnCorr = len(_newvals)
+
+ #XZ, 01/14/2009: If literature corr or tissue corr is selected,
+ #XZ: there is no need to use parallel computing.
+ if useLit or useTissueCorr:
+ for line in datasetFile:
+ traitdata=webqtlUtil.readLineCSV(line)
+ traitdataName = traitdata[0]
+ traitvals = traitdata[1:]
+
+ if useLit:
+ if not litCorrs.has_key( traitdataName ):
+ continue
+
+ if useTissueCorr:
+ if not tissueCorrs.has_key( traitdataName ):
+ continue
+
+ if self.method == "3" or self.method == "4":
+ corr,nOverlap = webqtlUtil.calCorrelationText(traitvals,_newvals,nnCorr)
+ else:
+ corr,nOverlap = webqtlUtil.calCorrelationRankText(traitvals,_newvals,nnCorr)
+
+ traitinfo = [traitdataName,corr,nOverlap]
+
+ if useLit:
+ traitinfo.append(litCorrs[traitdataName])
+
+ if useTissueCorr:
+ tempCorr, tempPValue = tissueCorrs[traitdataName]
+ traitinfo.append(tempCorr)
+ traitinfo.append(tempPValue)
+
+ allcorrelations.append(traitinfo)
+ #XZ, 01/14/2009: If genetic corr is selected, use parallel computing
+ else:
+ input_line_list = datasetFile.readlines()
+ all_line_number = len(input_line_list)
+
+ step = 1000
+ job_number = math.ceil( float(all_line_number)/step )
+
+ job_input_lists = []
+
+ for job_index in range( int(job_number) ):
+ starti = job_index*step
+ endi = min((job_index+1)*step, all_line_number)
+
+ one_job_input_list = []
+
+ for i in range( starti, endi ):
+ one_job_input_list.append( input_line_list[i] )
+
+ job_input_lists.append( one_job_input_list )
+
+ ppservers = ()
+ # Creates jobserver with automatically detected number of workers
+ job_server = pp.Server(ppservers=ppservers)
+
+ jobs = []
+ results = []
+
+ for one_job_input_list in job_input_lists: #pay attention to modules from outside
+ jobs.append( job_server.submit(func=compute_corr, args=(nnCorr, _newvals, one_job_input_list, self.method), depfuncs=(), modules=("utility.webqtlUtil",)) )
+
+ for one_job in jobs:
+ one_result = one_job()
+ results.append( one_result )
+
+ for one_result in results:
+ for one_traitinfo in one_result:
+ allcorrelations.append( one_traitinfo )
+
+ datasetFile.close()
+ totalTraits = len(allcorrelations)
+ #except:
+ # useFastMethod = False
+ # self.error(heading="No computation method",detail="Something is wrong within the try except block in CorrelationPage python module.",error="Computation Error")
+ # return
+
+ #XZ, 01/08/2009: use the original method to retrieve from database and compute.
+ if not useFastMethod:
+
+ traitdatabase, dataStartPos = self.fetchAllDatabaseData(species=species, GeneId=input_trait_GeneId, GeneSymbol=input_trait_symbol, strains=_strains, db=self.db, method=self.method, returnNumber=self.returnNumber, tissueProbeSetFreezeId=TissueProbeSetFreezeId)
+
+ totalTraits = len(traitdatabase) #XZ, 09/18/2008: total trait number
+
+ for traitdata in traitdatabase:
+ traitdataName = traitdata[0]
+ traitvals = traitdata[dataStartPos:]
+ if self.method == "1" or self.method == "3" or self.method == "4":
+ corr,nOverlap = webqtlUtil.calCorrelation(traitvals,_vals,nnCorr)
+ else:
+ corr,nOverlap = webqtlUtil.calCorrelationRank(traitvals,_vals,nnCorr)
+
+ traitinfo = [traitdataName,corr,nOverlap]
+
+ #XZ, 09/28/2008: if user select '3', then fetchAllDatabaseData would give us LitCorr in the [1] position
+ #XZ, 09/28/2008: if user select '4' or '5', then fetchAllDatabaseData would give us Tissue Corr in the [1] position
+ #XZ, 09/28/2008: and Tissue Corr P Value in the [2] position
+ if input_trait_GeneId and self.db.type == "ProbeSet":
+ if self.method == "3":
+ traitinfo.append( traitdata[1] )
+ if self.method == "4" or self.method == "5":
+ traitinfo.append( traitdata[1] )
+ traitinfo.append( traitdata[2] )
+
+ allcorrelations.append(traitinfo)
+
+
+#############################################################
+
+ if self.method == "3" and input_trait_GeneId:
+ allcorrelations.sort(webqtlUtil.cmpLitCorr)
+ #XZ, 3/31/2010: Theoretically, we should create one function 'comTissueCorr'
+ #to compare each trait by their tissue corr p values.
+ #But because the tissue corr p values are generated by permutation test,
+ #the top ones always have p value 0. So comparing p values actually does nothing.
+ #In addition, for the tissue data in our database, the N is always the same.
+ #So it's safe to compare with tissue corr statistic value.
+ #That's the same as literature corr.
+ elif self.method in ["4","5"] and input_trait_GeneId:
+ allcorrelations.sort(webqtlUtil.cmpLitCorr)
+ else:
+ allcorrelations.sort(webqtlUtil.cmpCorr)
+
+
+ #XZ, 09/20/2008: we only need the top ones.
+ self.returnNumber = min(self.returnNumber,len(allcorrelations))
+ allcorrelations = allcorrelations[:self.returnNumber]
+
+ addLiteratureCorr = False
+ addTissueCorr = False
+
+ traitList = []
+ for item in allcorrelations:
+ thisTrait = webqtlTrait(db=self.db, name=item[0], cursor=self.cursor)
+ thisTrait.retrieveInfo( QTL='Yes' )
+
+ nOverlap = item[2]
+ corr = item[1]
+
+ #XZ: calculate corrPValue
+ if nOverlap < 3:
+ corrPValue = 1.0
+ else:
+ if abs(corr) >= 1.0:
+ corrPValue = 0.0
+ else:
+ ZValue = 0.5*log((1.0+corr)/(1.0-corr))
+ ZValue = ZValue*sqrt(nOverlap-3)
+ corrPValue = 2.0*(1.0 - reaper.normp(abs(ZValue)))
+
+ thisTrait.Name = item[0]
+ thisTrait.corr = corr
+ thisTrait.nOverlap = nOverlap
+ thisTrait.corrPValue = corrPValue
+ # NL, 07/19/2010
+ # js function changed, add a new parameter rankOrder for js function 'showTissueCorrPlot'
+ rankOrder = 0;
+ if self.method in ["2","5"]:
+ rankOrder = 1;
+ thisTrait.rankOrder =rankOrder
+
+ #XZ, 26/09/2008: Method is 4 or 5. Have fetched tissue corr, but no literature correlation yet.
+ if len(item) == 5:
+ thisTrait.tissueCorr = item[3]
+ thisTrait.tissuePValue = item[4]
+ addLiteratureCorr = True
+
+ #XZ, 26/09/2008: Method is 3, Have fetched literature corr, but no tissue corr yet.
+ elif len(item) == 4:
+ thisTrait.LCorr = item[3]
+ thisTrait.mouse_geneid = self.translateToMouseGeneID(species, thisTrait.geneid)
+ addTissueCorr = True
+
+ #XZ, 26/09/2008: Method is 1 or 2. Have NOT fetched literature corr and tissue corr yet.
+ # Phenotype data will not have geneid, and neither will some probes
+ # we need to handle this because we will get an attribute error
+ else:
+ if input_trait_mouse_geneid and self.db.type=="ProbeSet":
+ addLiteratureCorr = True
+ if input_trait_symbol and self.db.type=="ProbeSet":
+ addTissueCorr = True
+
+ traitList.append(thisTrait)
+
+ if addLiteratureCorr:
+ traitList = self.getLiteratureCorrelationByList(input_trait_mouse_geneid, species, traitList)
+ if addTissueCorr:
+ traitList = self.getTissueCorrelationByList( primaryTraitSymbol=input_trait_symbol, traitList=traitList,TissueProbeSetFreezeId =TissueProbeSetFreezeId, method=self.method)
+
+########################################################
+
+ TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee')
+
+ mainfmName = webqtlUtil.genRandStr("fm_")
+ form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name= mainfmName, submit=HT.Input(type='hidden'))
+ hddn = {'FormID':'showDatabase', 'ProbeSetID':'_','database':self.target_db_name, 'databaseFull':self.db.fullname, 'CellID':'_', 'RISet':RISet, 'identification':fd.identification}
+
+ if myTrait:
+ hddn['fullname']=fd.formdata.getvalue('fullname')
+ if mdpchoice:
+ hddn['MDPChoice']=mdpchoice
+
+
+ #XZ, 09/18/2008: pass the trait data to next page by hidden parameters.
+ webqtlUtil.exportData(hddn, fd.allTraitData)
+
+ if fd.incparentsf1:
+ hddn['incparentsf1']='ON'
+
+ if fd.allstrainlist:
+ hddn['allstrainlist'] = string.join(fd.allstrainlist, ' ')
+
+
+ for key in hddn.keys():
+ form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
+
+ #XZ, 11/21/2008: add two parameters to form
+ form.append(HT.Input(name="X_geneSymbol", value="", type='hidden'))
+ form.append(HT.Input(name="Y_geneSymbol", value="", type='hidden'))
+
+ #XZ, 3/11/2010: add one parameter to record if the method is rank order.
+ form.append(HT.Input(name="rankOrder", value="%s" % rankOrder, type='hidden'))
+
+ form.append(HT.Input(name="TissueProbeSetFreezeId", value="%s" % TissueProbeSetFreezeId, type='hidden'))
+
+ ####################################
+ # generate the info on top of page #
+ ####################################
+
+ info = self.getTopInfo(myTrait=myTrait, method=self.method, db=self.db, target_db_name=self.target_db_name, returnNumber=self.returnNumber, methodDict=methodDict, totalTraits=totalTraits, identification=fd.identification )
+
+ ##############
+ # Excel file #
+ ##############
+ filename= webqtlUtil.genRandStr("Corr_")
+ xlsUrl = HT.Input(type='button', value = 'Download Table', onClick= "location.href='/tmp/%s.xls'" % filename, Class='button')
+ # Create a new Excel workbook
+ workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+filename))
+ headingStyle = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white")
+
+ #XZ, 3/18/2010: pay attention to the line number of header in this file. As of today, there are 7 lines.
+ worksheet = self.createExcelFileWithTitleAndFooter(workbook=workbook, identification=fd.identification, db=self.db, returnNumber=self.returnNumber)
+
+ newrow = 7
+
+
+#####################################################################
+
+
+
+ mintmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'showIntMap');" % mainfmName)
+ mintmap_img = HT.Image("/images/multiple_interval_mapping1_final.jpg", name='mintmap', alt="Multiple Interval Mapping", title="Multiple Interval Mapping", style="border:none;")
+ mintmap.append(mintmap_img)
+ mcorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'compCorr');" % mainfmName)
+ mcorr_img = HT.Image("/images/compare_correlates2_final.jpg", alt="Compare Correlates", title="Compare Correlates", style="border:none;")
+ mcorr.append(mcorr_img)
+ cormatrix = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'corMatrix');" % mainfmName)
+ cormatrix_img = HT.Image("/images/correlation_matrix1_final.jpg", alt="Correlation Matrix and PCA", title="Correlation Matrix and PCA", style="border:none;")
+ cormatrix.append(cormatrix_img)
+ networkGraph = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'networkGraph');" % mainfmName)
+ networkGraph_img = HT.Image("/images/network_graph1_final.jpg", name='mintmap', alt="Network Graphs", title="Network Graphs", style="border:none;")
+ networkGraph.append(networkGraph_img)
+ heatmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'heatmap');" % mainfmName)
+ heatmap_img = HT.Image("/images/heatmap2_final.jpg", name='mintmap', alt="QTL Heat Map and Clustering", title="QTL Heatmap and Clustering", style="border:none;")
+ heatmap.append(heatmap_img)
+ partialCorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'partialCorrInput');" % mainfmName)
+ partialCorr_img = HT.Image("/images/partial_correlation_final.jpg", name='partialCorr', alt="Partial Correlation", title="Partial Correlation", style="border:none;")
+ partialCorr.append(partialCorr_img)
+ addselect = HT.Href(url="#redirect", onClick="addRmvSelection('%s', document.getElementsByName('%s')[0], 'addToSelection');" % (RISet, mainfmName))
+ addselect_img = HT.Image("/images/add_collection1_final.jpg", name="addselect", alt="Add To Collection", title="Add To Collection", style="border:none;")
+ addselect.append(addselect_img)
+ selectall = HT.Href(url="#redirect", onClick="checkAll(document.getElementsByName('%s')[0]);" % mainfmName)
+ selectall_img = HT.Image("/images/select_all2_final.jpg", name="selectall", alt="Select All", title="Select All", style="border:none;")
+ selectall.append(selectall_img)
+ selectinvert = HT.Href(url="#redirect", onClick = "checkInvert(document.getElementsByName('%s')[0]);" % mainfmName)
+ selectinvert_img = HT.Image("/images/invert_selection2_final.jpg", name="selectinvert", alt="Invert Selection", title="Invert Selection", style="border:none;")
+ selectinvert.append(selectinvert_img)
+ reset = HT.Href(url="#redirect", onClick="checkNone(document.getElementsByName('%s')[0]); return false;" % mainfmName)
+ reset_img = HT.Image("/images/select_none2_final.jpg", alt="Select None", title="Select None", style="border:none;")
+ reset.append(reset_img)
+ selecttraits = HT.Input(type='button' ,name='selecttraits',value='Select Traits', onClick="checkTraits(this.form);",Class="button")
+ selectgt = HT.Input(type='text' ,name='selectgt',value='-1.0', size=6,maxlength=10,onChange="checkNumeric(this,1.0,'-1.0','gthan','greater than filed')")
+ selectlt = HT.Input(type='text' ,name='selectlt',value='1.0', size=6,maxlength=10,onChange="checkNumeric(this,-1.0,'1.0','lthan','less than field')")
+ selectandor = HT.Select(name='selectandor')
+ selectandor.append(('AND','and'))
+ selectandor.append(('OR','or'))
+ selectandor.selected.append('AND')
+
+ pageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%", border=0, align="Left")
+
+ containerTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="90%",border=0, align="Left")
+
+ optionsTable = HT.TableLite(cellSpacing=2, cellPadding=0,width="320", height="80", border=0, align="Left")
+ optionsTable.append(HT.TR(HT.TD(selectall), HT.TD(reset), HT.TD(selectinvert), HT.TD(addselect), align="left"))
+ optionsTable.append(HT.TR(HT.TD("&nbsp;"*1,"Select"), HT.TD("Deselect"), HT.TD("&nbsp;"*1,"Invert"), HT.TD("&nbsp;"*3,"Add")))
+ containerTable.append(HT.TR(HT.TD(optionsTable)))
+
+ functionTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="480",height="80", border=0, align="Left")
+ functionRow = HT.TR(HT.TD(networkGraph, width="16.7%"), HT.TD(cormatrix, width="16.7%"), HT.TD(partialCorr, width="16.7%"), HT.TD(mcorr, width="16.7%"), HT.TD(mintmap, width="16.7%"), HT.TD(heatmap), align="left")
+ labelRow = HT.TR(HT.TD("&nbsp;"*1,HT.Text("Graph")), HT.TD("&nbsp;"*1,HT.Text("Matrix")), HT.TD("&nbsp;"*1,HT.Text("Partial")), HT.TD(HT.Text("Compare")), HT.TD(HT.Text("QTL Map")), HT.TD(HT.Text(text="Heat Map")))
+ functionTable.append(functionRow, labelRow)
+ containerTable.append(HT.TR(HT.TD(functionTable), HT.BR()))
+
+ #more_options = HT.Image("/images/more_options1_final.jpg", name='more_options', alt="Expand Options", title="Expand Options", style="border:none;", Class="toggleShowHide")
+
+ #containerTable.append(HT.TR(HT.TD(more_options, HT.BR(), HT.BR())))
+
+ moreOptions = HT.Input(type='button',name='options',value='More Options', onClick="",Class="toggle")
+ fewerOptions = HT.Input(type='button',name='options',value='Fewer Options', onClick="",Class="toggle")
+
+ if (fd.formdata.getvalue('showHideOptions') == 'less'):
+ containerTable.append(HT.TR(HT.TD("&nbsp;"), height="10"), HT.TR(HT.TD(HT.Div(fewerOptions, Class="toggleShowHide"))))
+ containerTable.append(HT.TR(HT.TD("&nbsp;")))
+ else:
+ containerTable.append(HT.TR(HT.TD("&nbsp;"), height="10"), HT.TR(HT.TD(HT.Div(moreOptions, Class="toggleShowHide"))))
+ containerTable.append(HT.TR(HT.TD("&nbsp;")))
+
+ containerTable.append(HT.TR(HT.TD(HT.Span(selecttraits,' with r > ',selectgt, ' ',selectandor, ' r < ',selectlt,Class="bd1 cbddf fs11")), style="display:none;", Class="extra_options"))
+
+ chrMenu = HT.Input(type='hidden',name='chromosomes',value='all')
+
+ corrHeading = HT.Paragraph('Correlation Table', Class="title")
+
+
+ tblobj = {}
+
+ if self.db.type=="Geno":
+
+ containerTable.append(HT.TR(HT.TD(xlsUrl, height=40)))
+
+ pageTable.append(HT.TR(HT.TD(containerTable)))
+
+ tblobj['header'], worksheet = self.getTableHeaderForGeno( method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
+ newrow += 1
+
+ sortby = self.getSortByValue( calculationMethod = self.method )
+
+ corrScript = HT.Script(language="Javascript")
+ corrScript.append("var corrArray = new Array();")
+
+ tblobj['body'], worksheet, corrScript = self.getTableBodyForGeno(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript)
+
+ workbook.close()
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
+
+ pageTable.append(HT.TR(HT.TD(div)))
+
+ form.append(HT.Input(name='ShowStrains',type='hidden', value =1),
+ HT.Input(name='ShowLine',type='hidden', value =1),
+ HT.P(), HT.P(), pageTable)
+ TD_LR.append(corrHeading, info, form, HT.P())
+
+ self.dict['body'] = str(TD_LR)
+ self.dict['js1'] = ''
+ self.dict['title'] = 'Correlation'
+
+ elif self.db.type=="Publish":
+
+ containerTable.append(HT.TR(HT.TD(xlsUrl, height=40)))
+
+ pageTable.append(HT.TR(HT.TD(containerTable)))
+
+ tblobj['header'], worksheet = self.getTableHeaderForPublish(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
+ newrow += 1
+
+ sortby = self.getSortByValue( calculationMethod = self.method )
+
+ corrScript = HT.Script(language="Javascript")
+ corrScript.append("var corrArray = new Array();")
+
+ tblobj['body'], worksheet, corrScript = self.getTableBodyForPublish(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript, species=species)
+
+ workbook.close()
+
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+ # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
+
+ pageTable.append(HT.TR(HT.TD(div)))
+
+ form.append(
+ HT.Input(name='ShowStrains',type='hidden', value =1),
+ HT.Input(name='ShowLine',type='hidden', value =1),
+ HT.P(), pageTable)
+ TD_LR.append(corrHeading, info, form, HT.P())
+
+ self.dict['body'] = str(TD_LR)
+ self.dict['js1'] = ''
+ self.dict['title'] = 'Correlation'
+
+
+ elif self.db.type=="ProbeSet":
+
+ tblobj['header'], worksheet = self.getTableHeaderForProbeSet(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
+ newrow += 1
+
+ sortby = self.getSortByValue( calculationMethod = self.method )
+
+ corrScript = HT.Script(language="Javascript")
+ corrScript.append("var corrArray = new Array();")
+
+ tblobj['body'], worksheet, corrScript = self.getTableBodyForProbeSet(traitList=traitList, primaryTrait=myTrait, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript, species=species)
+
+ workbook.close()
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+
+ #XZ: here is the table of traits
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1", hiddenColumns=["Gene ID","Homologene ID"]), corrScript, Id="sortable")
+
+
+ #XZ, 01/12/2009: create database menu for 'Add Correlation'
+ self.cursor.execute("""
+ select
+ ProbeSetFreeze.FullName, ProbeSetFreeze.Id, Tissue.name
+ from
+ ProbeSetFreeze, ProbeFreeze, ProbeSetFreeze as ps2, ProbeFreeze as p2, Tissue
+ where
+ ps2.Id = %d
+ and ps2.ProbeFreezeId = p2.Id
+ and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id
+ and (ProbeFreeze.InbredSetId = p2.InbredSetId or (ProbeFreeze.InbredSetId in (1, 3) and p2.InbredSetId in (1, 3)))
+ and p2.ChipId = ProbeFreeze.ChipId
+ and ps2.Id != ProbeSetFreeze.Id
+ and ProbeFreeze.TissueId = Tissue.Id
+ and ProbeSetFreeze.public > %d
+ order by
+ ProbeFreeze.TissueId, ProbeSetFreeze.CreateTime desc
+ """ % (self.db.id, webqtlConfig.PUBLICTHRESH))
+
+ results = self.cursor.fetchall()
+ dbCustomizer = HT.Select(results, name = "customizer")
+ databaseMenuSub = preTissue = ""
+ for item in results:
+ TName, TId, TTissue = item
+ if TTissue != preTissue:
+ if databaseMenuSub:
+ dbCustomizer.append(databaseMenuSub)
+ databaseMenuSub = HT.Optgroup(label = '%s mRNA ------' % TTissue)
+ preTissue = TTissue
+
+ databaseMenuSub.append(item[:2])
+ if databaseMenuSub:
+ dbCustomizer.append(databaseMenuSub)
+
+ #updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
+ #variables: filename, strainIds and vals are required by getquerystring function
+ strainIds=self.getStrainIds(species=species, strains=_strains)
+ var1 = HT.Input(name="filename", value=filename, type='hidden')
+ var2 = HT.Input(name="strainIds", value=strainIds, type='hidden')
+ var3 = HT.Input(name="vals", value=_vals, type='hidden')
+ customizerButton = HT.Input(type="button", Class="button", value="Add Correlation", onClick = "xmlhttpPost('%smain.py?FormID=AJAX_table', 'sortable', (getquerystring(this.form)))" % webqtlConfig.CGIDIR)
+
+ containerTable.append(HT.TR(HT.TD(HT.Span(var1,var2,var3,customizerButton, "with", dbCustomizer, Class="bd1 cbddf fs11"), HT.BR(), HT.BR()), style="display:none;", Class="extra_options"))
+
+ #outside analysis part
+ GCATButton = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GCAT');" % mainfmName)
+ GCATButton_img = HT.Image("/images/GCAT_logo_final.jpg", name="GCAT", alt="GCAT", title="GCAT", style="border:none")
+ GCATButton.append(GCATButton_img)
+
+ ODE = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'ODE');" % mainfmName)
+ ODE_img = HT.Image("/images/ODE_logo_final.jpg", name="ode", alt="ODE", title="ODE", style="border:none")
+ ODE.append(ODE_img)
+
+ '''
+ #XZ, 07/07/2010: I comment out this block of code.
+ WebGestaltScript = HT.Script(language="Javascript")
+ WebGestaltScript.append("""
+setTimeout('openWebGestalt()', 2000);
+function openWebGestalt(){
+ var thisForm = document['WebGestalt'];
+ makeWebGestaltTree(thisForm, '%s', %d, 'edag_only.php');
+}
+ """ % (mainfmName, len(traitList)))
+ '''
+
+ self.cursor.execute('SELECT GeneChip.GO_tree_value FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % self.db.name)
+ result = self.cursor.fetchone()
+
+ if result:
+ GO_tree_value = result[0]
+
+ if GO_tree_value:
+
+ WebGestalt = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GOTree');" % mainfmName)
+ WebGestalt_img = HT.Image("/images/webgestalt_icon_final.jpg", name="webgestalt", alt="Gene Set Analysis Toolkit", title="Gene Set Analysis Toolkit", style="border:none")
+ WebGestalt.append(WebGestalt_img)
+
+ hddnWebGestalt = {
+ 'id_list':'',
+ 'correlation':'',
+ 'id_value':'',
+ 'llid_list':'',
+ 'id_type':GO_tree_value,
+ 'idtype':'',
+ 'species':'',
+ 'list':'',
+ 'client':''}
+
+ hddnWebGestalt['ref_type'] = hddnWebGestalt['id_type']
+ hddnWebGestalt['cat_type'] = 'GO'
+ hddnWebGestalt['significancelevel'] = 'Top10'
+
+ if species == 'rat':
+ hddnWebGestalt['org'] = 'Rattus norvegicus'
+ elif species == 'human':
+ hddnWebGestalt['org'] = 'Homo sapiens'
+ elif species == 'mouse':
+ hddnWebGestalt['org'] = 'Mus musculus'
+ else:
+ hddnWebGestalt['org'] = ''
+
+ for key in hddnWebGestalt.keys():
+ form.append(HT.Input(name=key, value=hddnWebGestalt[key], type='hidden'))
+
+
+ LinkOutTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="320",height="80", border=0, align="Left")
+
+ if not GO_tree_value:
+ LinkOutRow = HT.TR(HT.TD(GCATButton, width="50%"), HT.TD(ODE, width="50%"), align="left")
+ LinkOutLabels = HT.TR(HT.TD("&nbsp;", HT.Text("GCAT"), width="50%"), HT.TD("&nbsp;",HT.Text("ODE"), width="50%"), align="left")
+ else:
+ LinkOutRow = HT.TR(HT.TD(WebGestalt, width="25%"), HT.TD(GCATButton, width="25%"), HT.TD(ODE, width="25%"), align="left")
+ LinkOutLabels = HT.TR(HT.TD(HT.Text("Gene Set")), HT.TD("&nbsp;"*2, HT.Text("GCAT")), HT.TD("&nbsp;"*3, HT.Text("ODE")), style="display:none;", Class="extra_options")
+
+ LinkOutTable.append(LinkOutRow,LinkOutLabels)
+
+ containerTable.append(HT.TR(HT.TD(LinkOutTable), Class="extra_options", style="display:none;"))
+
+ containerTable.append(HT.TR(HT.TD(xlsUrl, HT.BR(), HT.BR())))
+
+ pageTable.append(HT.TR(HT.TD(containerTable)))
+
+ pageTable.append(HT.TR(HT.TD(div)))
+
+ if species == 'human':
+ heatmap = ""
+
+ form.append(HT.Input(name='ShowStrains',type='hidden', value =1),
+ HT.Input(name='ShowLine',type='hidden', value =1),
+ info, HT.BR(), pageTable, HT.BR())
+
+ TD_LR.append(corrHeading, form, HT.P())
+
+
+ self.dict['body'] = str(TD_LR)
+ self.dict['title'] = 'Correlation'
+ # updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
+ self.dict['js1'] = ''
+ self.dict['js2'] = 'onLoad="pageOffset()"'
+ self.dict['layer'] = self.generateWarningLayer()
+ else:
+ self.dict['body'] = ""
+
+
+#############################
+# #
+# CorrelationPage Functions #
+# #
+#############################
+
+
+ def getSortByValue(self, calculationMethod):
+
+ if calculationMethod == "1":
+ sortby = ("Sample p(r)", "up")
+ elif calculationMethod == "2":
+ sortby = ("Sample p(rho)", "up")
+ elif calculationMethod == "3": #XZ: literature correlation
+ sortby = ("Lit Corr","down")
+ elif calculationMethod == "4": #XZ: tissue correlation
+ sortby = ("Tissue r", "down")
+ elif calculationMethod == "5":
+ sortby = ("Tissue rho", "down")
+
+ return sortby
+
+
+
+ def generateWarningLayer(self):
+
+ layerString = """
+<!-- BEGIN FLOATING LAYER CODE //-->
+<div id="warningLayer" style="padding:3px; border: 1px solid #222;
+ background-color: #fff; position:absolute;width:250px;left:100;top:100;visibility:hidden">
+<table border="0" width="250" class="cbrb" cellspacing="0" cellpadding="5">
+<tr>
+<td width="100%">
+ <table border="0" width="100%" cellspacing="0" cellpadding="0" height="36">
+ <tr>
+ <td class="cbrb cw ff15 fwb" align="Center" width="100%" style="padding:4px">
+ Sort Table
+ </td>
+ </tr>
+ <tr>
+ <td width="100%" bgcolor="#eeeeee" align="Center" style="padding:4px">
+<!-- PLACE YOUR CONTENT HERE //-->
+Resorting this table <br>
+<!-- END OF CONTENT AREA //-->
+ </td>
+ </tr>
+ </table>
+</td>
+</tr>
+</table>
+</div>
+<!-- END FLOATING LAYER CODE //-->
+
+ """
+
+ return layerString
+
+
+ #XZ, 01/07/2009: In HTML code, the variable 'database' corresponds to the column 'Name' in database table.
+ def getFileName(self, target_db_name): ### dcrowell August 2008
+ """Returns the name of the reference database file with which correlations are calculated.
+ Takes argument cursor which is a cursor object of any instance of a subclass of templatePage
+ Used by correlationPage"""
+
+ query = 'SELECT Id, FullName FROM ProbeSetFreeze WHERE Name = "%s"' % target_db_name
+ self.cursor.execute(query)
+ result = self.cursor.fetchone()
+ Id = result[0]
+ FullName = result[1]
+ FullName = FullName.replace(' ','_')
+ FullName = FullName.replace('/','_')
+
+ FileName = 'ProbeSetFreezeId_' + str(Id) + '_FullName_' + FullName + '.txt'
+
+ return FileName
+
+
+ #XZ, 01/29/2009: I modified this function.
+ #XZ: Note that the type of StrainIds must be number, not string.
+ def getStrainIds(self, species=None, strains=[]):
+ StrainIds = []
+ for item in strains:
+ self.cursor.execute('''SELECT Strain.Id FROM Strain, Species WHERE
+ Strain.Name="%s" and Strain.SpeciesId=Species.Id and Species.name = "%s" ''' % (item, species))
+ Id = self.cursor.fetchone()[0]
+ StrainIds.append(Id)
+
+ return StrainIds
+
+
+ #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid
+ #XZ, 12/12/2008: if the input geneid is 'None', return 0
+ #XZ, 12/12/2008: if the input geneid has no corresponding mouse geneid, return 0
+ def translateToMouseGeneID (self, species, geneid):
+ mouse_geneid = 0;
+
+ #if input geneid is None, return 0.
+ if not geneid:
+ return mouse_geneid
+
+ if species == 'mouse':
+ mouse_geneid = geneid
+ elif species == 'rat':
+ self.cursor.execute( "SELECT mouse FROM GeneIDXRef WHERE rat=%d" % int(geneid) )
+ record = self.cursor.fetchone()
+ if record:
+ mouse_geneid = record[0]
+ elif species == 'human':
+ self.cursor.execute( "SELECT mouse FROM GeneIDXRef WHERE human=%d" % int(geneid) )
+ record = self.cursor.fetchone()
+ if record:
+ mouse_geneid = record[0]
+
+ return mouse_geneid
+
+
+ #XZ, 12/16/2008: the input geneid is of mouse type
+ def checkForLitInfo(self,geneId):
+ q = 'SELECT 1 FROM LCorrRamin3 WHERE GeneId1=%s LIMIT 1' % geneId
+ self.cursor.execute(q)
+ try:
+ x = self.cursor.fetchone()
+ if x: return True
+ else: raise
+ except: return False
+
+
+ #XZ, 12/16/2008: the input geneid is of mouse type
+ def checkSymbolForTissueCorr(self, tissueProbeSetFreezeId=0, symbol=""):
+ q = "SELECT 1 FROM TissueProbeSetXRef WHERE TissueProbeSetFreezeId=%s and Symbol='%s' LIMIT 1" % (tissueProbeSetFreezeId,symbol)
+ self.cursor.execute(q)
+ try:
+ x = self.cursor.fetchone()
+ if x: return True
+ else: raise
+ except: return False
+
+
+
+ def fetchAllDatabaseData(self, species, GeneId, GeneSymbol, strains, db, method, returnNumber, tissueProbeSetFreezeId):
+
+ StrainIds = []
+ for item in strains:
+ self.cursor.execute('''SELECT Strain.Id FROM Strain, Species WHERE Strain.Name="%s" and Strain.SpeciesId=Species.Id and Species.name = "%s" ''' % (item, species))
+ Id = self.cursor.fetchone()[0]
+ StrainIds.append('%d' % Id)
+
+ # break it into smaller chunks so we don't overload the MySql server
+ nnn = len(StrainIds) / 25
+ if len(StrainIds) % 25:
+ nnn += 1
+ oridata = []
+
+ #XZ, 09/24/2008: build one temporary table that only contains the records associated with the input GeneId
+ tempTable = None
+ if GeneId and db.type == "ProbeSet":
+ if method == "3":
+ tempTable = self.getTempLiteratureTable(species=species, input_species_geneid=GeneId, returnNumber=returnNumber)
+
+ if method == "4" or method == "5":
+ tempTable = self.getTempTissueCorrTable(primaryTraitSymbol=GeneSymbol, TissueProbeSetFreezeId=tissueProbeSetFreezeId, method=method, returnNumber=returnNumber)
+
+ for step in range(nnn):
+ temp = []
+ StrainIdstep = StrainIds[step*25:min(len(StrainIds), (step+1)*25)]
+ for item in StrainIdstep: temp.append('T%s.value' % item)
+
+ if db.type == "Publish":
+ query = "SELECT PublishXRef.Id, "
+ dataStartPos = 1
+ query += string.join(temp,', ')
+ query += ' FROM (PublishXRef, PublishFreeze)'
+ #XZ, 03/04/2009: Xiaodong changed Data to PublishData
+ for item in StrainIdstep:
+ query += 'left join PublishData as T%s on T%s.Id = PublishXRef.DataId and T%s.StrainId=%s\n' %(item,item,item,item)
+ query += "WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId and PublishFreeze.Name = '%s'" % (db.name, )
+ #XZ, 09/20/2008: extract literature correlation value together with gene expression values.
+ #XZ, 09/20/2008: notice the difference between the code in next block.
+ elif tempTable:
+ # we can get a little performance out of selecting our LitCorr here
+ # but also we need to do this because we are unconcerned with probes that have no geneId associated with them
+ # as we would not have litCorr data.
+
+ if method == "3":
+ query = "SELECT %s.Name, %s.value," % (db.type,tempTable)
+ dataStartPos = 2
+ if method == "4" or method == "5":
+ query = "SELECT %s.Name, %s.Correlation, %s.PValue," % (db.type,tempTable, tempTable)
+ dataStartPos = 3
+
+ query += string.join(temp,', ')
+ query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type)
+ if method == "3":
+ query += ' LEFT JOIN %s ON %s.GeneId2=ProbeSet.GeneId ' % (tempTable,tempTable)
+ if method == "4" or method == "5":
+ query += ' LEFT JOIN %s ON %s.Symbol=ProbeSet.Symbol ' % (tempTable,tempTable)
+ #XZ, 03/04/2009: Xiaodong changed Data to %sData and changed parameters from %(item,item, db.type,item,item) to %(db.type, item,item, db.type,item,item)
+ for item in StrainIdstep:
+ query += 'left join %sData as T%s on T%s.Id = %sXRef.DataId and T%s.StrainId=%s\n' %(db.type, item,item, db.type,item,item)
+
+ if method == "3":
+ query += "WHERE ProbeSet.GeneId IS NOT NULL AND %s.value IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable,db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
+ if method == "4" or method == "5":
+ query += "WHERE ProbeSet.Symbol IS NOT NULL AND %s.Correlation IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable,db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
+ else:
+ query = "SELECT %s.Name," % db.type
+ dataStartPos = 1
+ query += string.join(temp,', ')
+ query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type)
+ #XZ, 03/04/2009: Xiaodong changed Data to %sData and changed parameters from %(item,item, db.type,item,item) to %(db.type, item,item, db.type,item,item)
+ for item in StrainIdstep:
+ query += 'left join %sData as T%s on T%s.Id = %sXRef.DataId and T%s.StrainId=%s\n' %(db.type, item,item, db.type,item,item)
+ query += "WHERE %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
+
+ self.cursor.execute(query)
+ results = self.cursor.fetchall()
+ oridata.append(results)
+
+ datasize = len(oridata[0])
+ traitdatabase = []
+ # put all of the seperate data together into a huge list of lists
+ for j in range(datasize):
+ traitdata = list(oridata[0][j])
+ for i in range(1,nnn):
+ traitdata += list(oridata[i][j][dataStartPos:])
+ traitdatabase.append(traitdata)
+
+ if tempTable:
+ self.cursor.execute( 'DROP TEMPORARY TABLE %s' % tempTable )
+
+ return traitdatabase, dataStartPos
+
+
+ # XZ, 09/20/2008: This function creates TEMPORARY TABLE tmpTableName_2 and return its name.
+ # XZ, 09/20/2008: It stores top literature correlation values associated with the input geneId.
+ # XZ, 09/20/2008: Attention: In each row, the input geneId is always in column GeneId1.
+ #XZ, 12/16/2008: the input geneid can be of mouse, rat or human type
+ def getTempLiteratureTable(self, species, input_species_geneid, returnNumber):
+ # according to mysql the TEMPORARY TABLE name should not have to be unique because
+ # it is only available to the current connection. This program will be invoked via command line, but if it
+ # were to be invoked over mod_python this could cuase problems. mod_python will keep the connection alive
+ # in its executing threads ( i think) so there is a potential for the table not being dropped between users.
+ #XZ, 01/29/2009: To prevent the potential risk, I generate random table names and drop the tables after use them.
+
+
+ # the 'input_species_geneid' could be rat or human geneid, need to translate it to mouse geneid
+ translated_mouse_geneid = self.translateToMouseGeneID (species, input_species_geneid)
+
+ tmpTableName_1 = webqtlUtil.genRandStr(prefix="LITERATURE")
+
+ q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName_1
+ q2 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId1,GeneId2,value FROM LCorrRamin3 WHERE GeneId1=%s' % (tmpTableName_1, translated_mouse_geneid)
+ q3 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId2,GeneId1,value FROM LCorrRamin3 WHERE GeneId2=%s AND GeneId1!=%s' % (tmpTableName_1, translated_mouse_geneid,translated_mouse_geneid)
+ for x in [q1,q2,q3]: self.cursor.execute(x)
+
+ #XZ, 09/23/2008: Just use the top records insteard of using all records
+ tmpTableName_2 = webqtlUtil.genRandStr(prefix="TOPLITERATURE")
+
+ q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName_2
+ self.cursor.execute(q1)
+ q2 = 'SELECT GeneId1, GeneId2, value FROM %s ORDER BY value DESC' % tmpTableName_1
+ self.cursor.execute(q2)
+ result = self.cursor.fetchall()
+
+ counter = 0 #this is to count how many records being inserted into table
+ for one_row in result:
+ mouse_geneid1, mouse_geneid2, lit_corr_alue = one_row
+
+ #mouse_geneid1 has been tested before, now should test if mouse_geneid2 has corresponding geneid in other species
+ translated_species_geneid = 0
+ if species == 'mouse':
+ translated_species_geneid = mouse_geneid2
+ elif species == 'rat':
+ self.cursor.execute( "SELECT rat FROM GeneIDXRef WHERE mouse=%d" % int(mouse_geneid2) )
+ record = self.cursor.fetchone()
+ if record:
+ translated_species_geneid = record[0]
+ elif species == 'human':
+ self.cursor.execute( "SELECT human FROM GeneIDXRef WHERE mouse=%d" % int(mouse_geneid2) )
+ record = self.cursor.fetchone()
+ if record:
+ translated_species_geneid = record[0]
+
+ if translated_species_geneid:
+ self.cursor.execute( 'INSERT INTO %s (GeneId1, GeneId2, value) VALUES (%d,%d,%f)' % (tmpTableName_2, int(input_species_geneid),int(translated_species_geneid), float(lit_corr_alue)) )
+ counter = counter + 1
+
+ #pay attention to the number
+ if (counter > 2*returnNumber):
+ break
+
+ self.cursor.execute('DROP TEMPORARY TABLE %s' % tmpTableName_1)
+
+ return tmpTableName_2
+
+
+
+ #XZ, 09/23/2008: In tissue correlation tables, there is no record of GeneId1 == GeneId2
+ #XZ, 09/24/2008: Note that the correlation value can be negative.
+ def getTempTissueCorrTable(self, primaryTraitSymbol="", TissueProbeSetFreezeId=0, method="", returnNumber=0):
+
+ def cmpTissCorrAbsoluteValue(A, B):
+ try:
+ if abs(A[1]) < abs(B[1]): return 1
+ elif abs(A[1]) == abs(B[1]):
+ return 0
+ else: return -1
+ except:
+ return 0
+
+ symbolCorrDict, symbolPvalueDict = self.calculateCorrOfAllTissueTrait(primaryTraitSymbol=primaryTraitSymbol, TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=method)
+
+ symbolCorrList = symbolCorrDict.items()
+
+ symbolCorrList.sort(cmpTissCorrAbsoluteValue)
+ symbolCorrList = symbolCorrList[0 : 2*returnNumber]
+
+ tmpTableName = webqtlUtil.genRandStr(prefix="TOPTISSUE")
+
+ q1 = 'CREATE TEMPORARY TABLE %s (Symbol varchar(100) PRIMARY KEY, Correlation float, PValue float)' % tmpTableName
+ self.cursor.execute(q1)
+
+ for one_pair in symbolCorrList:
+ one_symbol = one_pair[0]
+ one_corr = one_pair[1]
+ one_p_value = symbolPvalueDict[one_symbol]
+
+ self.cursor.execute( "INSERT INTO %s (Symbol, Correlation, PValue) VALUES ('%s',%f,%f)" % (tmpTableName, one_symbol, float(one_corr), float(one_p_value)) )
+
+ return tmpTableName
+
+
+ #XZ, 01/09/2009: This function was created by David Crowell. Xiaodong cleaned up and modified it.
+ def fetchLitCorrelations(self, species, GeneId, db, returnNumber): ### Used to generate Lit Correlations when calculations are done from text file. dcrowell August 2008
+ """Uses getTempLiteratureTable to generate table of literatire correlations. This function then gathers that data and
+ pairs it with the TraitID string. Takes as its arguments a formdata instance, and a database instance.
+ Returns a dictionary of 'TraitID':'LitCorr' for the requested correlation"""
+
+ tempTable = self.getTempLiteratureTable(species=species, input_species_geneid=GeneId, returnNumber=returnNumber)
+
+ query = "SELECT %s.Name, %s.value" % (db.type,tempTable)
+ query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type)
+ query += ' LEFT JOIN %s ON %s.GeneId2=ProbeSet.GeneId ' % (tempTable,tempTable)
+ query += "WHERE ProbeSet.GeneId IS NOT NULL AND %s.value IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable, db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
+
+ self.cursor.execute(query)
+ results = self.cursor.fetchall()
+
+ litCorrDict = {}
+
+ for entry in results:
+ traitName,litcorr = entry
+ litCorrDict[traitName] = litcorr
+
+ self.cursor.execute('DROP TEMPORARY TABLE %s' % tempTable)
+
+ return litCorrDict
+
+
+
+ #XZ, 01/09/2009: Xiaodong created this function.
+ def fetchTissueCorrelations(self, db, primaryTraitSymbol="", TissueProbeSetFreezeId=0, method="", returnNumber = 0):
+ """Uses getTempTissueCorrTable to generate table of tissue correlations. This function then gathers that data and
+ pairs it with the TraitID string. Takes as its arguments a formdata instance, and a database instance.
+ Returns a dictionary of 'TraitID':(tissueCorr, tissuePValue) for the requested correlation"""
+
+
+ tempTable = self.getTempTissueCorrTable(primaryTraitSymbol=primaryTraitSymbol, TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=method, returnNumber=returnNumber)
+
+ query = "SELECT ProbeSet.Name, %s.Correlation, %s.PValue" % (tempTable, tempTable)
+ query += ' FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze)'
+ query += ' LEFT JOIN %s ON %s.Symbol=ProbeSet.Symbol ' % (tempTable,tempTable)
+ query += "WHERE ProbeSetFreeze.Name = '%s' and ProbeSetFreeze.Id=ProbeSetXRef.ProbeSetFreezeId and ProbeSet.Id = ProbeSetXRef.ProbeSetId and ProbeSet.Symbol IS NOT NULL AND %s.Correlation IS NOT NULL" % (db.name, tempTable)
+
+ self.cursor.execute(query)
+ results = self.cursor.fetchall()
+
+ tissueCorrDict = {}
+
+ for entry in results:
+ traitName, tissueCorr, tissuePValue = entry
+ tissueCorrDict[traitName] = (tissueCorr, tissuePValue)
+
+ self.cursor.execute('DROP TEMPORARY TABLE %s' % tempTable)
+
+ return tissueCorrDict
+
+
+
+ #XZ, 01/13/2008
+ def getLiteratureCorrelationByList(self, input_trait_mouse_geneid=None, species=None, traitList=None):
+
+ tmpTableName = webqtlUtil.genRandStr(prefix="LITERATURE")
+
+ q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName
+ q2 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId1,GeneId2,value FROM LCorrRamin3 WHERE GeneId1=%s' % (tmpTableName, input_trait_mouse_geneid)
+ q3 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId2,GeneId1,value FROM LCorrRamin3 WHERE GeneId2=%s AND GeneId1!=%s' % (tmpTableName, input_trait_mouse_geneid, input_trait_mouse_geneid)
+
+ for x in [q1,q2,q3]:
+ self.cursor.execute(x)
+
+ for thisTrait in traitList:
+ try:
+ if thisTrait.geneid:
+ thisTrait.mouse_geneid = self.translateToMouseGeneID(species, thisTrait.geneid)
+ else:
+ thisTrait.mouse_geneid = 0
+ except:
+ thisTrait.mouse_geneid = 0
+
+ if thisTrait.mouse_geneid and str(thisTrait.mouse_geneid).find(";") == -1:
+ try:
+ self.cursor.execute("SELECT value FROM %s WHERE GeneId2 = %s" % (tmpTableName, thisTrait.mouse_geneid))
+ result = self.cursor.fetchone()
+ if result:
+ thisTrait.LCorr = result[0]
+ else:
+ thisTrait.LCorr = None
+ except:
+ thisTrait.LCorr = None
+ else:
+ thisTrait.LCorr = None
+
+ self.cursor.execute("DROP TEMPORARY TABLE %s" % tmpTableName)
+
+ return traitList
+
+
+
+ def calculateCorrOfAllTissueTrait(self, primaryTraitSymbol=None, TissueProbeSetFreezeId=None, method=None):
+
+ symbolCorrDict = {}
+ symbolPvalueDict = {}
+
+ primaryTraitSymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TissueProbeSetFreezeId)
+ primaryTraitValue = primaryTraitSymbolValueDict.values()[0]
+
+ SymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[], TissueProbeSetFreezeId=TissueProbeSetFreezeId)
+
+ if method in ["2","5"]:
+ symbolCorrDict, symbolPvalueDict = correlationFunction.batchCalTissueCorr(primaryTraitValue,SymbolValueDict,method='spearman')
+ else:
+ symbolCorrDict, symbolPvalueDict = correlationFunction.batchCalTissueCorr(primaryTraitValue,SymbolValueDict)
+
+
+ return (symbolCorrDict, symbolPvalueDict)
+
+
+
+ #XZ, 10/13/2010
+ def getTissueCorrelationByList(self, primaryTraitSymbol=None, traitList=None, TissueProbeSetFreezeId=None, method=None):
+
+ primaryTraitSymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TissueProbeSetFreezeId)
+
+ if primaryTraitSymbol.lower() in primaryTraitSymbolValueDict:
+ primaryTraitValue = primaryTraitSymbolValueDict[primaryTraitSymbol.lower()]
+
+ geneSymbolList = []
+
+ for thisTrait in traitList:
+ if hasattr(thisTrait, 'symbol'):
+ geneSymbolList.append(thisTrait.symbol)
+
+ SymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=geneSymbolList, TissueProbeSetFreezeId=TissueProbeSetFreezeId)
+
+ for thisTrait in traitList:
+ if hasattr(thisTrait, 'symbol') and thisTrait.symbol and thisTrait.symbol.lower() in SymbolValueDict:
+ oneTraitValue = SymbolValueDict[thisTrait.symbol.lower()]
+ if method in ["2","5"]:
+ result = correlationFunction.calZeroOrderCorrForTiss( primaryTraitValue, oneTraitValue, method='spearman' )
+ else:
+ result = correlationFunction.calZeroOrderCorrForTiss( primaryTraitValue, oneTraitValue)
+ thisTrait.tissueCorr = result[0]
+ thisTrait.tissuePValue = result[2]
+ else:
+ thisTrait.tissueCorr = None
+ thisTrait.tissuePValue = None
+ else:
+ for thisTrait in traitList:
+ thisTrait.tissueCorr = None
+ thisTrait.tissuePValue = None
+
+ return traitList
+
+
+ def getTopInfo(self, myTrait=None, method=None, db=None, target_db_name=None, returnNumber=None, methodDict=None, totalTraits=None, identification=None ):
+
+ if myTrait:
+ if method in ["1","2"]: #genetic correlation
+ info = HT.Paragraph("Values of Record %s in the " % myTrait.getGivenName(), HT.Href(text=myTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % myTrait.db.name,target="_blank", Class="fwn"),
+ " database were compared to all %d records in the " % totalTraits, HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank", Class="fwn"),
+ ' database. The top %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]),
+ ' You can resort this list using the small arrowheads in the top row.')
+ else:
+ #myTrait.retrieveInfo()#need to know geneid and symbol
+ if method == "3":#literature correlation
+ searchDBName = "Literature Correlation"
+ searchDBLink = "/correlationAnnotation.html#literatureCorr"
+ else: #tissue correlation
+ searchDBName = "Tissue Correlation"
+ searchDBLink = "/correlationAnnotation.html#tissueCorr"
+ info = HT.Paragraph("Your input record %s in the " % myTrait.getGivenName(), HT.Href(text=myTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % myTrait.db.name,target="_blank", Class="fwn"),
+ " database corresponds to ",
+ HT.Href(text='gene Id %s, and gene symbol %s' % (myTrait.geneid, myTrait.symbol), target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % myTrait.geneid, Class="fs12 fwn"),
+ '. GN ranked all genes in the ', HT.Href(text=searchDBName,url=searchDBLink,target="_blank", Class="fwn"),' database by the %s.' % methodDict[method],
+ ' The top %d probes or probesets in the ' % returnNumber, HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank", Class="fwn"),
+ ' database corresponding to the top genes ranked by the %s are displayed.' %( methodDict[method]),
+ ' You can resort this list using the small arrowheads in the top row.' )
+
+ elif identification:
+ info = HT.Paragraph('Values of %s were compared to all %d traits in ' % (identification, totalTraits),
+ HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank",Class="fwn"),
+ ' database. The TOP %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]),
+ ' You can resort this list using the small arrowheads in the top row.')
+
+ else:
+ info = HT.Paragraph('Trait values were compared to all values in ',
+ HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank",Class="fwn"),
+ ' database. The TOP %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]),
+ ' You can resort this list using the small arrowheads in the top row.')
+
+ if db.type=="Geno":
+ info.append(HT.BR(),HT.BR(),'Clicking on the Locus will open the genotypes data for that locus. Click on the correlation to see a scatter plot of the trait data.')
+ elif db.type=="Publish":
+ info.append(HT.BR(),HT.BR(),'Clicking on the record ID will open the published phenotype data for that publication. Click on the correlation to see a scatter plot of the trait data. ')
+ elif db.type=="ProbeSet":
+ info.append(HT.BR(),'Click the correlation values to generate scatter plots. Select the Record ID to open the Trait Data and Analysis form. Select the symbol to open NCBI Entrez.')
+ else:
+ pass
+
+
+ return info
+
+
+ def createExcelFileWithTitleAndFooter(self, workbook=None, identification=None, db=None, returnNumber=None):
+
+ worksheet = workbook.add_worksheet()
+
+ titleStyle = workbook.add_format(align = 'left', bold = 0, size=14, border = 1, border_color="gray")
+
+ ##Write title Info
+ # Modified by Hongqiang Li
+ worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle)
+ worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle)
+ worksheet.write([2, 0], "Trait : %s" % identification, titleStyle)
+ worksheet.write([3, 0], "Database : %s" % db.fullname, titleStyle)
+ worksheet.write([4, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle)
+ worksheet.write([5, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle)
+ worksheet.write([6, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle)
+ #Write footer info
+ worksheet.write([9 + returnNumber, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA21131), NCI MMHCC (U01CA105417), and NCRR (U01NR 105417)", titleStyle)
+ worksheet.write([10 + returnNumber, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle)
+
+ return worksheet
+
+
+ def getTableHeaderForGeno(self, method=None, worksheet=None, newrow=None, headingStyle=None):
+
+ tblobj_header = []
+
+ if method in ["1","3","4"]:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
+ THCell(HT.TD('Record', HT.BR(), 'ID', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Record ID', idx=1),
+ THCell(HT.TD('Location', HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Location (Chr and Mb)', idx=2),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=3),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=4),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=5)]]
+
+ for ncol, item in enumerate(['Record ID', 'Location (Chr, Mb)', 'Sample r', 'N Cases', 'Sample p(r)']):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+ else:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
+ THCell(HT.TD('Record', HT.BR(), 'ID', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Record ID', idx=1),
+ THCell(HT.TD('Location', HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Location (Chr and Mb)', idx=2),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=3),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=4),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=5)]]
+
+ for ncol, item in enumerate(['Record ID', 'Location (Chr, Mb)', 'Sample rho', 'N Cases', 'Sample p(rho)']):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+
+
+ return tblobj_header, worksheet
+
+
+ def getTableBodyForGeno(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None):
+
+ tblobj_body = []
+
+ for thisTrait in traitList:
+ tr = []
+
+ trId = str(thisTrait)
+
+ corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr))
+
+ tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
+
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"),align="left", Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name.upper()))
+
+ #XZ: trait_location_value is used for sorting
+ trait_location_repr = '--'
+ trait_location_value = 1000000
+
+ if thisTrait.chr and thisTrait.mb:
+ try:
+ trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb
+ except:
+ if thisTrait.chr.upper() == 'X':
+ trait_location_value = 20*1000 + thisTrait.mb
+ else:
+ trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
+
+ trait_location_repr = 'Chr%s: %.6f' % (thisTrait.chr, float(thisTrait.mb) )
+
+ tr.append(TDCell(HT.TD(trait_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), trait_location_repr, trait_location_value))
+
+
+ repr='%3.3f' % thisTrait.corr
+ tr.append(TDCell(HT.TD(HT.Href(text=repr, url="javascript:showCorrPlot('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"), Class="fs12 fwn ffl b1 c222", nowrap='ON', align='right'),repr,abs(thisTrait.corr)))
+
+ repr = '%d' % thisTrait.nOverlap
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222",align='right'),repr,thisTrait.nOverlap))
+
+ repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
+
+ tblobj_body.append(tr)
+
+ for ncol, item in enumerate([thisTrait.name, trait_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue]):
+ worksheet.write([newrow, ncol], item)
+ newrow += 1
+
+ return tblobj_body, worksheet, corrScript
+
+
+ def getTableHeaderForPublish(self, method=None, worksheet=None, newrow=None, headingStyle=None):
+
+ tblobj_header = []
+
+ if method in ["1","3","4"]:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0),
+ THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Record ID", idx=1),
+ THCell(HT.TD('Phenotype', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Phenotype", idx=2),
+ THCell(HT.TD('Authors', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Authors", idx=3),
+ THCell(HT.TD('Year', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Year", idx=4),
+ THCell(HT.TD('Max',HT.BR(), 'LRS', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS", idx=5),
+ THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS Location", idx=6),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=7),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=8),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=9)]]
+
+ for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "Pubmed Id", "Max LRS", "Max LRS Location (Chr: Mb)", "Sample r", "N Cases", "Sample p(r)"]):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+ else:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0),
+ THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Record ID", idx=1),
+ THCell(HT.TD('Phenotype', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Phenotype", idx=2),
+ THCell(HT.TD('Authors', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Authors", idx=3),
+ THCell(HT.TD('Year', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Year", idx=4),
+ THCell(HT.TD('Max',HT.BR(), 'LRS', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS", idx=5),
+ THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS Location", idx=6),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=7),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=8),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=9)]]
+
+ for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "Pubmed Id", "Max LRS", "Max LRS Location (Chr: Mb)", "Sample rho", "N Cases", "Sample p(rho)"]):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+
+
+ return tblobj_header, worksheet
+
+
+ def getTableBodyForPublish(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None, species=''):
+
+ tblobj_body = []
+
+ for thisTrait in traitList:
+ tr = []
+
+ trId = str(thisTrait)
+
+ corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr))
+
+ tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
+
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="center", Class="fs12 fwn b1 c222"),str(thisTrait.name), thisTrait.name))
+
+ PhenotypeString = thisTrait.post_publication_description
+ if thisTrait.confidential:
+ if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
+ PhenotypeString = thisTrait.pre_publication_description
+
+ tr.append(TDCell(HT.TD(PhenotypeString, Class="fs12 fwn b1 c222"), PhenotypeString, PhenotypeString.upper()))
+
+ tr.append(TDCell(HT.TD(thisTrait.authors, Class="fs12 fwn b1 c222 fsI"),thisTrait.authors, thisTrait.authors.strip().upper()))
+
+ try:
+ PubMedLinkText = myear = repr = int(thisTrait.year)
+ except:
+ PubMedLinkText = repr = "--"
+ myear = 0
+ if thisTrait.pubmed_id:
+ PubMedLink = HT.Href(text= repr,url= webqtlConfig.PUBMEDLINK_URL % thisTrait.pubmed_id,target='_blank', Class="fs12 fwn")
+ else:
+ PubMedLink = repr
+
+ tr.append(TDCell(HT.TD(PubMedLink, Class="fs12 fwn b1 c222", align='center'), repr, myear))
+
+ #LRS and its location
+ LRS_score_repr = '--'
+ LRS_score_value = 0
+ LRS_location_repr = '--'
+ LRS_location_value = 1000000
+ LRS_flag = 1
+
+ #Max LRS and its Locus location
+ if thisTrait.lrs and thisTrait.locus:
+ self.cursor.execute("""
+ select Geno.Chr, Geno.Mb from Geno, Species
+ where Species.Name = '%s' and
+ Geno.Name = '%s' and
+ Geno.SpeciesId = Species.Id
+ """ % (species, thisTrait.locus))
+ result = self.cursor.fetchone()
+
+ if result:
+ if result[0] and result[1]:
+ LRS_Chr = result[0]
+ LRS_Mb = result[1]
+
+ #XZ: LRS_location_value is used for sorting
+ try:
+ LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb)
+ except:
+ if LRS_Chr.upper() == 'X':
+ LRS_location_value = 20*1000 + float(LRS_Mb)
+ else:
+ LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb)
+
+
+ LRS_score_repr = '%3.1f' % thisTrait.lrs
+ LRS_score_value = thisTrait.lrs
+ LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) )
+ LRS_flag = 0
+
+ #tr.append(TDCell(HT.TD(HT.Href(text=LRS_score_repr,url="javascript:showIntervalMapping('%s', '%s : %s')" % (formName, thisTrait.db.shortname, thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"),LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value))
+
+ if LRS_flag:
+ tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222"), LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value))
+
+ repr = '%3.4f' % thisTrait.corr
+ tr.append(TDCell(HT.TD(HT.Href(text=repr,url="javascript:showCorrPlot('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222", align='right',nowrap="on"), repr, abs(thisTrait.corr)))
+
+ repr = '%d' % thisTrait.nOverlap
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.nOverlap))
+
+ repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
+
+ tblobj_body.append(tr)
+
+ for ncol, item in enumerate([thisTrait.name, PhenotypeString, thisTrait.authors, thisTrait.year, thisTrait.pubmed_id, LRS_score_repr, LRS_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue]):
+ worksheet.write([newrow, ncol], item)
+ newrow += 1
+
+ return tblobj_body, worksheet, corrScript
+
+
+ def getTableHeaderForProbeSet(self, method=None, worksheet=None, newrow=None, headingStyle=None):
+
+ tblobj_header = []
+
+ if method in ["1","3","4"]:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0),
+ THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Record ID", idx=1),
+ THCell(HT.TD('Gene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Gene ID", idx=2),
+ THCell(HT.TD('Homologene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Homologene ID", idx=3),
+ THCell(HT.TD('Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Symbol", idx=4),
+ THCell(HT.TD('Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Description", idx=5),
+ THCell(HT.TD('Location',HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Location (Chr: Mb)", idx=6),
+ THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mean Expr", idx=7),
+ THCell(HT.TD('Max',HT.BR(),'LRS',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS", idx=8),
+ THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS Location (Chr: Mb)", idx=9),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=10),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=11),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=12),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Lit',HT.BR(), 'Corr', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#literatureCorr"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Lit Corr", idx=13),
+ #XZ, 09/22/2008: tissue correlation
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue r", idx=14),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue p(r)", idx=15)]]
+
+ for ncol, item in enumerate(['Record', 'Gene ID', 'Homologene ID', 'Symbol', 'Description', 'Location (Chr: Mb)', 'Mean Expr', 'Max LRS', 'Max LRS Location (Chr: Mb)', 'Sample r', 'N Cases', 'Sample p(r)', 'Lit Corr', 'Tissue r', 'Tissue p(r)']):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+ else:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0),
+ THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Record ID", idx=1),
+ THCell(HT.TD('Gene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Gene ID", idx=2),
+ THCell(HT.TD('Homologene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Homologene ID", idx=3),
+ THCell(HT.TD('Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Symbol", idx=4),
+ THCell(HT.TD('Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Description", idx=5),
+ THCell(HT.TD('Location',HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Location (Chr: Mb)", idx=6),
+ THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mean Expr", idx=7),
+ THCell(HT.TD('Max',HT.BR(),'LRS',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS", idx=8),
+ THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS Location (Chr: Mb)", idx=9),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=10),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=11),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=12),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Lit',HT.BR(), 'Corr', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#literatureCorr"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Lit Corr", idx=13),
+ #XZ, 09/22/2008: tissue correlation
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue rho", idx=14),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue p(rho)", idx=15)]]
+
+ for ncol, item in enumerate(['Record ID', 'Gene ID', 'Homologene ID', 'Symbol', 'Description', 'Location (Chr: Mb)', 'Mean Expr', 'Max LRS', 'Max LRS Location (Chr: Mb)', 'Sample rho', 'N Cases', 'Sample p(rho)', 'Lit Corr', 'Tissue rho', 'Tissue p(rho)']):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+
+ return tblobj_header, worksheet
+
+
+ def getTableBodyForProbeSet(self, traitList=[], primaryTrait=None, formName=None, worksheet=None, newrow=None, corrScript=None, species=''):
+
+ tblobj_body = []
+
+ for thisTrait in traitList:
+
+ if thisTrait.symbol:
+ pass
+ else:
+ thisTrait.symbol = "--"
+
+ if thisTrait.geneid:
+ symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % thisTrait.geneid, Class="fs12 fwn")
+ else:
+ symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % thisTrait.symbol, Class="fs12 fwn")
+
+ tr = []
+
+ trId = str(thisTrait)
+
+ corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr))
+
+ #XZ, 12/08/2008: checkbox
+ tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
+
+ #XZ, 12/08/2008: probeset name
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222"), thisTrait.name, thisTrait.name.upper()))
+
+ #XZ, 12/08/2008: gene id
+ if thisTrait.geneid:
+ tr.append(TDCell(None, thisTrait.geneid, val=999))
+ else:
+ tr.append(TDCell(None, thisTrait.geneid, val=999))
+
+ #XZ, 12/08/2008: homologene id
+ if thisTrait.homologeneid:
+ tr.append(TDCell("", thisTrait.homologeneid, val=999))
+ else:
+ tr.append(TDCell("", thisTrait.homologeneid, val=999))
+
+ #XZ, 12/08/2008: gene symbol
+ tr.append(TDCell(HT.TD(symbolurl, Class="fs12 fwn b1 c222 fsI"),thisTrait.symbol, thisTrait.symbol.upper()))
+
+ #XZ, 12/08/2008: description
+ #XZ, 06/05/2009: Rob asked to add probe target description
+ description_string = str(thisTrait.description).strip()
+ target_string = str(thisTrait.probe_target_description).strip()
+
+ description_display = ''
+
+ if len(description_string) > 1 and description_string != 'None':
+ description_display = description_string
+ else:
+ description_display = thisTrait.symbol
+
+ if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None':
+ description_display = description_display + '; ' + target_string.strip()
+
+ tr.append(TDCell(HT.TD(description_display, Class="fs12 fwn b1 c222"), description_display, description_display))
+
+ #XZ: trait_location_value is used for sorting
+ trait_location_repr = '--'
+ trait_location_value = 1000000
+
+ if thisTrait.chr and thisTrait.mb:
+ try:
+ trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb
+ except:
+ if thisTrait.chr.upper() == 'X':
+ trait_location_value = 20*1000 + thisTrait.mb
+ else:
+ trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
+
+ trait_location_repr = 'Chr%s: %.6f' % (thisTrait.chr, float(thisTrait.mb) )
+
+ tr.append(TDCell(HT.TD(trait_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), trait_location_repr, trait_location_value))
+
+ """
+ #XZ, 12/08/2008: chromosome number
+ #XZ, 12/10/2008: use Mbvalue to sort chromosome
+ tr.append(TDCell( HT.TD(thisTrait.chr, Class="fs12 fwn b1 c222", align='right'), thisTrait.chr, Mbvalue) )
+
+ #XZ, 12/08/2008: Rob wants 6 digit precision, and we have to deal with that the mb could be None
+ if not thisTrait.mb:
+ tr.append(TDCell(HT.TD(thisTrait.mb, Class="fs12 fwn b1 c222",align='right'), thisTrait.mb, Mbvalue))
+ else:
+ tr.append(TDCell(HT.TD('%.6f' % thisTrait.mb, Class="fs12 fwn b1 c222", align='right'), thisTrait.mb, Mbvalue))
+ """
+
+
+
+ #XZ, 01/12/08: This SQL query is much faster.
+ self.cursor.execute("""
+ select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet
+ where ProbeSetXRef.ProbeSetFreezeId = %d and
+ ProbeSet.Id = ProbeSetXRef.ProbeSetId and
+ ProbeSet.Name = '%s'
+ """ % (thisTrait.db.id, thisTrait.name))
+ result = self.cursor.fetchone()
+ if result:
+ if result[0]:
+ mean = result[0]
+ else:
+ mean=0
+ else:
+ mean = 0
+
+ #XZ, 06/05/2009: It is neccessary to turn on nowrap
+ repr = "%2.3f" % mean
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'),repr, mean))
+
+ #LRS and its location
+ LRS_score_repr = '--'
+ LRS_score_value = 0
+ LRS_location_repr = '--'
+ LRS_location_value = 1000000
+ LRS_flag = 1
+
+ #Max LRS and its Locus location
+ if thisTrait.lrs and thisTrait.locus:
+ self.cursor.execute("""
+ select Geno.Chr, Geno.Mb from Geno, Species
+ where Species.Name = '%s' and
+ Geno.Name = '%s' and
+ Geno.SpeciesId = Species.Id
+ """ % (species, thisTrait.locus))
+ result = self.cursor.fetchone()
+
+ if result:
+ if result[0] and result[1]:
+ LRS_Chr = result[0]
+ LRS_Mb = result[1]
+
+ #XZ: LRS_location_value is used for sorting
+ try:
+ LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb)
+ except:
+ if LRS_Chr.upper() == 'X':
+ LRS_location_value = 20*1000 + float(LRS_Mb)
+ else:
+ LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb)
+
+
+ LRS_score_repr = '%3.1f' % thisTrait.lrs
+ LRS_score_value = thisTrait.lrs
+ LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) )
+ LRS_flag = 0
+
+ #tr.append(TDCell(HT.TD(HT.Href(text=LRS_score_repr,url="javascript:showIntervalMapping('%s', '%s : %s')" % (formName, thisTrait.db.shortname, thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"),LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), LRS_location_repr, LRS_location_value))
+
+ if LRS_flag:
+ tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222"), LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value))
+
+
+ #XZ, 12/08/2008: generic correlation
+ repr='%3.3f' % thisTrait.corr
+ tr.append(TDCell(HT.TD(HT.Href(text=repr, url="javascript:showCorrPlot('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"), Class="fs12 fwn ffl b1 c222", align='right'),repr,abs(thisTrait.corr)))
+
+ #XZ, 12/08/2008: number of overlaped cases
+ repr = '%d' % thisTrait.nOverlap
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.nOverlap))
+
+ #XZ, 12/08/2008: p value of genetic correlation
+ repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
+
+ #XZ, 12/08/2008: literature correlation
+ LCorr = 0.0
+ LCorrStr = "--"
+ if hasattr(thisTrait, 'LCorr') and thisTrait.LCorr:
+ LCorr = thisTrait.LCorr
+ LCorrStr = "%2.3f" % thisTrait.LCorr
+ tr.append(TDCell(HT.TD(LCorrStr, Class="fs12 fwn b1 c222", align='right'), LCorrStr, abs(LCorr)))
+
+ #XZ, 09/22/2008: tissue correlation.
+ TCorr = 0.0
+ TCorrStr = "--"
+ #XZ, 11/20/2008: need to pass two geneids: input_trait_mouse_geneid and thisTrait.mouse_geneid
+ if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissueCorr:
+ TCorr = thisTrait.tissueCorr
+ TCorrStr = "%2.3f" % thisTrait.tissueCorr
+ # NL, 07/19/2010: add a new parameter rankOrder for js function 'showTissueCorrPlot'
+ rankOrder = thisTrait.rankOrder
+ TCorrPlotURL = "javascript:showTissueCorrPlot('%s','%s','%s',%d)" %(formName, primaryTrait.symbol, thisTrait.symbol,rankOrder)
+ tr.append(TDCell(HT.TD(HT.Href(text=TCorrStr, url=TCorrPlotURL, Class="fs12 fwn ff1"), Class="fs12 fwn ff1 b1 c222", align='right'), TCorrStr, abs(TCorr)))
+ else:
+ tr.append(TDCell(HT.TD(TCorrStr, Class="fs12 fwn b1 c222", align='right'), TCorrStr, abs(TCorr)))
+
+ #XZ, 12/08/2008: p value of tissue correlation
+ TPValue = 1.0
+ TPValueStr = "--"
+ if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissuePValue: #XZ, 09/22/2008: thisTrait.tissuePValue can't be used here because it could be 0
+ TPValue = thisTrait.tissuePValue
+ TPValueStr = "%2.3f" % thisTrait.tissuePValue
+ tr.append(TDCell(HT.TD(TPValueStr, Class="fs12 fwn b1 c222", align='right'), TPValueStr, TPValue))
+
+ tblobj_body.append(tr)
+
+ for ncol, item in enumerate([thisTrait.name, thisTrait.geneid, thisTrait.homologeneid, thisTrait.symbol, thisTrait.description, trait_location_repr, mean, LRS_score_repr, LRS_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue, LCorr, TCorr, TPValue]):
+ worksheet.write([newrow, ncol], item)
+
+ newrow += 1
+
+ return tblobj_body, worksheet, corrScript
diff --git a/web/webqtl/correlation/PartialCorrDBPage.py b/web/webqtl/correlation/PartialCorrDBPage.py
new file mode 100755
index 00000000..ecd1e623
--- /dev/null
+++ b/web/webqtl/correlation/PartialCorrDBPage.py
@@ -0,0 +1,1359 @@
+import string
+import cPickle
+import os
+import pyXLWriter as xl
+
+from htmlgen import HTMLgen2 as HT
+
+from base import webqtlConfig
+#import webqtlData
+from utility.THCell import THCell
+from utility.TDCell import TDCell
+from base.webqtlTrait import webqtlTrait
+from base.webqtlDataset import webqtlDataset
+from base.templatePage import templatePage
+from utility import webqtlUtil
+from CorrelationPage import CorrelationPage
+import correlationFunction
+from dbFunction import webqtlDatabaseFunction
+
+
+#########################################
+# Partial Correlation Dataset Page
+#########################################
+
+
+class PartialCorrDBPage(CorrelationPage):
+
+ corrMinInformative = 4
+
+ def __init__(self, fd):
+
+
+ templatePage.__init__(self, fd)
+
+ if not self.openMysql():
+ return
+
+
+ primaryTraitString = fd.formdata.getvalue('primaryTrait')
+ primaryTrait = (webqtlTrait(fullname=primaryTraitString, cursor=self.cursor))
+
+ controlTraitsString = fd.formdata.getvalue('controlTraits')
+ controlTraitsList = list(string.split(controlTraitsString,','))
+ controlTraits = []
+ for item in controlTraitsList:
+ controlTraits.append(webqtlTrait(fullname=item, cursor=self.cursor))
+
+ #XZ, 3/16/2010: variable RISet must be pass by the form
+ RISet = fd.RISet
+ #XZ, 12/12/2008: get species infomation
+ species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=RISet)
+
+ #XZ, 09/18/2008: get all information about the user selected database.
+ self.target_db_name = fd.formdata.getvalue('database2')
+
+ try:
+ self.db = webqtlDataset(self.target_db_name, self.cursor)
+ except:
+ heading = "Partial Correlation Table"
+ detail = ["The database you just requested has not been established yet."]
+ self.error(heading=heading,detail=detail)
+ return
+
+ #XZ, 09/18/2008: check if user has the authority to get access to the database.
+ if self.db.type == 'ProbeSet':
+ self.cursor.execute('SELECT Id, Name, FullName, confidentiality, AuthorisedUsers FROM ProbeSetFreeze WHERE Name = "%s"' % self.target_db_name)
+ indId, indName, indFullName, confidential, AuthorisedUsers = self.cursor.fetchall()[0]
+
+ if confidential == 1:
+ access_to_confidential_dataset = 0
+
+ #for the dataset that confidentiality is 1
+ #1. 'admin' and 'root' can see all of the dataset
+ #2. 'user' can see the dataset that AuthorisedUsers contains his id(stored in the Id field of User table)
+ if webqtlConfig.USERDICT[self.privilege] > webqtlConfig.USERDICT['user']:
+ access_to_confidential_dataset = 1
+ else:
+ AuthorisedUsersList=AuthorisedUsers.split(',')
+ if AuthorisedUsersList.__contains__(self.userName):
+ access_to_confidential_dataset = 1
+
+ if not access_to_confidential_dataset:
+ #Error, Confidential Database
+ heading = "Partial Correlation Table"
+ detail = ["The %s database you selected is not open to the public at this time, please go back and select another database." % indFullName]
+ self.error(heading=heading,detail=detail,error="Confidential Database")
+ return
+
+
+ primaryTrait.retrieveData()
+ _primarystrains, _primaryvals, _primaryvars = primaryTrait.exportInformative()
+
+ controlTraitNames = fd.formdata.getvalue('controlTraits')
+ _controlstrains,_controlvals,_controlvars,_controlNs = correlationFunction.controlStrains(controlTraitNames,_primarystrains)
+
+ ## If the strains for which each of the control traits and the primary trait have values are not identical,
+ ## we must remove from the calculation all vlaues for strains that are not present in each. Without doing this,
+ ## undesirable biases would be introduced.
+
+ common_primary_control_strains = _primarystrains #keep _primarystrains
+ fixed_primary_vals = _primaryvals #keep _primaryvals
+ fixed_control_vals = _controlvals
+
+ allsame = True
+ ##allsame is boolean for whether or not primary and control trait have values for the same strains
+ for i in _controlstrains:
+ if _primarystrains != i:
+ allsame=False
+ break
+
+ if not allsame:
+ common_primary_control_strains, fixed_primary_vals, fixed_control_vals, _vars, _controlvars = correlationFunction.fixStrains(_primarystrains,_controlstrains,_primaryvals,_controlvals,_primaryvars,_controlvars)
+
+ N = len(common_primary_control_strains)
+ if N < self.corrMinInformative:
+ heading = "Partial Correlation Table"
+ detail = ['Fewer than %d strain data were entered for %s data set. No calculation of correlation has been attempted.' % (self.corrMinInformative, RISet)]
+ self.error(heading=heading,detail=detail)
+ return
+
+ #XZ: We should check the value of control trait and primary trait here.
+ nameOfIdenticalTraits = correlationFunction.findIdenticalTraits ( fixed_primary_vals, primaryTraitString, fixed_control_vals, controlTraitsList )
+ if nameOfIdenticalTraits:
+ heading = "Partial Correlation Table"
+ detail = ['%s and %s have same values for the %s strains that will be used to calculate partial correlation (common for all primary and control traits). In such case, partial correlation can NOT be calculated. Please re-select your traits.' % (nameOfIdenticalTraits[0], nameOfIdenticalTraits[1], len(fixed_primary_vals))]
+ self.error(heading=heading,detail=detail)
+ return
+
+
+ #XZ, 09/28/2008: if user select "1", then display 1, 3 and 4.
+ #XZ, 09/28/2008: if user select "2", then display 2, 3 and 5.
+ #XZ, 09/28/2008: if user select "3", then display 1, 3 and 4.
+ #XZ, 09/28/2008: if user select "4", then display 1, 3 and 4.
+ #XZ, 09/28/2008: if user select "5", then display 2, 3 and 5.
+ methodDict = {"1":"Genetic Correlation (Pearson's r)","2":"Genetic Correlation (Spearman's rho)","3":"SGO Literature Correlation","4":"Tissue Correlation (Pearson's r)", "5":"Tissue Correlation (Spearman's rho)"}
+ self.method = fd.formdata.getvalue('method')
+ if self.method not in ("1","2","3","4","5"):
+ self.method = "1"
+
+ self.returnNumber = int(fd.formdata.getvalue('criteria'))
+
+ myTrait = primaryTrait
+ myTrait.retrieveInfo()
+
+ # We will not get Literature Correlations if there is no GeneId because there is nothing to look against
+ try:
+ input_trait_GeneId = myTrait.geneid
+ except:
+ input_trait_GeneId = None
+
+ # We will not get Tissue Correlations if there is no gene symbol because there is nothing to look against
+ try:
+ input_trait_symbol = myTrait.symbol
+ except:
+ input_trait_symbol = None
+
+
+ #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid
+ input_trait_mouse_geneid = self.translateToMouseGeneID(species, input_trait_GeneId)
+
+ #XZ: As of Nov/13/2010, this dataset is 'UTHSC Illumina V6.2 RankInv B6 D2 average CNS GI average (May 08)'
+ TissueProbeSetFreezeId = 1
+
+
+ #XZ, 09/22/2008: If we need search by GeneId,
+ #XZ, 09/22/2008: we have to check if this GeneId is in the literature or tissue correlation table.
+ #XZ, 10/15/2008: We also to check if the selected database is probeset type.
+ if self.method == "3" or self.method == "4" or self.method == "5":
+ if self.db.type != "ProbeSet":
+ self.error(heading="Wrong correlation type",detail="It is not possible to compute the %s between your trait and data in this %s database. Please try again after selecting another type of correlation." % (methodDict[self.method],self.db.name),error="Correlation Type Error")
+ return
+
+ """
+ if not input_trait_GeneId:
+ self.error(heading="No Associated GeneId",detail="This trait has no associated GeneId, so we are not able to show any literature or tissue related information.",error="No GeneId Error")
+ return
+ """
+
+ #XZ: We have checked geneid did exist
+
+ if self.method == "3":
+ if not input_trait_GeneId or not self.checkForLitInfo(input_trait_mouse_geneid):
+ self.error(heading="No Literature Info",detail="This gene does not have any associated Literature Information.",error="Literature Correlation Error")
+ return
+
+ if self.method == "4" or self.method == "5":
+ if not input_trait_symbol:
+ self.error(heading="No Tissue Correlation Information",detail="This gene does not have any associated Tissue Correlation Information.",error="Tissue Correlation Error")
+ return
+
+ if not self.checkSymbolForTissueCorr(TissueProbeSetFreezeId, myTrait.symbol):
+ self.error(heading="No Tissue Correlation Information",detail="This gene does not have any associated Tissue Correlation Information.",error="Tissue Correlation Error")
+ return
+
+#######################################################################################################################################
+
+ nnCorr = len(fixed_primary_vals)
+
+ #XZ: Use the fast method only for probeset dataset, and this dataset must have been created.
+ #XZ: Otherwise, use original method
+
+ useFastMethod = False
+
+ if self.db.type == "ProbeSet":
+ DatabaseFileName = self.getFileName( target_db_name=self.target_db_name )
+ DirectoryList = os.listdir(webqtlConfig.TEXTDIR) # List of existing text files. Used to check if a text file already exists
+ if DatabaseFileName in DirectoryList:
+ useFastMethod = True
+
+ if useFastMethod:
+ totalTraits, allcorrelations = self.getPartialCorrelationsFast(common_primary_control_strains , fixed_primary_vals, fixed_control_vals, nnCorr, DatabaseFileName, species, input_trait_GeneId, input_trait_symbol, TissueProbeSetFreezeId)
+
+ if totalTraits == 0:
+ useFastMethod = False
+
+ #XZ, 01/08/2009: use the original method to retrieve from database and compute.
+ if not useFastMethod:
+ totalTraits, allcorrelations = self.getPartialCorrelationsNormal(common_primary_control_strains, fixed_primary_vals, fixed_control_vals, nnCorr, species, input_trait_GeneId, input_trait_symbol,TissueProbeSetFreezeId)
+
+#############################################################
+
+ if self.method == "3" and input_trait_GeneId:
+ allcorrelations.sort(self.cmpLitCorr)
+ elif self.method in ["4","5"] and input_trait_GeneId:
+ allcorrelations.sort(self.cmpLitCorr)
+ else:
+ allcorrelations.sort(self.cmpPartialCorrPValue)
+
+ #XZ, 09/20/2008: we only need the top ones.
+ self.returnNumber = min(self.returnNumber,len(allcorrelations))
+ allcorrelations = allcorrelations[:self.returnNumber]
+
+ addLiteratureCorr = False
+ addTissueCorr = False
+
+ traitList = []
+ for item in allcorrelations:
+ thisTrait = webqtlTrait(db=self.db, name=item[0], cursor=self.cursor)
+ thisTrait.retrieveInfo()
+
+ thisTrait.Name = item[0]
+ thisTrait.NOverlap = item[1]
+
+ thisTrait.partial_corr = item[2]
+ thisTrait.partial_corrPValue = item[3]
+
+ thisTrait.corr = item[4]
+ thisTrait.corrPValue = item[5]
+ # NL, 07/19/2010
+ # js function changed, add a new parameter rankOrder for js function 'showTissueCorrPlot'
+ rankOrder = 0;
+ if self.method in ["2","5"]:
+ rankOrder = 1;
+ thisTrait.rankOrder = rankOrder
+
+ #XZ, 26/09/2008: Method is 4 or 5. Have fetched tissue corr, but no literature correlation yet.
+ if len(item) == 8:
+ thisTrait.tissueCorr = item[6]
+ thisTrait.tissuePValue = item[7]
+ addLiteratureCorr = True
+
+ #XZ, 26/09/2008: Method is 3, Have fetched literature corr, but no tissue corr yet.
+ elif len(item) == 7:
+ thisTrait.LCorr = item[6]
+ thisTrait.mouse_geneid = self.translateToMouseGeneID(species, thisTrait.geneid)
+ addTissueCorr = True
+
+ #XZ, 26/09/2008: Method is 1 or 2. Have NOT fetched literature corr and tissue corr yet.
+ # Phenotype data will not have geneid, and neither will some probes
+ # we need to handle this because we will get an attribute error
+ else:
+ if input_trait_mouse_geneid and self.db.type=="ProbeSet":
+ addLiteratureCorr = True
+ if input_trait_symbol and self.db.type=="ProbeSet":
+ addTissueCorr = True
+
+ traitList.append(thisTrait)
+
+ if addLiteratureCorr:
+ traitList = self.getLiteratureCorrelationByList(input_trait_mouse_geneid, species, traitList)
+ if addTissueCorr:
+ traitList = self.getTissueCorrelationByList(primaryTraitSymbol=input_trait_symbol, traitList=traitList,TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=self.method)
+
+########################################################
+
+ TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee')
+
+ mainfmName = webqtlUtil.genRandStr("fm_")
+ form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name= mainfmName, submit=HT.Input(type='hidden'))
+ hddn = {'FormID':'showDatabase', 'ProbeSetID':'_','database':self.target_db_name, 'CellID':'_', 'RISet':RISet, 'identification':fd.identification}
+
+ if myTrait:
+ hddn['fullname']=str(myTrait)
+
+
+ for key in hddn.keys():
+ form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
+
+ #XZ, 11/21/2008: add two parameters to form
+ form.append(HT.Input(name="X_geneSymbol", value="", type='hidden'))
+ form.append(HT.Input(name="Y_geneSymbol", value="", type='hidden'))
+
+ #XZ, 3/11/2010: add one parameter to record if the method is rank order.
+
+ form.append(HT.Input(name="rankOrder", value="%s" % rankOrder, type='hidden'))
+
+ form.append(HT.Input(name="TissueProbeSetFreezeId", value="%s" % TissueProbeSetFreezeId, type='hidden'))
+
+
+ ####################################
+ # generate the info on top of page #
+ ####################################
+
+ info_form = self.getFormForPrimaryAndControlTraits (primaryTrait, controlTraits)
+ info = self.getTopInfo(myTrait=myTrait, method=self.method, db=self.db, target_db_name=self.target_db_name, returnNumber=self.returnNumber, methodDict=methodDict, totalTraits=totalTraits, identification=fd.identification )
+
+ ##############
+ # Excel file #
+ ##############
+ filename= webqtlUtil.genRandStr("Corr_")
+ xlsUrl = HT.Input(type='button', value = 'Download Table', onClick= "location.href='/tmp/%s.xls'" % filename, Class='button')
+ # Create a new Excel workbook
+ workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+filename))
+ headingStyle = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white")
+
+ #XZ, 3/18/2010: pay attention to the line number of header in this file. As of today, there are 7 lines.
+ worksheet = self.createExcelFileWithTitleAndFooter(workbook=workbook, identification=fd.identification, db=self.db, returnNumber=self.returnNumber)
+
+ newrow = 7
+
+
+
+#####################################################################
+
+ mintmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'showIntMap');" % mainfmName)
+ mintmap_img = HT.Image("/images/multiple_interval_mapping1_final.jpg", name='mintmap', alt="Multiple Interval Mapping", title="Multiple Interval Mapping", style="border:none;")
+ mintmap.append(mintmap_img)
+ mcorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'compCorr');" % mainfmName)
+ mcorr_img = HT.Image("/images/compare_correlates2_final.jpg", alt="Compare Correlates", title="Compare Correlates", style="border:none;")
+ mcorr.append(mcorr_img)
+ cormatrix = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'corMatrix');" % mainfmName)
+ cormatrix_img = HT.Image("/images/correlation_matrix1_final.jpg", alt="Correlation Matrix and PCA", title="Correlation Matrix and PCA", style="border:none;")
+ cormatrix.append(cormatrix_img)
+ networkGraph = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'networkGraph');" % mainfmName)
+ networkGraph_img = HT.Image("/images/network_graph1_final.jpg", name='mintmap', alt="Network Graphs", title="Network Graphs", style="border:none;")
+ networkGraph.append(networkGraph_img)
+ heatmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'heatmap');" % mainfmName)
+ heatmap_img = HT.Image("/images/heatmap2_final.jpg", name='mintmap', alt="QTL Heat Map and Clustering", title="QTL Heatmap and Clustering", style="border:none;")
+ heatmap.append(heatmap_img)
+ partialCorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'partialCorrInput');" % mainfmName)
+ partialCorr_img = HT.Image("/images/partial_correlation_final.jpg", name='partialCorr', alt="Partial Correlation", title="Partial Correlation", style="border:none;")
+ partialCorr.append(partialCorr_img)
+ addselect = HT.Href(url="#redirect", onClick="addRmvSelection('%s', document.getElementsByName('%s')[0], 'addToSelection');" % (RISet, mainfmName))
+ addselect_img = HT.Image("/images/add_collection1_final.jpg", name="addselect", alt="Add To Collection", title="Add To Collection", style="border:none;")
+ addselect.append(addselect_img)
+ selectall = HT.Href(url="#redirect", onClick="checkAll(document.getElementsByName('%s')[0]);" % mainfmName)
+ selectall_img = HT.Image("/images/select_all2_final.jpg", name="selectall", alt="Select All", title="Select All", style="border:none;")
+ selectall.append(selectall_img)
+ selectinvert = HT.Href(url="#redirect", onClick = "checkInvert(document.getElementsByName('%s')[0]);" % mainfmName)
+ selectinvert_img = HT.Image("/images/invert_selection2_final.jpg", name="selectinvert", alt="Invert Selection", title="Invert Selection", style="border:none;")
+ selectinvert.append(selectinvert_img)
+ reset = HT.Href(url="#redirect", onClick="checkNone(document.getElementsByName('%s')[0]); return false;" % mainfmName)
+ reset_img = HT.Image("/images/select_none2_final.jpg", alt="Select None", title="Select None", style="border:none;")
+ reset.append(reset_img)
+ selecttraits = HT.Input(type='button' ,name='selecttraits',value='Select Traits', onClick="checkTraits(this.form);",Class="button")
+ selectgt = HT.Input(type='text' ,name='selectgt',value='-1.0', size=6,maxlength=10,onChange="checkNumeric(this,1.0,'-1.0','gthan','greater than filed')")
+ selectlt = HT.Input(type='text' ,name='selectlt',value='1.0', size=6,maxlength=10,onChange="checkNumeric(this,-1.0,'1.0','lthan','less than field')")
+ selectandor = HT.Select(name='selectandor')
+ selectandor.append(('AND','and'))
+ selectandor.append(('OR','or'))
+ selectandor.selected.append('AND')
+
+ chrMenu = HT.Input(type='hidden',name='chromosomes',value='all')
+
+ corrHeading = HT.Paragraph('Partial Correlation Table', Class="title")
+
+
+ pageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%", border=0, align="Left")
+ containerTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="90%",border=0, align="Left")
+
+ optionsTable = HT.TableLite(cellSpacing=2, cellPadding=0,width="320", height="80", border=0, align="Left")
+ optionsTable.append(HT.TR(HT.TD(selectall), HT.TD(reset), HT.TD(selectinvert), HT.TD(addselect), align="left"))
+ optionsTable.append(HT.TR(HT.TD("&nbsp;"*1,"Select"), HT.TD("Deselect"), HT.TD("&nbsp;"*1,"Invert"), HT.TD("&nbsp;"*3,"Add")))
+ containerTable.append(HT.TR(HT.TD(optionsTable)))
+
+ functionTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="480",height="80", border=0, align="Left")
+ functionRow = HT.TR(HT.TD(networkGraph, width="16.7%"), HT.TD(cormatrix, width="16.7%"), HT.TD(partialCorr, width="16.7%"), HT.TD(mcorr, width="16.7%"), HT.TD(mintmap, width="16.7%"), HT.TD(heatmap), align="left")
+ labelRow = HT.TR(HT.TD("&nbsp;"*1,HT.Text("Graph")), HT.TD("&nbsp;"*1,HT.Text("Matrix")), HT.TD("&nbsp;"*1,HT.Text("Partial")), HT.TD(HT.Text("Compare")), HT.TD(HT.Text("QTL Map")), HT.TD(HT.Text(text="Heat Map")))
+ functionTable.append(functionRow, labelRow)
+ containerTable.append(HT.TR(HT.TD(functionTable), HT.BR()))
+
+ moreOptions = HT.Input(type='button',name='options',value='More Options', onClick="",Class="toggle")
+ fewerOptions = HT.Input(type='button',name='options',value='Fewer Options', onClick="",Class="toggle")
+
+ if (fd.formdata.getvalue('showHideOptions') == 'less'):
+ containerTable.append(HT.TR(HT.TD("&nbsp;"), height="10"), HT.TR(HT.TD(HT.Div(fewerOptions, Class="toggleShowHide"))))
+ containerTable.append(HT.TR(HT.TD("&nbsp;")))
+ else:
+ containerTable.append(HT.TR(HT.TD("&nbsp;"), height="10"), HT.TR(HT.TD(HT.Div(moreOptions, Class="toggleShowHide"))))
+ containerTable.append(HT.TR(HT.TD("&nbsp;")))
+
+ containerTable.append(HT.TR(HT.TD(HT.Span(selecttraits,' with partial r > ',selectgt, ' ',selectandor, ' r < ',selectlt,Class="bd1 cbddf fs11")), style="display:none;", Class="extra_options"))
+
+
+ tblobj = {}
+
+
+ if self.db.type=="Geno":
+
+ containerTable.append(HT.TR(HT.TD(xlsUrl, height=40)))
+ pageTable.append(HT.TR(HT.TD(containerTable)))
+
+ tblobj['header'], worksheet = self.getTableHeaderForGeno( method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
+ newrow += 1
+
+ corrScript = HT.Script(language="Javascript")
+ corrScript.append("var corrArray = new Array();")
+
+ sortby = self.getSortByValue( calculationMethod = self.method )
+
+ tblobj['body'], worksheet, corrScript = self.getTableBodyForGeno(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript)
+
+ workbook.close()
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+ # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
+ pageTable.append(HT.TR(HT.TD(div)))
+ form.append(HT.Input(name='ShowStrains',type='hidden', value =1),
+ HT.Input(name='ShowLine',type='hidden', value =1),
+ HT.P(),pageTable)
+
+ TD_LR.append(corrHeading, info_form, HT.P(), info, form, HT.P())
+
+ self.dict['body'] = str(TD_LR)
+ # updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
+ self.dict['js1'] = ''
+ self.dict['title'] = 'Partial Correlation Result'
+
+ elif self.db.type=="Publish":
+
+ containerTable.append(HT.TR(HT.TD(xlsUrl, height=40)))
+ pageTable.append(HT.TR(HT.TD(containerTable)))
+
+ tblobj['header'], worksheet = self.getTableHeaderForPublish(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
+ newrow += 1
+
+ sortby = self.getSortByValue( calculationMethod = self.method )
+
+ corrScript = HT.Script(language="Javascript")
+ corrScript.append("var corrArray = new Array();")
+
+ tblobj['body'], worksheet, corrScript = self.getTableBodyForPublish(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript)
+
+ workbook.close()
+
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+ # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
+ pageTable.append(HT.TR(HT.TD(div)))
+
+ form.append(
+ HT.Input(name='ShowStrains',type='hidden', value =1),
+ HT.Input(name='ShowLine',type='hidden', value =1),
+ HT.P(),pageTable)
+
+ TD_LR.append(corrHeading, info_form, HT.P(), info, form, HT.P())
+
+ self.dict['body'] = str(TD_LR)
+ #updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
+ self.dict['js1'] = ''
+ self.dict['title'] = 'Partial Correlation Result'
+
+ elif self.db.type=="ProbeSet":
+
+ tblobj['header'], worksheet = self.getTableHeaderForProbeSet(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
+ newrow += 1
+
+ sortby = self.getSortByValue( calculationMethod = self.method )
+
+ corrScript = HT.Script(language="Javascript")
+ corrScript.append("var corrArray = new Array();")
+
+ tblobj['body'], worksheet, corrScript = self.getTableBodyForProbeSet(traitList=traitList, primaryTrait=myTrait, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript)
+
+ workbook.close()
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+
+ '''
+ #XZ, 07/07/2010: I comment out this block of code.
+ WebGestaltScript = HT.Script(language="Javascript")
+ WebGestaltScript.append("""
+setTimeout('openWebGestalt()', 2000);
+function openWebGestalt(){
+ var thisForm = document['WebGestalt'];
+ makeWebGestaltTree(thisForm, '%s', %d, 'edag_only.php');
+}
+ """ % (mainfmName, len(traitList)))
+ '''
+
+ #XZ: here is the table of traits
+ # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
+
+ self.cursor.execute('SELECT GeneChip.GO_tree_value FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % self.db.name)
+ result = self.cursor.fetchone()
+
+ if result:
+ GO_tree_value = result[0]
+
+ if GO_tree_value:
+
+ hddnWebGestalt = {
+ 'id_list':'',
+ 'correlation':'',
+ 'id_value':'',
+ 'llid_list':'',
+ 'id_type':GO_tree_value,
+ 'idtype':'',
+ 'species':'',
+ 'list':'',
+ 'client':''}
+
+ hddnWebGestalt['ref_type'] = hddnWebGestalt['id_type']
+ hddnWebGestalt['cat_type'] = 'GO'
+ hddnWebGestalt['significancelevel'] = 'Top10'
+
+ if species == 'rat':
+ hddnWebGestalt['org'] = 'Rattus norvegicus'
+ elif species == 'human':
+ hddnWebGestalt['org'] = 'Homo sapiens'
+ elif species == 'mouse':
+ hddnWebGestalt['org'] = 'Mus musculus'
+ else:
+ hddnWebGestalt['org'] = ''
+
+ for key in hddnWebGestalt.keys():
+ form.append(HT.Input(name=key, value=hddnWebGestalt[key], type='hidden'))
+
+ #XZ, 01/12/2009: create database menu for 'Add Correlation'
+ self.cursor.execute("""
+ select
+ ProbeSetFreeze.FullName, ProbeSetFreeze.Id, Tissue.name
+ from
+ ProbeSetFreeze, ProbeFreeze, ProbeSetFreeze as ps2, ProbeFreeze as p2, Tissue
+ where
+ ps2.Id = %d
+ and ps2.ProbeFreezeId = p2.Id
+ and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id
+ and (ProbeFreeze.InbredSetId = p2.InbredSetId or (ProbeFreeze.InbredSetId in (1, 3) and p2.InbredSetId in (1, 3)))
+ and p2.ChipId = ProbeFreeze.ChipId
+ and ps2.Id != ProbeSetFreeze.Id
+ and ProbeFreeze.TissueId = Tissue.Id
+ and ProbeSetFreeze.public > %d
+ order by
+ ProbeFreeze.TissueId, ProbeSetFreeze.CreateTime desc
+ """ % (self.db.id, webqtlConfig.PUBLICTHRESH))
+
+ results = self.cursor.fetchall()
+ dbCustomizer = HT.Select(results, name = "customizer")
+ databaseMenuSub = preTissue = ""
+ for item in results:
+ TName, TId, TTissue = item
+ if TTissue != preTissue:
+ if databaseMenuSub:
+ dbCustomizer.append(databaseMenuSub)
+ databaseMenuSub = HT.Optgroup(label = '%s mRNA ------' % TTissue)
+ preTissue = TTissue
+
+ databaseMenuSub.append(item[:2])
+ if databaseMenuSub:
+ dbCustomizer.append(databaseMenuSub)
+ #updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
+ #variables: filename, strainIds and vals are required by getquerystring function
+ strainIds=self.getStrainIds(species=species, strains=_primarystrains)
+ var1 = HT.Input(name="filename", value=filename, type='hidden')
+ var2 = HT.Input(name="strainIds", value=strainIds, type='hidden')
+ var3 = HT.Input(name="vals", value=_primaryvals, type='hidden')
+ customizerButton = HT.Input(type="button", Class="button", value="Add Correlation", onClick = "xmlhttpPost('%smain.py?FormID=AJAX_table', 'sortable', (getquerystring(this.form)))" % webqtlConfig.CGIDIR)
+
+ containerTable.append(HT.TR(HT.TD(HT.Span(var1,var2,var3,customizerButton, "with", dbCustomizer, Class="bd1 cbddf fs11"), HT.BR(), HT.BR()), style="display:none;", Class="extra_options"))
+
+ #outside analysis part
+ GCATButton = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GCAT');" % mainfmName)
+ GCATButton_img = HT.Image("/images/GCAT_logo_final.jpg", name="GCAT", alt="GCAT", title="GCAT", style="border:none")
+ GCATButton.append(GCATButton_img)
+
+ ODE = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'ODE');" % mainfmName)
+ ODE_img = HT.Image("/images/ODE_logo_final.jpg", name="ode", alt="ODE", title="ODE", style="border:none")
+ ODE.append(ODE_img)
+
+ WebGestalt = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GOTree');" % mainfmName)
+ WebGestalt_img = HT.Image("/images/webgestalt_icon_final.jpg", name="webgestalt", alt="Gene Set Analysis Toolkit", title="Gene Set Analysis Toolkit", style="border:none")
+ WebGestalt.append(WebGestalt_img)
+
+ LinkOutTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="320",height="80", border=0, align="Left")
+ if not GO_tree_value:
+ LinkOutRow = HT.TR(HT.TD(GCATButton, width="50%"), HT.TD(ODE, width="50%"), align="left")
+ LinkOutLabels = HT.TR(HT.TD("&nbsp;", HT.Text("GCAT"), width="50%"), HT.TD("&nbsp;",HT.Text("ODE"), width="50%"), align="left")
+ else:
+ LinkOutRow = HT.TR(HT.TD(WebGestalt, width="25%"), HT.TD(GCATButton, width="25%"), HT.TD(ODE, width="25%"), align="left")
+ LinkOutLabels = HT.TR(HT.TD(HT.Text("Gene Set")), HT.TD("&nbsp;"*2, HT.Text("GCAT")), HT.TD("&nbsp;"*3, HT.Text("ODE")), style="display:none;", Class="extra_options")
+ LinkOutTable.append(LinkOutRow,LinkOutLabels)
+
+ containerTable.append(HT.TR(HT.TD(LinkOutTable), Class="extra_options", style="display:none;"))
+
+ containerTable.append(HT.TR(HT.TD(xlsUrl, HT.BR(), HT.BR(), height=40)))
+
+ pageTable.append(HT.TR(HT.TD(containerTable)))
+
+ pageTable.append(HT.TR(HT.TD(div)))
+
+ if species == 'human':
+ heatmap = ""
+
+ form.append(HT.Input(name='ShowStrains',type='hidden', value =1),
+ HT.Input(name='ShowLine',type='hidden', value =1),
+ info, HT.BR(), pageTable, HT.BR())
+
+ TD_LR.append(corrHeading, info_form, HT.P(), form, HT.P())
+
+
+ self.dict['body'] = str(TD_LR)
+ self.dict['title'] = 'Partial Correlation Result'
+ # updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
+ self.dict['js1'] = ''
+ self.dict['js2'] = 'onLoad="pageOffset()"'
+ self.dict['layer'] = self.generateWarningLayer()
+
+ else:
+ self.dict['body'] = ""
+
+
+
+####################################
+# #
+#Partial CorrelationPage Functions #
+# #
+####################################
+
+
+ def getSortByValue(self, calculationMethod):
+
+ sortby = ("partial_pv", "up")
+
+ if calculationMethod == "3": #XZ: literature correlation
+ sortby = ("lcorr","down")
+ elif calculationMethod == "4" or calculationMethod == "5": #XZ: tissue correlation
+ sortby = ("tissuecorr", "down")
+
+ return sortby
+
+
+ #XZ, 3/31/2010:
+ #A[0] holds trait name.
+ #A[1] holds partial correlation coefficient number.
+ #A[2] holds N.
+ #A[3] holds p value of partial correlation.
+ def cmpPartialCorrPValue (self, A, B):
+ try:
+ if A[3] < B[3]:
+ return -1
+ elif A[3] == B[3]:
+ return 0
+ else:
+ return 1
+ except:
+ return 0
+
+
+ #XZ, 4/1/2010:
+ #A[0] holds trait name.
+ #A[1] holds N.
+ #A[2] holds partial correlation coefficient number.
+ #A[3] holds p value of partial correlation.
+ #A[6] holds literature corr or tissue corr value.
+ #Sort by literature corr or tissue corr first, then by partial corr p value.
+ def cmpLitCorr(self, A, B):
+ try:
+ if abs(A[6]) < abs(B[6]):
+ return 1
+ elif abs(A[6]) == abs(B[6]):
+ if A[3] < B[3]:
+ return -1
+ elif A[3] == B[3]:
+ return 0
+ else:
+ return 1
+ else:
+ return -1
+ except:
+ return 0
+
+
+ def getPartialCorrelationsFast(self, _strains, _vals, _controlvals, nnCorr, DatabaseFileName, species, input_trait_GeneId,gene_symbol,TissueProbeSetFreezeId ):
+ """Calculates and returns correlation coefficients using data from a csv text file."""
+
+ try:
+ allcorrelations = []
+
+ useLit = False
+ if self.method == "3":
+ litCorrs = self.fetchLitCorrelations(species=species, GeneId=input_trait_GeneId, db=self.db, returnNumber=self.returnNumber)
+ useLit = True
+
+ useTissueCorr = False
+ if self.method == "4" or self.method == "5":
+ tissueCorrs = self.fetchTissueCorrelations(db=self.db,primaryTraitSymbol=gene_symbol, TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=self.method, returnNumber=self.returnNumber)
+ useTissueCorr = True
+
+ datasetFile = open(webqtlConfig.TEXTDIR+DatabaseFileName,'r')
+
+ #XZ, 01/08/2009: read the first line
+ line = datasetFile.readline()
+ dataset_strains = webqtlUtil.readLineCSV(line)[1:]
+
+ #XZ, 3/30/2010: This step is critical.
+ good_dataset_strains_index = []
+
+ for i in range(len(_strains)):
+ found_in_dataset_strains = 0
+ for j, one_dataset_strain in enumerate(dataset_strains):
+ if one_dataset_strain == _strains[i]:
+ found_in_dataset_strains = 1
+ good_dataset_strains_index.append(j)
+ break
+
+ if not found_in_dataset_strains:
+ good_dataset_strains_index.append(-99999)
+
+ allTargetTraitNames = []
+ allTargetTraitValues = []
+
+ #XZ, 04/01/2009: If literature corr or tissue corr is selected,
+ #XZ: there is no need to compute partial correlation for all traits.
+ #XZ: If genetic corr is selected, compute partial correlation for all traits.
+ for line in datasetFile:
+ trait_line = webqtlUtil.readLineCSV(line)
+ trait_name = trait_line[0]
+ trait_data = trait_line[1:]
+
+ if useLit:
+ if not litCorrs.has_key( trait_name ):
+ continue
+
+ if useTissueCorr:
+ if not tissueCorrs.has_key( trait_name ):
+ continue
+
+ #XZ, 04/01/2010: If useLit or useTissueCorr, and this trait should not be added,
+ #it will not go to the next step.
+
+ good_dataset_vals = []
+ for i in good_dataset_strains_index:
+ if i == -99999:
+ good_dataset_vals.append(None)
+ else:
+ good_dataset_vals.append( float(trait_data[i]) )
+
+ allTargetTraitNames.append(trait_name)
+ allTargetTraitValues.append(good_dataset_vals)
+
+ datasetFile.close()
+
+ if self.method in ["2", "5"]: #Spearman
+ allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames, method='s')
+ else:
+ allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames)
+
+ totalTraits = len(allcorrelations)
+
+ if useLit or useTissueCorr:
+ for i, item in enumerate(allcorrelations):
+ if useLit:
+ allcorrelations[i].append(litCorrs[ item[0] ])
+ if useTissueCorr:
+ tempCorr, tempPValue = tissueCorrs[ item[0] ]
+ allcorrelations[i].append(tempCorr)
+ allcorrelations[i].append(tempPValue)
+
+ return totalTraits, allcorrelations
+ except:
+ return 0, 0
+
+
+ def getPartialCorrelationsNormal(self, _strains, _vals, _controlvals, nnCorr, species, input_trait_GeneId, input_trait_symbol,TissueProbeSetFreezeId):
+ """Calculates and returns correlation coefficients"""
+
+ traitdatabase, dataStartPos = self.fetchAllDatabaseData(species=species, GeneId=input_trait_GeneId, GeneSymbol=input_trait_symbol, strains=_strains, db=self.db, method=self.method, returnNumber=self.returnNumber, tissueProbeSetFreezeId=TissueProbeSetFreezeId)
+ totalTraits = len(traitdatabase) #XZ, 09/18/2008: total trait number
+
+ allcorrelations = []
+
+ allTargetTraitNames = []
+ allTargetTraitValues = []
+
+ for traitdata in traitdatabase:
+ traitdataName = traitdata[0]
+ traitvals = traitdata[dataStartPos:]
+ allTargetTraitNames.append (traitdataName)
+ allTargetTraitValues.append (traitvals)
+
+ if self.method in ["2", "5"]: #Spearman
+ allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames, method='s')
+ else:
+ allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames)
+
+ #XZ, 09/28/2008: if user select '3', then fetchAllDatabaseData would give us LitCorr in the [1] position
+ #XZ, 09/28/2008: if user select '4' or '5', then fetchAllDatabaseData would give us Tissue Corr in the [1] position
+ #XZ, 09/28/2008: and Tissue Corr P Value in the [2] position
+ if input_trait_GeneId and self.db.type == "ProbeSet" and self.method in ["3", "4", "5"]:
+ for i, item in enumerate(allcorrelations):
+ if self.method == "3":
+ item.append( traitdatabase[1] )
+ if self.method == "4" or self.method == "5":
+ item.append( traitdatabase[1] )
+ item.append( traitdatabase[2] )
+
+
+ return totalTraits, allcorrelations
+
+
+ def getTableHeaderForPublish(self, method=None, worksheet=None, newrow=None, headingStyle=None):
+
+ tblobj_header = []
+
+ if method in ["1", "3", "4"]:
+ tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0),
+ THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="id", idx=1),
+ THCell(HT.TD('Phenotype', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="pheno", idx=2),
+ THCell(HT.TD('Authors', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="auth", idx=3),
+ THCell(HT.TD('Year', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="year", idx=4),
+ THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="nstr", idx=5),
+ THCell(HT.TD('Partial r ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="partial_corr", idx=6),
+ THCell(HT.TD('p(partial r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="partial_pv", idx=7),
+ THCell(HT.TD('r ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="corr", idx=8),
+ THCell(HT.TD('p(r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="pv", idx=9),
+ THCell(HT.TD('delta r', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="delta_corr", idx=10)]]
+
+ for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "PubMedID", "N", "Partial r", "p(partial r)", "r ", "p(r)", "delta r"]):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+ else:
+ tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0),
+ THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="id", idx=1),
+ THCell(HT.TD('Phenotype', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="pheno", idx=2),
+ THCell(HT.TD('Authors', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="auth", idx=3),
+ THCell(HT.TD('Year', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="year", idx=4),
+ THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="nstr", idx=5),
+ THCell(HT.TD('Partial rho ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="partial_corr", idx=6),
+ THCell(HT.TD('p(partial rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="partial_pv", idx=7),
+ THCell(HT.TD('rho ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="corr", idx=8),
+ THCell(HT.TD('p(rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="pv", idx=9),
+ THCell(HT.TD('delta rho', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="delta_corr", idx=10)]]
+
+ for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "PubMedID", "N", "Partial rho", "p(partial rho)", "rho ", "p(rho)", "delta rho"]):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+
+ return tblobj_header, worksheet
+
+
+ def getTableBodyForPublish(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None):
+
+ tblobj_body = []
+
+ for thisTrait in traitList:
+ tr = []
+
+ trId = str(thisTrait)
+
+ #partial corr value could be string 'NA'
+ try:
+ corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.partial_corr))
+ except:
+ corrScript.append('corrArray["%s"] = {corr:"NA"};' % (trId))
+
+ tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
+
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="center", Class="fs12 fwn b1 c222"),str(thisTrait.name), thisTrait.name))
+
+ PhenotypeString = thisTrait.post_publication_description
+ if thisTrait.confidential:
+ if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
+ PhenotypeString = thisTrait.pre_publication_description
+ tr.append(TDCell(HT.TD(PhenotypeString, Class="fs12 fwn b1 c222"), PhenotypeString, PhenotypeString.upper()))
+
+ tr.append(TDCell(HT.TD(thisTrait.authors, Class="fs12 fwn b1 c222 fsI"),thisTrait.authors, thisTrait.authors.strip().upper()))
+
+ try:
+ PubMedLinkText = myear = repr = int(thisTrait.year)
+ except:
+ PubMedLinkText = repr = "N/A"
+ myear = 0
+ if thisTrait.pubmed_id:
+ PubMedLink = HT.Href(text= repr,url= webqtlConfig.PUBMEDLINK_URL % thisTrait.pubmed_id,target='_blank', Class="fs12 fwn")
+ else:
+ PubMedLink = repr
+
+ tr.append(TDCell(HT.TD(PubMedLink, Class="fs12 fwn b1 c222", align='center'), repr, myear))
+
+ repr = '%d' % thisTrait.NOverlap
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.NOverlap))
+
+ try:
+ repr = '%3.3f' % thisTrait.partial_corr
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), repr, abs(thisTrait.partial_corr)))
+ except:
+ repr = 'NA'
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 ))
+
+ repr = webqtlUtil.SciFloat(thisTrait.partial_corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.partial_corrPValue))
+
+ repr = '%3.3f' % thisTrait.corr
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), repr, abs(thisTrait.corr)))
+
+ repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
+
+ #delta
+ try:
+ delta = '%3.3f' % ( float(thisTrait.partial_corr) - float(thisTrait.corr) )
+ tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"), text=delta, val=abs(float(delta)) ))
+ except:
+ delta = 'NA'
+ tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='left'), text=delta, val=0 ))
+
+ tblobj_body.append(tr)
+
+ for ncol, item in enumerate([thisTrait.name, PhenotypeString, thisTrait.authors, thisTrait.year, thisTrait.pubmed_id, thisTrait.NOverlap, thisTrait.partial_corr, thisTrait.partial_corrPValue, thisTrait.corr, thisTrait.corrPValue, delta]):
+ worksheet.write([newrow, ncol], str(item) )
+ newrow += 1
+
+ return tblobj_body, worksheet, corrScript
+
+
+ def getTableHeaderForGeno(self, method=None, worksheet=None, newrow=None, headingStyle=None):
+ tblobj_header = []
+
+ if method in ["1", "3", "4"]:
+ tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
+ THCell(HT.TD('Locus', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='locus', idx=1),
+ THCell(HT.TD('Chr', Class="fs13 fwb ffl b1 cw cbrb"), text='chr', idx=2),
+ THCell(HT.TD('Megabase', Class="fs13 fwb ffl b1 cw cbrb"), text='Mb', idx=3),
+ THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='nstr', idx=4),
+ THCell(HT.TD('Partial r ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_corr', idx=5),
+ THCell(HT.TD('p(partial r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=6),
+ THCell(HT.TD('r ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='corr', idx=7),
+ THCell(HT.TD('p(r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=8),
+ THCell(HT.TD('delta r', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_corr', idx=9)]]
+
+ for ncol, item in enumerate(['Locus', 'Chr', ' Mb ', ' N ', 'Partial r', 'p(partial r)', 'r ', 'p(r)', 'delta r' ]):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+ else:
+ tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
+ THCell(HT.TD('Locus', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='locus', idx=1),
+ THCell(HT.TD('Chr', Class="fs13 fwb ffl b1 cw cbrb"), text='chr', idx=2),
+ THCell(HT.TD('Megabase', Class="fs13 fwb ffl b1 cw cbrb"), text='Mb', idx=3),
+ THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='nstr', idx=4),
+ THCell(HT.TD('Partial rho', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_corr', idx=5),
+ THCell(HT.TD('p(partial rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=6),
+ THCell(HT.TD('rho ', Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text='corr', idx=7),
+ THCell(HT.TD('p(rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=8),
+ THCell(HT.TD('delta rho', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_corr', idx=9)]]
+
+ for ncol, item in enumerate(['Locus', 'Chr', ' Mb ', ' N ', 'Partial rho', 'p(partial rho)', 'rho ', 'p(rho)', 'delta rho' ]):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+
+ return tblobj_header, worksheet
+
+
+
+ def getTableBodyForGeno(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None):
+
+ tblobj_body = []
+
+ for thisTrait in traitList:
+ tr = []
+
+ trId = str(thisTrait)
+
+ #partial corr value could be string 'NA'
+ try:
+ corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.partial_corr))
+ except:
+ corrScript.append('corrArray["%s"] = {corr:"NA"};' % (trId))
+
+ tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
+
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"),align="center", Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name.upper()))
+
+ #tr.append(TDCell(HT.TD(thisTrait.chr, Class="fs12 fwn ffl b1 c222", align='right'), text=str(thisTrait.chr)))
+
+ try:
+ Mbvalue = int(thisTrait.chr)*1000 + thisTrait.mb
+ except:
+ if not thisTrait.chr or not thisTrait.mb:
+ Mbvalue = 1000000
+ elif thisTrait.chr.upper() == 'X':
+ Mbvalue = 20*1000 + thisTrait.mb
+ else:
+ Mbvalue = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
+
+ tr.append(TDCell( HT.TD(thisTrait.chr, Class="fs12 fwn b1 c222", align='right'), thisTrait.chr, Mbvalue) )
+ tr.append(TDCell(HT.TD(thisTrait.mb, Class="fs12 fwn ffl b1 c222", align='right'), text=str(thisTrait.mb), val=Mbvalue))
+
+ repr = '%d' % thisTrait.NOverlap
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.NOverlap))
+
+ try:
+ repr='%3.3f' % thisTrait.partial_corr
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right',nowrap='ON'),repr,abs(thisTrait.partial_corr)))
+ except:
+ repr = 'NA'
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 ))
+
+ repr = webqtlUtil.SciFloat(thisTrait.partial_corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.partial_corrPValue))
+
+ repr = '%3.3f' % thisTrait.corr
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right',nowrap='ON'), repr, abs(thisTrait.corr)))
+
+ repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
+
+ #delta
+ try:
+ delta = '%3.3f' % ( float(thisTrait.partial_corr) - float(thisTrait.corr) )
+ tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'), text=delta, val=abs(float(delta)) ))
+ except:
+ delta = 'NA'
+ tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='left'), text=delta, val=0 ))
+
+ tblobj_body.append(tr)
+
+ for ncol, item in enumerate([thisTrait.name, thisTrait.chr, thisTrait.mb, thisTrait.NOverlap, thisTrait.partial_corr, thisTrait.partial_corrPValue, thisTrait.corr, thisTrait.corrPValue, delta]):
+ worksheet.write([newrow, ncol], item)
+ newrow += 1
+
+ return tblobj_body, worksheet, corrScript
+
+
+ def getTableHeaderForProbeSet(self, method=None, worksheet=None, newrow=None, headingStyle=None):
+
+ tblobj_header = []
+
+ if method in ["1","3","4"]:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0),
+ THCell(HT.TD('Record',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="id", idx=1),
+ THCell(HT.TD('','Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="symbol", idx=2),
+ THCell(HT.TD('','Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="desc", idx=3),
+ #XZ, 12/09/2008: sort chr
+ THCell(HT.TD('','Chr',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="chr", idx=4),
+ THCell(HT.TD('','Mb',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mb", idx=5),
+ THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="mean", idx=6),
+ THCell(HT.TD('N',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="nstr", idx=7),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'Partial r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_corr", idx=8),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(partial r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_pv", idx=9),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="corr", idx=10),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="pv", idx=11),
+ THCell(HT.TD('delta',HT.BR(), 'r', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="delta_corr", idx=12),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Pubmed',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#literatureCorr"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="lcorr", idx=13),
+ #XZ, 09/22/2008: tissue correlation
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuecorr", idx=14),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuepvalue", idx=15)]]
+
+ for ncol, item in enumerate(['Record', 'Gene ID', 'Symbol', 'Description', 'Chr', 'Megabase', 'Mean Expr', 'N ', 'Sample Partial r', 'Sample p(partial r)', 'Sample r', 'Sample p(r)', 'delta r', 'Lit Corr', 'Tissue r', 'Tissue p(r)']):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+ else:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0),
+ THCell(HT.TD('Record',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="id", idx=1),
+ THCell(HT.TD('','Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="symbol", idx=2),
+ THCell(HT.TD('','Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="desc", idx=3),
+ THCell(HT.TD('','Chr',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="chr", idx=4),
+ THCell(HT.TD('','Mb',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mb", idx=5),
+ THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="mean", idx=6),
+ THCell(HT.TD('N',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="nstr", idx=7),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'Partial rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_corr", idx=8),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(partial rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_pv", idx=9),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="corr", idx=10),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="pv", idx=11),
+ THCell(HT.TD('delta',HT.BR(),'rho', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="delta_corr", idx=12),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Pubmed',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#literatureCorr"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="lcorr", idx=13),
+ #XZ, 09/22/2008: tissue correlation
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuecorr", idx=14),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_p_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuepvalue", idx=15)]]
+
+ for ncol, item in enumerate(['Record', 'Gene ID', 'Symbol', 'Description', 'Chr', 'Megabase', 'Mean Expr', 'N ', 'Sample Partial rho', 'Sample p(partial rho)', 'Sample rho', 'Sample p(rho)', 'delta rho', 'Pubmed r', 'Tissue rho', 'Tissue p(rho)']):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+
+ return tblobj_header, worksheet
+
+
+ def getTableBodyForProbeSet(self, traitList=[], primaryTrait=None, formName=None, worksheet=None, newrow=None, corrScript=None):
+
+ tblobj_body = []
+
+ for thisTrait in traitList:
+
+ if thisTrait.symbol:
+ pass
+ else:
+ thisTrait.symbol = "N/A"
+
+ if thisTrait.geneid:
+ symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % thisTrait.geneid, Class="fs12 fwn")
+ else:
+ symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % thisTrait.symbol, Class="fs12 fwn")
+
+ tr = []
+
+ trId = str(thisTrait)
+
+ #partial corr value could be string 'NA'
+ try:
+ corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.partial_corr))
+ except:
+ corrScript.append('corrArray["%s"] = {corr:"NA"};' % (trId))
+
+ #XZ, 12/08/2008: checkbox
+ tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
+
+ #XZ, 12/08/2008: probeset name
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222"), thisTrait.name, thisTrait.name.upper()))
+
+ #XZ, 12/08/2008: gene symbol
+ tr.append(TDCell(HT.TD(symbolurl, Class="fs12 fwn b1 c222 fsI"),thisTrait.symbol, thisTrait.symbol.upper()))
+
+ #XZ, 12/08/2008: description
+ #XZ, 06/05/2009: Rob asked to add probe target description
+ description_string = str(thisTrait.description).strip()
+ target_string = str(thisTrait.probe_target_description).strip()
+
+ description_display = ''
+
+ if len(description_string) > 1 and description_string != 'None':
+ description_display = description_string
+ else:
+ description_display = thisTrait.symbol
+
+ if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None':
+ description_display = description_display + '; ' + target_string.strip()
+
+ tr.append(TDCell(HT.TD(description_display, Class="fs12 fwn b1 c222"), description_display, description_display))
+
+ #XZ, 12/08/2008: Mbvalue is used for sorting
+ try:
+ Mbvalue = int(thisTrait.chr)*1000 + thisTrait.mb
+ except:
+ if not thisTrait.chr or not thisTrait.mb:
+ Mbvalue = 1000000
+ elif thisTrait.chr.upper() == 'X':
+ Mbvalue = 20*1000 + thisTrait.mb
+ else:
+ Mbvalue = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
+
+ #XZ, 12/08/2008: chromosome number
+ #XZ, 12/10/2008: use Mbvalue to sort chromosome
+ tr.append(TDCell( HT.TD(thisTrait.chr, Class="fs12 fwn b1 c222", align='right'), thisTrait.chr, Mbvalue) )
+
+ #XZ, 12/08/2008: Rob wants 6 digit precision, and we have to deal with that the mb could be None
+ if not thisTrait.mb:
+ tr.append(TDCell(HT.TD(thisTrait.mb, Class="fs12 fwn b1 c222",align='right'), thisTrait.mb, Mbvalue))
+ else:
+ tr.append(TDCell(HT.TD('%.6f' % thisTrait.mb, Class="fs12 fwn b1 c222", align='right'), thisTrait.mb, Mbvalue))
+
+ #XZ, 01/12/08: This SQL query is much faster.
+ self.cursor.execute("""
+ select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet
+ where ProbeSetXRef.ProbeSetFreezeId = %d and
+ ProbeSet.Id = ProbeSetXRef.ProbeSetId and
+ ProbeSet.Name = '%s'
+ """ % (thisTrait.db.id, thisTrait.name))
+ result = self.cursor.fetchone()
+ if result:
+ if result[0]:
+ mean = result[0]
+ else:
+ mean=0
+ else:
+ mean = 0
+
+ #XZ, 06/05/2009: It is neccessary to turn on nowrap
+ repr = "%2.3f" % mean
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'),repr, mean))
+
+ #XZ: number of overlaped cases for partial corr
+ repr = '%d' % thisTrait.NOverlap
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.NOverlap))
+
+ #XZ: sample partial correlation
+ try:
+ repr='%3.3f' % thisTrait.partial_corr
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'),repr,abs(thisTrait.partial_corr)))
+ except:
+ repr = 'NA'
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 ))
+
+ #XZ: p value of genetic partial correlation
+ repr = webqtlUtil.SciFloat(thisTrait.partial_corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.partial_corrPValue))
+
+ repr = '%3.3f' % thisTrait.corr
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right',nowrap='ON'), repr, abs(thisTrait.corr)))
+
+ repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
+
+ #delta
+ try:
+ delta = '%3.3f' % ( float(thisTrait.partial_corr) - float(thisTrait.corr) )
+ tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'), text=delta, val=abs(float(delta)) ))
+ except:
+ delta = 'NA'
+ tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='left'), text=delta, val=0 ))
+
+ #XZ, 12/08/2008: literature correlation
+ LCorr = 0.0
+ LCorrStr = "N/A"
+ if hasattr(thisTrait, 'LCorr') and thisTrait.LCorr:
+ LCorr = thisTrait.LCorr
+ LCorrStr = "%2.3f" % thisTrait.LCorr
+ tr.append(TDCell(HT.TD(LCorrStr, Class="fs12 fwn b1 c222", align='right'), LCorrStr, abs(LCorr)))
+
+ #XZ, 09/22/2008: tissue correlation.
+ TCorr = 0.0
+ TCorrStr = "N/A"
+ #XZ, 11/18/2010: need to pass two gene symbols
+ if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissueCorr:
+ TCorr = thisTrait.tissueCorr
+ TCorrStr = "%2.3f" % thisTrait.tissueCorr
+ #NL, 07/19/2010: add a new parameter rankOrder for js function 'showTissueCorrPlot'
+ rankOrder =thisTrait.rankOrder
+ TCorrPlotURL = "javascript:showTissueCorrPlot('%s','%s','%s',%d)" %(formName, primaryTrait.symbol, thisTrait.symbol,rankOrder)
+ tr.append(TDCell(HT.TD(HT.Href(text=TCorrStr, url=TCorrPlotURL, Class="fs12 fwn ff1"), Class="fs12 fwn ff1 b1 c222", align='right'), TCorrStr, abs(TCorr) ))
+ else:
+ tr.append(TDCell(HT.TD(TCorrStr, Class="fs12 fwn b1 c222", align='right'), TCorrStr, abs(TCorr)))
+
+ #XZ, 12/08/2008: p value of tissue correlation
+ TPValue = 1.0
+ TPValueStr = "N/A"
+ if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissueCorr: #XZ, 09/22/2008: thisTrait.tissuePValue can't be used here because it could be 0
+ TPValue = thisTrait.tissuePValue
+ TPValueStr = "%2.3f" % thisTrait.tissuePValue
+ tr.append(TDCell(HT.TD(TPValueStr, Class="fs12 fwn b1 c222", align='right'), TPValueStr, abs(TPValue) ))
+
+ tblobj_body.append(tr)
+
+ for ncol, item in enumerate([thisTrait.name, thisTrait.geneid, thisTrait.symbol, thisTrait.description, thisTrait.chr, thisTrait.mb, mean, thisTrait.NOverlap, thisTrait.partial_corr, thisTrait.partial_corrPValue, thisTrait.corr, thisTrait.corrPValue, delta, LCorrStr, TCorrStr, TPValueStr]):
+ worksheet.write([newrow, ncol], item)
+
+ newrow += 1
+
+ return tblobj_body, worksheet, corrScript
+
+
+ def getFormForPrimaryAndControlTraits (self, primaryTrait, controlTraits):
+
+ info_form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden'))
+
+ hddn = {'FormID':'showDatabase', 'database':'_', 'ProbeSetID':'_', 'CellID':'_' }#XZ: These four parameters are required by javascript function showDatabase2.
+
+ for key in hddn.keys():
+ info_form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
+
+ info_form.append(HT.Paragraph("Primary Trait", Class="subtitle"), '\n')
+
+ primaryTraitTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0)
+ descriptionString = primaryTrait.genHTML(dispFromDatabase=1)
+ if primaryTrait.db.type == 'Publish' and primaryTrait.confidential:
+ descriptionString = primaryTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=primaryTrait.authorized_users)
+ primaryTraitTable.append(HT.TR(HT.TD(HT.Href(text='%s' % descriptionString, url="javascript:showDatabase2('%s','%s','%s')" % (primaryTrait.db.name,primaryTrait.name,primaryTrait.cellid), Class="fs12 fwn") )))
+
+ info_form.append(primaryTraitTable)
+
+ info_form.append(HT.Paragraph("Control Traits", Class="subtitle"), '\n')
+
+ controlTraitsTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0)
+
+ seq = 1
+
+ ## Generate the listing table for control traits
+ for thisTrait in controlTraits:
+ descriptionString = thisTrait.genHTML(dispFromDatabase=1)
+ if thisTrait.db.type == 'Publish' and thisTrait.confidential:
+ descriptionString = thisTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users)
+ controlTraitsTable.append(HT.TR(HT.TD("%d."%seq,align="right",width=10),
+ HT.TD(HT.Href(text='%s' % descriptionString,url="javascript:showDatabase2('%s','%s','%s')" % (thisTrait.db.name,thisTrait.name,thisTrait.cellid), Class="fs12 fwn") )))
+ seq += 1
+
+ info_form.append(controlTraitsTable)
+
+ return info_form
diff --git a/web/webqtl/correlation/PartialCorrInputPage.py b/web/webqtl/correlation/PartialCorrInputPage.py
new file mode 100755
index 00000000..7d32da6d
--- /dev/null
+++ b/web/webqtl/correlation/PartialCorrInputPage.py
@@ -0,0 +1,484 @@
+# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+#
+# This program is free software: you can redistribute it and/or modify it
+# under the terms of the GNU Affero General Public License
+# as published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+# See the GNU Affero General Public License for more details.
+#
+# This program is available from Source Forge: at GeneNetwork Project
+# (sourceforge.net/projects/genenetwork/).
+#
+# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
+# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
+#
+#
+#
+# This module is used by GeneNetwork project (www.genenetwork.org)
+#
+# Created by GeneNetwork Core Team 2010/08/10
+#
+# Last updated by GeneNetwork Core Team 2010/10/20
+
+import os
+import string
+import cPickle
+
+from htmlgen import HTMLgen2 as HT
+
+from base import webqtlConfig
+from utility.THCell import THCell
+from utility.TDCell import TDCell
+from base.webqtlTrait import webqtlTrait
+from base.templatePage import templatePage
+from dbFunction import webqtlDatabaseFunction
+from utility import webqtlUtil
+
+
+
+class PartialCorrInputPage(templatePage):
+
+ def __init__(self,fd):
+
+ templatePage.__init__(self, fd)
+
+ if not self.openMysql():
+ return
+
+ searchResult = fd.formdata.getvalue('searchResult')
+
+ if not searchResult:
+ heading = 'Partial Correlation'
+ detail = ['You need to select at least three traits in order to calculate partial correlation.']
+ self.error(heading=heading,detail=detail)
+ return
+
+
+ ## Adds the Trait instance for each trait name from the collection
+ traits = []
+
+ for item in searchResult:
+ traits.append(webqtlTrait(fullname=item, cursor=self.cursor))
+
+ RISet = fd.formdata.getvalue('RISet')
+ species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=RISet)
+
+ #XZ: HTML part
+ TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee')
+ TD_LR.append("Please select one primary trait, one to three control traits, and at least one target trait.", HT.P() )
+
+ mainFormName = 'showDatabase'
+ mainForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name=mainFormName,submit=HT.Input(type='hidden'))
+
+ #XZ: Add hidden form values
+ hddn = {'FormID':'calPartialCorrTrait', 'database':'', 'ProbeSetID':'', 'CellID':'', #XZ: These four parameters are required by javascript function showDatabase2.
+ 'controlTraits':'',
+ 'primaryTrait':'',
+ 'targetTraits':'',
+ 'pcMethod':'',
+ 'RISet':RISet
+ }
+
+
+ for key in hddn.keys():
+ mainForm.append(HT.Input(type='hidden', name=key, value=hddn[key]))
+
+ radioNames = []
+
+ for thisTrait in traits:
+ oneRadioName = thisTrait.getName()
+ radioNames.append(oneRadioName)
+
+ radioNamesString = ','.join(radioNames)
+
+ # Creates the image href that runs the javascript setting all traits as target or ignored
+ setAllTarget = HT.Href(url="#redirect", onClick="setAllAsTarget(document.getElementsByName('showDatabase')[0], '%s');" % radioNamesString)
+ setAllTargetImg = HT.Image("/images/select_all.gif", alt="Select All", title="Select All", style="border:none;")
+ setAllTarget.append(setAllTargetImg)
+ setAllIgnore = HT.Href(url="#redirect", onClick="setAllAsIgnore(document.getElementsByName('showDatabase')[0], '%s');" % radioNamesString)
+ setAllIgnoreImg = HT.Image("/images/select_all.gif", alt="Select All", title="Select All", style="border:none;")
+ setAllIgnore.append(setAllIgnoreImg)
+
+
+ tblobj = {}
+ tblobj['header'] = self.getCollectionTableHeader()
+
+ sortby = self.getSortByValue()
+
+ tblobj['body'] = self.getCollectionTableBody(traitList=traits, formName=mainFormName, species=species)
+
+ filename= webqtlUtil.genRandStr("Search_")
+
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), Id="sortable")
+
+ mainForm.append(div)
+
+ #XZ: Add button
+ radioNamesString = ','.join(radioNames)
+ jsCommand_1 = "validateTrait(this.form, \'" + radioNamesString + "\', 0, 1);"
+ jsCommand_2 = "validateTrait(this.form, \'" + radioNamesString + "\', 0, 2);"
+ partialCorrTraitButton_1 = HT.Input(type='button', name='submitPartialCorrTrait_1', value='Pearson\'s r', onClick='%s' % jsCommand_1, Class="button")
+ partialCorrTraitButton_2 = HT.Input(type='button', name='submitPartialCorrTrait_2', value='Spearman\'s rho', onClick='%s' % jsCommand_2, Class="button")
+ mainForm.append(HT.BR(), "Compute partial correlation for target selected above:", HT.BR(), partialCorrTraitButton_1, partialCorrTraitButton_2, HT.BR(), HT.BR(), HT.HR(color="gray",size=3) )
+
+ jsCommand = "validateTrait(this.form, \'" + radioNamesString + "\', 1);"
+ partialCorrDBButton = HT.Input(type='button', name='submitPartialCorrDB', value='Calculate', onClick='%s' % jsCommand,Class="button")
+
+ methodText = HT.Span("Calculate:", Class="ffl fwb fs12")
+
+ methodMenu = HT.Select(name='method')
+ methodMenu.append(('Genetic Correlation, Pearson\'s r','1'))
+ methodMenu.append(('Genetic Correlation, Spearman\'s rho','2'))
+ methodMenu.append(('SGO Literature Correlation','3'))
+ methodMenu.append(('Tissue Correlation, Pearson\'s r','4'))
+ methodMenu.append(('Tissue Correlation, Spearman\'s rho','5'))
+
+ databaseText = HT.Span("Choose Database:", Class="ffl fwb fs12")
+ databaseMenu = HT.Select(name='database2')
+
+ nmenu = 0
+
+ self.cursor.execute('SELECT PublishFreeze.FullName,PublishFreeze.Name FROM \
+ PublishFreeze,InbredSet WHERE PublishFreeze.InbredSetId = InbredSet.Id \
+ and InbredSet.Name = "%s" and PublishFreeze.public > %d' % \
+ (RISet,webqtlConfig.PUBLICTHRESH))
+ for item in self.cursor.fetchall():
+ databaseMenu.append(item)
+ nmenu += 1
+
+ self.cursor.execute('SELECT GenoFreeze.FullName,GenoFreeze.Name FROM GenoFreeze,\
+ InbredSet WHERE GenoFreeze.InbredSetId = InbredSet.Id and InbredSet.Name = \
+ "%s" and GenoFreeze.public > %d' % (RISet,webqtlConfig.PUBLICTHRESH))
+ for item in self.cursor.fetchall():
+ databaseMenu.append(item)
+ nmenu += 1
+
+ #03/09/2009: Xiaodong changed the SQL query to order by Name as requested by Rob.
+ self.cursor.execute('SELECT Id, Name FROM Tissue order by Name')
+ for item in self.cursor.fetchall():
+ TId, TName = item
+ databaseMenuSub = HT.Optgroup(label = '%s ------' % TName)
+ self.cursor.execute('SELECT ProbeSetFreeze.FullName,ProbeSetFreeze.Name FROM ProbeSetFreeze, ProbeFreeze, \
+ InbredSet WHERE ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeFreeze.TissueId = %d and \
+ ProbeSetFreeze.public > %d and ProbeFreeze.InbredSetId = InbredSet.Id and InbredSet.Name like "%s%%" \
+ order by ProbeSetFreeze.CreateTime desc, ProbeSetFreeze.AvgId ' % (TId,webqtlConfig.PUBLICTHRESH, RISet))
+ for item2 in self.cursor.fetchall():
+ databaseMenuSub.append(item2)
+ nmenu += 1
+ databaseMenu.append(databaseMenuSub)
+
+ if nmenu:
+ criteriaText = HT.Span("Return:", Class="ffl fwb fs12")
+ criteriaMenu = HT.Select(name='criteria', selected='500')
+ criteriaMenu.append(('top 100','100'))
+ criteriaMenu.append(('top 200','200'))
+ criteriaMenu.append(('top 500','500'))
+ criteriaMenu.append(('top 1000','1000'))
+ criteriaMenu.append(('top 2000','2000'))
+ criteriaMenu.append(('top 5000','5000'))
+ criteriaMenu.append(('top 10000','10000'))
+ criteriaMenu.append(('top 15000','15000'))
+ criteriaMenu.append(('top 20000','20000'))
+
+ self.MPDCell = HT.TD()
+ correlationMenus = HT.TableLite(
+ HT.TR(
+ HT.TD(databaseText,HT.BR(),databaseMenu, colspan=4)
+ ),
+ HT.TR(
+ HT.TD(methodText,HT.BR(),methodMenu),
+ self.MPDCell,
+ HT.TD(criteriaText,HT.BR(),criteriaMenu)),
+ border=0, cellspacing=4, cellpadding=0)
+ else:
+ correlationMenus = ""
+
+ mainForm.append(HT.Font('or',color='red', size=4), HT.BR(), HT.BR(), "Compute partial correlation for each trait in the database selected below:", HT.BR() )
+ mainForm.append( partialCorrDBButton, HT.BR(), HT.BR(), correlationMenus)
+
+ TD_LR.append(mainForm)
+
+ self.dict['body'] = str(TD_LR)
+ self.dict['js1'] =''
+ self.dict['title'] = 'Partial Correlation Input'
+
+
+ def getCollectionTableHeader(self):
+
+ tblobj_header = []
+
+ className = "fs13 fwb ffl b1 cw cbrb"
+
+ tblobj_header = [[THCell(HT.TD('Index', Class=className, nowrap="on"), sort=0),
+ THCell(HT.TD("Primary (X)",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="primary", sort=0),
+ THCell(HT.TD("Control (Z)",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="control", sort=0),
+ THCell(HT.TD("Target (Y)",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="target", sort=0),
+ THCell(HT.TD("Ignored",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="target", sort=0),
+ THCell(HT.TD('Dataset', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="dataset", idx=1),
+ THCell(HT.TD('Trait', HT.BR(), 'ID', HT.BR(), valign="top", Class=className, nowrap="on"), text="name", idx=2),
+ THCell(HT.TD('Description', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="desc", idx=3),
+ THCell(HT.TD('Location', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="location", idx=4),
+ THCell(HT.TD('Mean', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="mean", idx=5),
+ THCell(HT.TD('N', HT.BR(), 'Cases', HT.BR(), valign="top", Class=className, nowrap="on"), text="samples", idx=6),
+ THCell(HT.TD('Max LRS', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="lrs", idx=7),
+ THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb', HT.BR(), valign="top", Class=className, nowrap="on"), text="lrs_location", idx=8)]]
+
+ return tblobj_header
+
+
+
+ def getCollectionTableBody(self, traitList=None, formName=None, species=''):
+
+ tblobj_body = []
+
+ className = "fs12 fwn b1 c222"
+
+ for thisTrait in traitList:
+ tr = []
+
+ if not thisTrait.haveinfo:
+ thisTrait.retrieveInfo(QTL=1)
+
+ trId = str(thisTrait)
+
+ oneRadioName = thisTrait.getName()
+
+ tr.append(TDCell( HT.TD(' ',align="center",valign="center",Class=className) ))
+ tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="primary"),align="center",valign="center",Class=className) ))
+ tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="control"),align="center",valign="center",Class=className) ))
+ tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="target", checked="true"),align="center",valign="center",Class=className) ))
+ tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="ignored"),align="center",valign="center",Class=className) ))
+
+ tr.append(TDCell(HT.TD(thisTrait.db.name, Class="fs12 fwn b1 c222"), thisTrait.db.name, thisTrait.db.name.upper()))
+
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showDatabase3('%s','%s','%s','')" % (formName, thisTrait.db.name, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="left", Class=className
+),str(thisTrait.name), thisTrait.name))
+
+ #description column
+ if (thisTrait.db.type == "Publish"):
+ PhenotypeString = thisTrait.post_publication_description
+ if thisTrait.confidential:
+ if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
+ PhenotypeString = thisTrait.pre_publication_description
+ tr.append(TDCell(HT.TD(PhenotypeString, Class=className), PhenotypeString, PhenotypeString.upper()))
+ elif (thisTrait.db.type == "ProbeSet" or thisTrait.db.type == "Temp"):
+ description_string = str(thisTrait.description).strip()
+ if (thisTrait.db.type == "ProbeSet"):
+ target_string = str(thisTrait.probe_target_description).strip()
+
+ description_display = ''
+
+ if len(description_string) > 1 and description_string != 'None':
+ description_display = description_string
+ else:
+ description_display = thisTrait.symbol
+
+ if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None':
+ description_display = description_display + '; ' + target_string.strip()
+
+ description_string = description_display
+
+ tr.append(TDCell(HT.TD(description_string, Class=className), description_string, description_string))
+ else:
+ tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz"))
+
+ #location column
+ if (thisTrait.db.type == "Publish"):
+ tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz"))
+ else:
+ #ZS: trait_location_value is used for sorting
+ trait_location_repr = "N/A"
+ trait_location_value = 1000000
+
+ if hasattr(thisTrait, 'chr') and hasattr(thisTrait, 'mb') and thisTrait.chr and thisTrait.mb:
+ try:
+ trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb
+ except:
+ if thisTrait.chr.upper() == "X":
+ trait_location_value = 20*1000 + thisTrait.mb
+ else:
+ trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
+
+ trait_location_repr = "Chr%s: %.6f" % (thisTrait.chr, float(thisTrait.mb) )
+
+ tr.append( TDCell(HT.TD(trait_location_repr, nowrap="yes", Class=className), trait_location_repr, trait_location_value) )
+
+ if (thisTrait.db.type == "ProbeSet"):
+ self.cursor.execute("""
+ select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet
+ where ProbeSetXRef.ProbeSetFreezeId = %d and
+ ProbeSet.Id = ProbeSetXRef.ProbeSetId and
+ ProbeSet.Name = '%s'
+ """ % (thisTrait.db.id, thisTrait.name))
+ result = self.cursor.fetchone()
+ if result:
+ if result[0]:
+ mean = result[0]
+ else:
+ mean=0
+ else:
+ mean = 0
+
+ #XZ, 06/05/2009: It is neccessary to turn on nowrap
+ repr = "%2.3f" % mean
+ tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean))
+
+ elif (thisTrait.db.type == "Publish"):
+ self.cursor.execute("""
+ select count(PublishData.value), sum(PublishData.value) from PublishData, PublishXRef, PublishFreeze
+ where PublishData.Id = PublishXRef.DataId and
+ PublishXRef.Id = %s and
+ PublishXRef.InbredSetId = PublishFreeze.InbredSetId and
+ PublishFreeze.Id = %d
+ """ % (thisTrait.name, thisTrait.db.id))
+ result = self.cursor.fetchone()
+
+ if result:
+ if result[0] and result[1]:
+ mean = result[1]/result[0]
+ else:
+ mean = 0
+ else:
+ mean = 0
+
+ repr = "%2.3f" % mean
+ tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean))
+ else:
+ tr.append(TDCell(HT.TD("--", Class=className, align='left', nowrap='ON'),"--", 0))
+
+ #Number of cases
+ n_cases_value = 0
+ n_cases_repr = "--"
+ if (thisTrait.db.type == "Publish"):
+ self.cursor.execute("""
+ select count(PublishData.value) from PublishData, PublishXRef, PublishFreeze
+ where PublishData.Id = PublishXRef.DataId and
+ PublishXRef.Id = %s and
+ PublishXRef.InbredSetId = PublishFreeze.InbredSetId and
+ PublishFreeze.Id = %d
+ """ % (thisTrait.name, thisTrait.db.id))
+ result = self.cursor.fetchone()
+
+ if result:
+ if result[0]:
+ n_cases_value = result[0]
+ n_cases_repr = result[0]
+
+ if (n_cases_value == "--"):
+ tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value))
+ else:
+ tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value))
+
+ elif (thisTrait.db.type == "ProbeSet"):
+ self.cursor.execute("""
+ select count(ProbeSetData.value) from ProbeSet, ProbeSetXRef, ProbeSetData, ProbeSetFreeze
+ where ProbeSet.Name='%s' and
+ ProbeSetXRef.ProbeSetId = ProbeSet.Id and
+ ProbeSetXRef.DataId = ProbeSetData.Id and
+ ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id and
+ ProbeSetFreeze.Name = '%s'
+ """ % (thisTrait.name, thisTrait.db.name))
+ result = self.cursor.fetchone()
+
+ if result:
+ if result[0]:
+ n_cases_value = result[0]
+ n_cases_repr = result[0]
+ if (n_cases_value == "--"):
+ tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value))
+ else:
+ tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value))
+
+ elif (thisTrait.db.type == "Geno"):
+ self.cursor.execute("""
+ select count(GenoData.value) from GenoData, GenoXRef, GenoFreeze, Geno, Strain
+ where Geno.SpeciesId = %s and Geno.Name='%s' and
+ GenoXRef.GenoId = Geno.Id and
+ GenoXRef.DataId = GenoData.Id and
+ GenoXRef.GenoFreezeId = GenoFreeze.Id and
+ GenoData.StrainId = Strain.Id and
+ GenoFreeze.Name = '%s'
+ """ % (webqtlDatabaseFunction.retrieveSpeciesId(self.cursor, thisTrait.db.riset), thisTrait.name, thisTrait.db.name))
+ result = self.cursor.fetchone()
+
+ if result:
+ if result[0]:
+ n_cases_value = result[0]
+ n_cases_repr = result[0]
+ if (n_cases_value == "--"):
+ tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value))
+ else:
+ tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value))
+
+ else:
+ tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value))
+
+
+ if (thisTrait.db.type != "Geno"):
+ #LRS and its location
+ LRS_score_repr = '--'
+ LRS_score_value = 0
+ LRS_location_repr = '--'
+ LRS_location_value = 1000000
+ LRS_flag = 1
+
+ #Max LRS and its Locus location
+ if hasattr(thisTrait, 'lrs') and hasattr(thisTrait, 'locus') and thisTrait.lrs and thisTrait.locus:
+ self.cursor.execute("""
+ select Geno.Chr, Geno.Mb from Geno, Species
+ where Species.Name = '%s' and
+ Geno.Name = '%s' and
+ Geno.SpeciesId = Species.Id
+ """ % (species, thisTrait.locus))
+ result = self.cursor.fetchone()
+
+ if result:
+ if result[0] and result[1]:
+ LRS_Chr = result[0]
+ LRS_Mb = result[1]
+
+ #XZ: LRS_location_value is used for sorting
+ try:
+ LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb)
+ except:
+ if LRS_Chr.upper() == 'X':
+ LRS_location_value = 20*1000 + float(LRS_Mb)
+ else:
+ LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb)
+
+
+ LRS_score_repr = '%3.1f' % thisTrait.lrs
+ LRS_score_value = thisTrait.lrs
+ LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) )
+ LRS_flag = 0
+
+ tr.append(TDCell(HT.TD(LRS_score_repr, Class=className, align='right', nowrap="on"), LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_location_repr, Class=className), LRS_location_repr, LRS_location_value))
+
+ if LRS_flag:
+ tr.append(TDCell(HT.TD(LRS_score_repr, Class=className), LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_location_repr, Class=className), LRS_location_repr, LRS_location_value))
+ else:
+ tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", 0))
+ tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", 1000000))
+
+ tblobj_body.append(tr)
+
+ return tblobj_body
+
+
+
+ def getSortByValue(self):
+
+ sortby = ("pv", "up")
+
+ return sortby
+
diff --git a/web/webqtl/correlation/PartialCorrTraitPage.py b/web/webqtl/correlation/PartialCorrTraitPage.py
new file mode 100755
index 00000000..1c79e250
--- /dev/null
+++ b/web/webqtl/correlation/PartialCorrTraitPage.py
@@ -0,0 +1,310 @@
+# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+#
+# This program is free software: you can redistribute it and/or modify it
+# under the terms of the GNU Affero General Public License
+# as published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+# See the GNU Affero General Public License for more details.
+#
+# This program is available from Source Forge: at GeneNetwork Project
+# (sourceforge.net/projects/genenetwork/).
+#
+# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
+# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
+#
+#
+#
+# This module is used by GeneNetwork project (www.genenetwork.org)
+#
+# Created by GeneNetwork Core Team 2010/08/10
+#
+# Last updated by GeneNetwork Core Team 2010/10/20
+
+import string
+import cPickle
+import os
+
+from htmlgen import HTMLgen2 as HT
+
+from base import webqtlConfig
+from utility.THCell import THCell
+from utility.TDCell import TDCell
+from base.webqtlTrait import webqtlTrait
+from base.templatePage import templatePage
+from utility import webqtlUtil
+from CorrelationPage import CorrelationPage
+import correlationFunction
+
+
+
+class PartialCorrTraitPage(CorrelationPage):
+
+ corrMinInformative = 4
+
+
+ def __init__(self,fd):
+
+ templatePage.__init__(self, fd)
+
+ if not self.openMysql():
+ return
+
+ TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee')
+
+ TD_LR.append(HT.Paragraph("Partial Correlation Table", Class="title"), '\n')
+
+ pc_method = fd.formdata.getvalue('pcMethod')
+
+ primaryTraitString = fd.formdata.getvalue('primaryTrait')
+ primaryTrait = (webqtlTrait(fullname=primaryTraitString, cursor=self.cursor))
+
+ controlTraitsString = fd.formdata.getvalue('controlTraits')
+ controlTraitsList = list(string.split(controlTraitsString,','))
+ controlTraits = []
+ for item in controlTraitsList:
+ controlTraits.append(webqtlTrait(fullname=item, cursor=self.cursor))
+
+ targetTraitsString = fd.formdata.getvalue('targetTraits')
+ targetTraitsList = list(string.split(targetTraitsString,','))
+ targetTraits = []
+ _targetnames = []
+ for item in targetTraitsList:
+ oneTargetTrait = webqtlTrait(fullname=item, cursor=self.cursor)
+ oneTargetTrait.retrieveInfo()
+ targetTraits.append( oneTargetTrait )
+ _targetnames.append( oneTargetTrait.name )
+
+ #XZ: filter out the strains that have no value.
+ primaryTrait.retrieveData()
+ _strains, _vals, _vars = primaryTrait.exportInformative()
+
+ #XZ: _controlstrains, _controlvals and _controlvars are list of list [ [], [], ...]. _controlNs is number
+ _controlstrains,_controlvals,_controlvars,_controlNs = correlationFunction.controlStrains(controlTraitsString,_strains)
+
+ N = len(_strains)
+
+ allsame = True
+ ##allsame is boolean for whether or not primary and control trait have values for the same strains
+ for i in _controlstrains:
+ if _strains != i:
+ allsame=False
+ break
+
+ ## If the strains for which each of the control traits and the primary trait have values are not identical,
+ ## we must remove from the calculation all vlaues for strains that are not present in each. Without doing this,
+ ## undesirable biases would be introduced.
+ # XZ, 01/11/2010: After execution of function fixStrains, variables _vals,_controlvals,_vars,_controlvars have the same number and same order of strains as strains in variable _strains. The _controlstrains remains intact.
+ if not allsame:
+ _strains,_vals,_controlvals,_vars,_controlvars = correlationFunction.fixStrains(_strains,_controlstrains,_vals,_controlvals,_vars,_controlvars)
+ N = len(_strains)
+
+ #XZ: We should check the value of control trait and primary trait here.
+ nameOfIdenticalTraits = correlationFunction.findIdenticalTraits ( _vals, primaryTraitString, _controlvals, controlTraitsList )
+ if nameOfIdenticalTraits:
+ heading = "Partial Correlation Table"
+ detail = ['%s and %s have same values for the %s strains that will be used to calculate partial correlation (common for all primary and control traits). In such case, partial correlation can NOT be calculated. Please re-select your traits.' % (nameOfIdenticalTraits[0], nameOfIdenticalTraits[1], len(_vals))]
+ self.error(heading=heading,detail=detail)
+ return
+
+
+ if N < self.corrMinInformative:
+ heading = "Partial Correlation Table"
+ detail = ['Fewer than %d strain data were entered for %s data set. No calculation of correlation has been attempted.' % (self.corrMinInformative, fd.RISet)]
+ self.error(heading=heading,detail=detail)
+ return
+
+ #XZ, 01/11/2010: Pay attention to the target trait strain number and order!
+ #XZ 03/29/2010: need to input target trait values to this function.
+
+ _targetvals = []
+ for oneTargetTrait in targetTraits:
+ oneTargetTrait.retrieveData()
+ oneTraitVals = oneTargetTrait.exportData( _strains )
+ _targetvals.append(oneTraitVals)
+
+
+ if pc_method == 'spearman':
+ allcorrelations = correlationFunction.determinePartialsByR(primaryVal = _vals, controlVals = _controlvals, targetVals = _targetvals, targetNames = _targetnames, method='s')
+ else:
+ allcorrelations = correlationFunction.determinePartialsByR(primaryVal = _vals, controlVals = _controlvals, targetVals = _targetvals, targetNames = _targetnames)
+
+ totalTraits = len(allcorrelations)
+
+
+ info_form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden'))
+
+ hddn = {'FormID':'showDatabase', 'database':'_', 'ProbeSetID':'_', 'CellID':'_' }#XZ: These four parameters are required by javascript function showDatabase2.
+
+ for key in hddn.keys():
+ info_form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
+
+ info_form.append(HT.Paragraph("Primary Trait", Class="subtitle"), '\n')
+
+ primaryTraitTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0)
+
+ descriptionString = primaryTrait.genHTML(dispFromDatabase=1)
+ if primaryTrait.db.type == 'Publish' and primaryTrait.confidential:
+ descriptionString = primaryTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=primaryTrait.authorized_users)
+ primaryTraitTable.append(HT.TR(HT.TD(HT.Href(text='%s' % descriptionString, url="javascript:showDatabase2('%s','%s','%s')" % (primaryTrait.db.name,primaryTrait.name,primaryTrait.cellid), Class="fs12 fwn") )))
+
+ info_form.append(primaryTraitTable)
+
+ info_form.append(HT.Paragraph("Control Traits", Class="subtitle"), '\n')
+
+ controlTraitsTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0)
+
+ seq = 1
+
+ ## Generate the listing table for control traits
+ for thisTrait in controlTraits:
+ descriptionString = thisTrait.genHTML(dispFromDatabase=1)
+ if thisTrait.db.type == 'Publish' and thisTrait.confidential:
+ descriptionString = thisTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users)
+ controlTraitsTable.append(HT.TR(HT.TD("%d."%seq,align="left", width=10),
+ HT.TD(HT.Href(text='%s' % descriptionString,url="javascript:showDatabase2('%s','%s','%s')" % (thisTrait.db.name,thisTrait.name,thisTrait.cellid), Class="fs12 fwn") )))
+ seq += 1
+
+ info_form.append(controlTraitsTable)
+
+
+ TD_LR.append(info_form)
+
+
+ mainfmName = webqtlUtil.genRandStr("fm_")
+ form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name= mainfmName, submit=HT.Input(type='hidden'))
+
+ hddn = {'FormID':'showDatabase', 'database':'_', 'ProbeSetID':'_', 'CellID':'_' }#XZ: These four parameters are required by javascript function showDatabase2.
+
+ for key in hddn.keys():
+ form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
+
+
+ filename= webqtlUtil.genRandStr("Corr_")
+
+ tblobj = {}
+
+ if pc_method == 'spearman':
+ tblobj['header'] = \
+ [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
+ THCell(HT.TD('Database', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='db', idx=1),
+ THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='id', idx=2),
+ THCell(HT.TD('Symbol', Class="fs13 fwb ffl b1 cw cbrb"), text='symbol', idx=3),
+ THCell(HT.TD('Description', Class="fs13 fwb ffl b1 cw cbrb", align='center'), text='desc', idx=4),
+ THCell(HT.TD('N ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='nstr', idx=5),
+ THCell(HT.TD('Partial rho ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='partial_corr', idx=6),
+ THCell(HT.TD('p(partial rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=7),
+ THCell(HT.TD('rho ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='corr', idx=8),
+ THCell(HT.TD('p(rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=9),
+ THCell(HT.TD('delta rho', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_rho', idx=10)]]
+ else:
+ tblobj['header'] = \
+ [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
+ THCell(HT.TD('Database', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='db', idx=1),
+ THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='id', idx=2),
+ THCell(HT.TD('Symbol', Class="fs13 fwb ffl b1 cw cbrb"), text='symbol', idx=3),
+ THCell(HT.TD('Description', Class="fs13 fwb ffl b1 cw cbrb", align='center'), text='desc', idx=4),
+ THCell(HT.TD('N ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='nstr', idx=5),
+ THCell(HT.TD('Partial r ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='partial_corr', idx=6),
+ THCell(HT.TD('p(partial r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=7),
+ THCell(HT.TD('r ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='corr', idx=8),
+ THCell(HT.TD('p(r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=9),
+ THCell(HT.TD('delta r', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_r', idx=10)]]
+
+ sortby = ("partial_pv", "up")
+
+ tblobj['body'] = []
+ for i, thisTrait in enumerate(targetTraits):
+ tr = []
+
+ trId = str(thisTrait)
+ tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % thisTrait.db.name,target="_blank", Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222"), text=thisTrait.db.name, val=thisTrait
+.db.name.upper()))
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showDatabase3('%s', '%s', '%s', '%s')" % (mainfmName,thisTrait.db.name,thisTrait.name,thisTrait.cellid), Class="fs12 fwn"), Class="fs12 fwn b1 c222"), text=thisTrait.name, val=thisTrait.name))
+
+ #XZ: Symbol column
+ if thisTrait.db.type =="ProbeSet":
+ if thisTrait.symbol:
+ tr.append(TDCell(HT.TD(thisTrait.symbol, Class="fs12 fwn ffl b1 c222"), text=thisTrait.symbol, val=thisTrait.symbol.upper()))
+ else:
+ tr.append(TDCell(HT.TD('NA', Class="fs12 fwn ffl b1 c222"), text='NA', val='NA'))
+ elif thisTrait.db.type =="Publish":
+ AbbreviationString = "--"
+ if (thisTrait.post_publication_abbreviation != None):
+ AbbreviationString = thisTrait.post_publication_abbreviation
+
+ if thisTrait.confidential:
+ if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
+ if thisTrait.pre_publication_abbreviation:
+ AbbreviationString = thisTrait.pre_publication_abbreviation
+ else:
+ AbbreviationString = "--"
+
+ if AbbreviationString == "--":
+ tr.append(TDCell(HT.TD('NA', Class="fs12 fwn ffl b1 c222"), text='NA', val='NA'))
+ else:
+ tr.append(TDCell(HT.TD(AbbreviationString, Class="fs12 fwn ffl b1 c222"), text=AbbreviationString, val=AbbreviationString.upper()))
+ else:
+ tr.append(TDCell(HT.TD(thisTrait.name, Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name))
+
+ #XZ: Description column
+ if thisTrait.db.type =="ProbeSet" or thisTrait.db.type == "Temp":
+ tr.append(TDCell(HT.TD(thisTrait.description, Class="fs12 fwn ffl b1 c222"), text=thisTrait.description, val=thisTrait.description.upper()))
+ elif thisTrait.db.type =="Publish":
+ PhenotypeString = thisTrait.post_publication_description
+ if thisTrait.confidential:
+ if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
+ PhenotypeString = thisTrait.pre_publication_description
+ tr.append(TDCell(HT.TD(PhenotypeString, Class="fs12 fwn ffl b1 c222"), text=PhenotypeString, val=PhenotypeString.upper()))
+ else:
+ tr.append(TDCell(HT.TD(thisTrait.name, Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name))
+
+ tr.append(TDCell(HT.TD(allcorrelations[i][1], Class="fs12 fwn ffl b1 c222", align='right'), text=allcorrelations[i][1], val=allcorrelations[i][1]))
+
+ #partial correlation result
+ try:
+ repr = '%3.3f' % float(allcorrelations[i][2])
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'), text=repr, val=abs(allcorrelations[i][2])))
+ except:
+ repr = 'NA'
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 ))
+
+ repr = webqtlUtil.SciFloat(allcorrelations[i][3])
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", nowrap='ON', align='right'), text=repr, val=allcorrelations[i][3]))
+
+ #zero order correlation result
+ repr = '%3.3f' % float(allcorrelations[i][4])
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'), text=repr, val=abs(allcorrelations[i][4])))
+
+ repr = webqtlUtil.SciFloat(allcorrelations[i][5])
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", nowrap='ON', align='right'), text=repr, val=allcorrelations[i][5]))
+
+ #delta
+ try:
+ repr = '%3.3f' % ( float(allcorrelations[i][2]) - float(allcorrelations[i][4]) )
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'), text=repr, val=repr ))
+ except:
+ repr = 'NA'
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 ))
+
+ tblobj['body'].append(tr)
+
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+ # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), Id="sortable")
+ form.append(div)
+
+
+ TD_LR.append(HT.Center(form),HT.P())
+
+ self.dict['body'] = str(TD_LR)
+ # updated by NL, moved js function xmlhttpPost() and updatepage() to dhtml.js
+ self.dict['js1'] = ''
+ self.dict['title'] = 'Partial Correlation Result'
+
diff --git a/web/webqtl/correlation/PlotCorrelationPage.py b/web/webqtl/correlation/PlotCorrelationPage.py
new file mode 100755
index 00000000..23d2ccde
--- /dev/null
+++ b/web/webqtl/correlation/PlotCorrelationPage.py
@@ -0,0 +1,683 @@
+# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+#
+# This program is free software: you can redistribute it and/or modify it
+# under the terms of the GNU Affero General Public License
+# as published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+# See the GNU Affero General Public License for more details.
+#
+# This program is available from Source Forge: at GeneNetwork Project
+# (sourceforge.net/projects/genenetwork/).
+#
+# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
+# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
+#
+#
+#
+# This module is used by GeneNetwork project (www.genenetwork.org)
+#
+# Created by GeneNetwork Core Team 2010/08/10
+#
+# Last updated by Ning Liu 2011/01/11
+
+import string
+import piddle as pid
+import os
+
+from htmlgen import HTMLgen2 as HT
+
+from utility import svg #Code using this module currently commented out
+from utility import Plot
+from base.webqtlTrait import webqtlTrait
+from base.templatePage import templatePage
+from utility import webqtlUtil
+from base import webqtlConfig
+from dbFunction import webqtlDatabaseFunction
+from correlation import correlationFunction
+
+#########################################
+# PlotCorrelationPage
+#########################################
+class PlotCorrelationPage(templatePage):
+ corrMinInformative = 4
+
+ def __init__(self, fd):
+
+ templatePage.__init__(self, fd)
+
+ self.initializeDisplayParameters(fd)
+
+ if not fd.genotype:
+ fd.readGenotype()
+
+ if fd.allstrainlist:
+ mdpchoice = fd.formdata.getvalue('MDPChoice')
+ if mdpchoice == "1":
+ strainlist = fd.f1list + fd.strainlist
+ elif mdpchoice == "2":
+ strainlist = []
+ strainlist2 = fd.f1list + fd.strainlist
+ for strain in fd.allstrainlist:
+ if strain not in strainlist2:
+ strainlist.append(strain)
+ #So called MDP Panel
+ if strainlist:
+ strainlist = fd.f1list+fd.parlist+strainlist
+ else:
+ strainlist = fd.allstrainlist
+ fd.readData(fd.allstrainlist)
+ else:
+ mdpchoice = None
+ strainlist = fd.strainlist
+ fd.readData()
+
+ #if fd.allstrainlist:
+ # fd.readData(fd.allstrainlist)
+ # strainlist = fd.allstrainlist
+ #else:
+ # fd.readData()
+ # strainlist = fd.strainlist
+
+
+ if not self.openMysql():
+ return
+
+ isSampleCorr = 0 #XZ: initial value is false
+ isTissueCorr = 0 #XZ: initial value is false
+
+ #Javascript functions (showCorrelationPlot2, showTissueCorrPlot) have made sure the correlation type is either sample correlation or tissue correlation.
+ if (self.database and (self.ProbeSetID != 'none')):
+ isSampleCorr = 1
+ elif (self.X_geneSymbol and self.Y_geneSymbol):
+ isTissueCorr = 1
+ else:
+ heading = "Correlation Type Error"
+ detail = ["For the input parameters, GN can not recognize the correlation type is sample correlation or tissue correlation."]
+ self.error(heading=heading,detail=detail)
+ return
+
+
+ TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee', align="left", wrap="off")
+
+
+ dataX=[]
+ dataY=[]
+ dataZ=[] # shortname
+ fullTissueName=[]
+ xlabel = ''
+ ylabel = ''
+
+ if isTissueCorr:
+ dataX, dataY, xlabel, ylabel, dataZ, fullTissueName = self.getTissueLabelsValues(X_geneSymbol=self.X_geneSymbol, Y_geneSymbol=self.Y_geneSymbol, TissueProbeSetFreezeId=self.TissueProbeSetFreezeId)
+ plotHeading = HT.Paragraph('Tissue Correlation Scatterplot')
+ plotHeading.__setattr__("class","title")
+
+ if isSampleCorr:
+ plotHeading = HT.Paragraph('Sample Correlation Scatterplot')
+ plotHeading.__setattr__("class","title")
+
+ #XZ: retrieve trait 1 info, Y axis
+ trait1_data = [] #trait 1 data
+ trait1Url = ''
+
+ try:
+ Trait1 = webqtlTrait(db=self.database, name=self.ProbeSetID, cellid=self.CellID, cursor=self.cursor)
+ Trait1.retrieveInfo()
+ Trait1.retrieveData()
+ except:
+ heading = "Retrieve Data"
+ detail = ["The database you just requested has not been established yet."]
+ self.error(heading=heading,detail=detail)
+ return
+
+ trait1_data = Trait1.exportData(strainlist)
+ if Trait1.db.type == 'Publish' and Trait1.confidential:
+ trait1Url = Trait1.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=Trait1.authorized_users)
+ else:
+ trait1Url = Trait1.genHTML(dispFromDatabase=1)
+ ylabel = '%s : %s' % (Trait1.db.shortname, Trait1.name)
+ if Trait1.cellid:
+ ylabel += ' : ' + Trait1.cellid
+
+
+ #XZ, retrieve trait 2 info, X axis
+ traitdata2 = [] #trait 2 data
+ _vals = [] #trait 2 data
+ trait2Url = ''
+
+ if ( self.database2 and (self.ProbeSetID2 != 'none') ):
+ try:
+ Trait2 = webqtlTrait(db=self.database2, name=self.ProbeSetID2, cellid=self.CellID2, cursor=self.cursor)
+ Trait2.retrieveInfo()
+ Trait2.retrieveData()
+ except:
+ heading = "Retrieve Data"
+ detail = ["The database you just requested has not been established yet."]
+ self.error(heading=heading,detail=detail)
+ return
+
+ if Trait2.db.type == 'Publish' and Trait2.confidential:
+ trait2Url = Trait2.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=Trait2.authorized_users)
+ else:
+ trait2Url = Trait2.genHTML(dispFromDatabase=1)
+ traitdata2 = Trait2.exportData(strainlist)
+ _vals = traitdata2[:]
+ xlabel = '%s : %s' % (Trait2.db.shortname, Trait2.name)
+ if Trait2.cellid:
+ xlabel += ' : ' + Trait2.cellid
+ else:
+ for item in strainlist:
+ if fd.allTraitData.has_key(item):
+ _vals.append(fd.allTraitData[item].val)
+ else:
+ _vals.append(None)
+
+ if fd.identification:
+ xlabel = fd.identification
+ else:
+ xlabel = "User Input Data"
+
+ try:
+ Trait2 = webqtlTrait(fullname=fd.formdata.getvalue('fullname'), cursor=self.cursor)
+ trait2Url = Trait2.genHTML(dispFromDatabase=1)
+ except:
+ trait2Url = xlabel
+
+ if (_vals and trait1_data):
+ if len(_vals) != len(trait1_data):
+ errors = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('The number of traits are inconsistent, Program quit',color='black'))
+ errors.__setattr__("class","subtitle")
+ TD_LR.append(errors)
+ self.dict['body'] = str(TD_LR)
+ return
+
+ for i in range(len(_vals)):
+ if _vals[i]!= None and trait1_data[i]!= None:
+ dataX.append(_vals[i])
+ dataY.append(trait1_data[i])
+ strainName = strainlist[i]
+ if self.showstrains:
+ dataZ.append(webqtlUtil.genShortStrainName(RISet=fd.RISet, input_strainName=strainName))
+ else:
+ heading = "Correlation Plot"
+ detail = ['Empty Dataset for sample correlation, please check your data.']
+ self.error(heading=heading,detail=detail)
+ return
+
+
+ #XZ: We have gotten all data for both traits.
+ if len(dataX) >= self.corrMinInformative:
+
+ if self.rankOrder == 0:
+ rankPrimary = 0
+ rankSecondary = 1
+ else:
+ rankPrimary = 1
+ rankSecondary = 0
+
+ lineColor = self.setLineColor();
+ symbolColor = self.setSymbolColor();
+ idColor = self.setIdColor();
+
+ c = pid.PILCanvas(size=(self.plotSize, self.plotSize*0.90))
+ data_coordinate = Plot.plotXY(canvas=c, dataX=dataX, dataY=dataY, rank=rankPrimary, dataLabel = dataZ, labelColor=pid.black, lineSize=self.lineSize, lineColor=lineColor, idColor=idColor, idFont=self.idFont, idSize=self.idSize, symbolColor=symbolColor, symbolType=self.symbol, filled=self.filled, symbolSize=self.symbolSize, XLabel=xlabel, connectdot=0, YLabel=ylabel, title='', fitcurve=self.showline, displayR =1, offset= (90, self.plotSize/20, self.plotSize/10, 90), showLabel = self.showIdentifiers)
+
+ if rankPrimary == 1:
+ dataXlabel, dataYlabel = webqtlUtil.calRank(xVals=dataX, yVals=dataY, N=len(dataX))
+ else:
+ dataXlabel, dataYlabel = dataX, dataY
+
+ gifmap1 = HT.Map(name='CorrelationPlotImageMap1')
+
+ for i, item in enumerate(data_coordinate):
+ one_rect_coordinate = "%d, %d, %d, %d" % (item[0] - 5, item[1] - 5, item[0] + 5, item[1] + 5)
+ if isTissueCorr:
+ one_rect_title = "%s (%s, %s)" % (fullTissueName[i], dataXlabel[i], dataYlabel[i])
+ else:
+ one_rect_title = "%s (%s, %s)" % (dataZ[i], dataXlabel[i], dataYlabel[i])
+ gifmap1.areas.append(HT.Area(shape='rect',coords=one_rect_coordinate, title=one_rect_title) )
+
+ filename= webqtlUtil.genRandStr("XY_")
+ c.save(webqtlConfig.IMGDIR+filename, format='gif')
+ img1=HT.Image('/image/'+filename+'.gif',border=0, usemap='#CorrelationPlotImageMap1')
+
+ mainForm_1 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden'))
+ hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet, 'ProbeSetID2':'_', 'database2':'_', 'CellID2':'_', 'allstrainlist':string.join(fd.strainlist, " "), 'traitList': fd.formdata.getvalue("traitList")}
+ if fd.incparentsf1:
+ hddn['incparentsf1'] = 'ON'
+ for key in hddn.keys():
+ mainForm_1.append(HT.Input(name=key, value=hddn[key], type='hidden'))
+
+ if isSampleCorr:
+ mainForm_1.append(HT.P(), HT.Blockquote(HT.Strong('X axis:'),HT.Blockquote(trait2Url),HT.Strong('Y axis:'),HT.Blockquote(trait1Url), style='width: %spx;' % self.plotSize, wrap="hard"))
+
+ graphForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='MDP_Form',submit=HT.Input(type='hidden'))
+ graph_hddn = self.setHiddenParameters(fd, rankPrimary)
+ webqtlUtil.exportData(graph_hddn, fd.allTraitData) #XZ: This is necessary to replot with different groups of strains
+
+ for key in graph_hddn.keys():
+ graphForm.append(HT.Input(name=key, value=graph_hddn[key], type='hidden'))
+
+ options = self.createOptionsMenu(fd, mdpchoice)
+
+ if (self.showOptions == '0'):
+ showOptionsButton = HT.Input(type='button' ,name='optionsButton',value='Hide Options', onClick="showHideOptions();", Class="button")
+ else:
+ showOptionsButton = HT.Input(type='button' ,name='optionsButton',value='Show Options', onClick="showHideOptions();", Class="button")
+
+ # updated by NL: 12-07-2011 add variables for tissue abbreviation page
+ if isTissueCorr:
+ graphForm.append(HT.Input(name='shortTissueName', value='', type='hidden'))
+ graphForm.append(HT.Input(name='fullTissueName', value='', type='hidden'))
+ shortTissueNameStr=string.join(dataZ, ",")
+ fullTissueNameStr=string.join(fullTissueName, ",")
+
+ tissueAbbrButton=HT.Input(type='button' ,name='tissueAbbrButton',value='Show Abbreviations', onClick="showTissueAbbr('MDP_Form','%s','%s')" % (shortTissueNameStr,fullTissueNameStr), Class="button")
+ graphForm.append(showOptionsButton,'&nbsp;&nbsp;&nbsp;&nbsp;',tissueAbbrButton, HT.BR(), HT.BR())
+ else:
+ graphForm.append(showOptionsButton, HT.BR(), HT.BR())
+
+ graphForm.append(options, HT.BR())
+ graphForm.append(HT.HR(), HT.BR(), HT.P())
+
+ TD_LR.append(plotHeading, HT.BR(),graphForm, HT.BR(), gifmap1, HT.P(), img1, HT.P(), mainForm_1)
+ TD_LR.append(HT.BR(), HT.HR(color="grey", size=5, width="100%"))
+
+
+
+ c = pid.PILCanvas(size=(self.plotSize, self.plotSize*0.90))
+ data_coordinate = Plot.plotXY(canvas=c, dataX=dataX, dataY=dataY, rank=rankSecondary, dataLabel = dataZ, labelColor=pid.black,lineColor=lineColor, lineSize=self.lineSize, idColor=idColor, idFont=self.idFont, idSize=self.idSize, symbolColor=symbolColor, symbolType=self.symbol, filled=self.filled, symbolSize=self.symbolSize, XLabel=xlabel, connectdot=0, YLabel=ylabel,title='', fitcurve=self.showline, displayR =1, offset= (90, self.plotSize/20, self.plotSize/10, 90), showLabel = self.showIdentifiers)
+
+ if rankSecondary == 1:
+ dataXlabel, dataYlabel = webqtlUtil.calRank(xVals=dataX, yVals=dataY, N=len(dataX))
+ else:
+ dataXlabel, dataYlabel = dataX, dataY
+
+ gifmap2 = HT.Map(name='CorrelationPlotImageMap2')
+
+ for i, item in enumerate(data_coordinate):
+ one_rect_coordinate = "%d, %d, %d, %d" % (item[0] - 6, item[1] - 6, item[0] + 6, item[1] + 6)
+ if isTissueCorr:
+ one_rect_title = "%s (%s, %s)" % (fullTissueName[i], dataXlabel[i], dataYlabel[i])
+ else:
+ one_rect_title = "%s (%s, %s)" % (dataZ[i], dataXlabel[i], dataYlabel[i])
+
+ gifmap2.areas.append(HT.Area(shape='rect',coords=one_rect_coordinate, title=one_rect_title) )
+
+ filename= webqtlUtil.genRandStr("XY_")
+ c.save(webqtlConfig.IMGDIR+filename, format='gif')
+ img2=HT.Image('/image/'+filename+'.gif',border=0, usemap='#CorrelationPlotImageMap2')
+
+ mainForm_2 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase2', submit=HT.Input(type='hidden'))
+ hddn = {'FormID':'showDatabase2','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet, 'ProbeSetID2':'_', 'database2':'_', 'CellID2':'_', 'allstrainlist':string.join(fd.strainlist, " "), 'traitList': fd.formdata.getvalue("traitList")}
+ if fd.incparentsf1:
+ hddn['incparentsf1'] = 'ON'
+ for key in hddn.keys():
+ mainForm_2.append(HT.Input(name=key, value=hddn[key], type='hidden'))
+
+ if isSampleCorr:
+ mainForm_2.append(HT.P(), HT.Blockquote(HT.Strong('X axis:'),HT.Blockquote(trait2Url),HT.Strong('Y axis:'),HT.Blockquote(trait1Url), style='width:%spx;' % self.plotSize))
+
+
+ TD_LR.append(HT.BR(), HT.P())
+ TD_LR.append('\n', gifmap2, HT.P(), HT.P(), img2, HT.P(), mainForm_2)
+
+ self.dict['body'] = str(TD_LR)
+ else:
+ heading = "Correlation Plot"
+ detail = ['Fewer than %d strain data were entered for %s data set. No statitical analysis has been attempted.' % (self.corrMinInformative, fd.RISet)]
+ self.error(heading=heading,detail=detail)
+ return
+
+
+
+ def initializeDisplayParameters(self, fd):
+ """
+ Initializes all of the PlotCorrelationPage class parameters,
+ acquiring most values from the formdata (fd)
+ """
+
+ rankOrderString = fd.formdata.getvalue('rankOrder')
+ if rankOrderString == "1":
+ self.rankOrder = 1
+ else:
+ self.rankOrder = 0
+
+ self.dict['title'] = 'Correlation X-Y Scatterplot'
+ focusScript = "onLoad=\"document.getElementsByName('plotSize')[0].focus();\";"
+ self.dict['js2'] = focusScript
+
+ self.showstrains = fd.formdata.getvalue('ShowStrains')
+ self.showline = fd.formdata.getvalue('ShowLine')
+ self.X_geneSymbol = fd.formdata.getvalue('X_geneSymbol','')
+ self.Y_geneSymbol = fd.formdata.getvalue('Y_geneSymbol','')
+ self.TissueProbeSetFreezeId = fd.formdata.getvalue('TissueProbeSetFreezeId', '1')
+
+ self.symbolColor = fd.formdata.getvalue('symbolColor', 'black')
+ self.symbol = fd.formdata.getvalue('symbol', 'circle')
+ self.filled = fd.formdata.getvalue('filled', 'yes')
+ self.symbolSize = fd.formdata.getvalue('symbolSize', 'tiny')
+ self.idColor = fd.formdata.getvalue('idColor', 'blue')
+ self.idFont = fd.formdata.getvalue('idFont', 'arial')
+ self.idSize = fd.formdata.getvalue('idSize', '14')
+ self.lineColor = fd.formdata.getvalue('lineColor', 'grey')
+ self.lineSize = fd.formdata.getvalue('lineSize', 'medium')
+ self.showOptions = fd.formdata.getvalue('showOptions', '0')
+
+ try:
+ self.plotSize = int(fd.formdata.getvalue('plotSize', 900))
+ except:
+ self.plotSize = 900
+ try:
+ self.showIdentifiers = int(fd.formdata.getvalue('showIdentifiers', 1))
+ except:
+ self.showIdentifiers = 1
+
+ self.database = fd.formdata.getvalue('database')
+ self.ProbeSetID = fd.formdata.getvalue('ProbeSetID', 'none')
+ self.CellID = fd.formdata.getvalue('CellID')
+
+ self.database2 = fd.formdata.getvalue('database2')
+ self.ProbeSetID2 = fd.formdata.getvalue('ProbeSetID2', 'none')
+ self.CellID2 = fd.formdata.getvalue('CellID2')
+
+ def createOptionsMenu(self, fd, mdpchoice):
+ """
+ Create all the HTML for the options menu; the first if/else statements
+ determine whether the Div container holding all the other html is visible
+ or not.
+ """
+
+ if (self.showOptions == '0'):
+ options = HT.Div(name="options", id="options", style="display: none")
+ self.showOptions = '1'
+ else:
+ options = HT.Div(name="options", id="options", style="display: ''")
+ self.showOptions = '0'
+
+ if self.showIdentifiers:
+ containerTable = HT.TableLite(cellspacing=1, width=730, height=150, border=1)
+ else:
+ containerTable = HT.TableLite(cellspacing=1, width=730, height=130, border=1)
+
+ if self.showIdentifiers:
+ containerTable = HT.TableLite(cellspacing=1, width=730, height=150, border=1)
+ else:
+ containerTable = HT.TableLite(cellspacing=1, width=730, height=130, border=1)
+
+ containerRow = HT.TR()
+ containerCell = HT.TD(valign="middle", align="center")
+
+ optionsTable = HT.TableLite(Class="collap", cellspacing=2, width=700)
+
+ sizeOptions = HT.TR(align="right")
+ tagOptions = HT.TR(align="right")
+ markerOptions = HT.TR(align="right")
+ lineOptions = HT.TR(align="right")
+ replot_mdpOptions = HT.TR(align="right")
+
+ sizeOptions.append(HT.TD(HT.Bold("Size: "), "&nbsp;"*1, HT.Input(type='text' ,name='plotSize', value=self.plotSize, style="background-color: #FFFFFF; width: 50px;", onChange="checkWidth();"), align="left"))
+
+ idColorSel = HT.Select(name="idColorSel", onChange="changeIdColor(); submit();", selected=self.idColor)
+ idColorSel.append(("blue", "blue"))
+ idColorSel.append(("green", "green"))
+ idColorSel.append(("red", "red"))
+ idColorSel.append(("yellow", "yellow"))
+ idColorSel.append(("white", "white"))
+ idColorSel.append(("purple", "purple"))
+ idColorSel.append(("brown", "brown"))
+ idColorSel.append(("grey", "grey"))
+ idColorSel.append(("black","black"))
+
+ idFontSel = HT.Select(name="idFontSel", onChange="changeIdFont(); submit();", selected=self.idFont)
+ idFontSel.append(("Arial", "arial"))
+ idFontSel.append(("Trebuchet", "trebuc"))
+ idFontSel.append(("Verdana", "verdana"))
+ idFontSel.append(("Georgia", "Georgia"))
+ idFontSel.append(("Courier", "cour"))
+
+ idSizeSel = HT.Select(name="idSizeSel", onChange="changeIdSize(); submit();", selected=self.idSize)
+ idSizeSel.append(("10", "10"))
+ idSizeSel.append(("12", "12"))
+ idSizeSel.append(("14", "14"))
+ idSizeSel.append(("16", "16"))
+ idSizeSel.append(("18", "18"))
+
+ if self.showIdentifiers:
+ tagButton = HT.TD(HT.Input(type='button' ,name='',value=' Hide Tags ',onClick="this.form.showIdentifiers.value=0;submit();", Class="button"), align="right")
+ else:
+ tagButton = HT.TD(HT.Input(type='button' ,name='',value=' Show Tags ',onClick="this.form.showIdentifiers.value=1;submit();", Class="button"), align="right")
+
+ tagOptions.append(HT.TD(HT.Text(HT.Bold("Tag Settings: ")), align="left"))
+ tagOptions.append(HT.TD(HT.Text(text="Font: "), idFontSel))
+ tagOptions.append(HT.TD(HT.Text(text="Color: "), idColorSel))
+ tagOptions.append(HT.TD(HT.Text(text="Point: "), idSizeSel))
+ tagOptions.append(tagButton)
+ optionsTable.append(sizeOptions, tagOptions)
+
+ if fd.allstrainlist and mdpchoice:
+ allStrainList = HT.Input(name='allstrainlist', value=string.join(fd.allstrainlist, " "), type='hidden')
+ mdpChoice = HT.Input(name='MDPChoice', value=mdpchoice, type='hidden')
+ btn0 = HT.Input(type='button' ,name='',value='All Cases',onClick="this.form.MDPChoice.value=0;submit();", Class="button")
+ btn1 = HT.Input(type='button' ,name='',value='%s Only' % fd.RISet,onClick="this.form.MDPChoice.value=1;submit();", Class="button")
+ btn2 = HT.Input(type='button' ,name='',value='MDP Only', onClick="this.form.MDPChoice.value=2;submit();", Class="button")
+
+
+ colorSel = HT.Select(name="colorSel", onChange="changeSymbolColor(); submit();", selected=self.symbolColor)
+ colorSel.append(("red", "red"))
+ colorSel.append(("green", "green"))
+ colorSel.append(("blue", "blue"))
+ colorSel.append(("yellow", "yellow"))
+ colorSel.append(("purple", "purple"))
+ colorSel.append(("brown", "brown"))
+ colorSel.append(("grey", "grey"))
+ colorSel.append(("black","black"))
+
+ symbolSel = HT.Select(name="symbolSel", onChange="changeSymbol(); submit();", selected=self.symbol)
+ symbolSel.append(("4-star","4-star"))
+ symbolSel.append(("3-star","3-star"))
+ symbolSel.append(("cross", "cross"))
+ symbolSel.append(("circle","circle"))
+ symbolSel.append(("diamond", "diamond"))
+ symbolSel.append(("square", "square"))
+ symbolSel.append(("vert rect", "vertRect"))
+ symbolSel.append(("hori rect", "horiRect"))
+
+ sizeSel = HT.Select(name="sizeSel", onChange="changeSize(); submit();", selected=self.symbolSize)
+ sizeSel.append(("tiny","tiny"))
+ sizeSel.append(("small","small"))
+ sizeSel.append(("medium","medium"))
+ sizeSel.append(("large","large"))
+
+ fillSel = HT.Select(name="fillSel", onChange="changeFilled(); submit();", selected=self.filled)
+ fillSel.append(("no","no"))
+ fillSel.append(("yes","yes"))
+
+ lineColorSel = HT.Select(name="lineColorSel", onChange="changeLineColor(); submit();", selected=self.lineColor)
+ lineColorSel.append(("red", "red"))
+ lineColorSel.append(("green", "green"))
+ lineColorSel.append(("blue", "blue"))
+ lineColorSel.append(("yellow", "yellow"))
+ lineColorSel.append(("purple", "purple"))
+ lineColorSel.append(("brown", "brown"))
+ lineColorSel.append(("grey", "grey"))
+ lineColorSel.append(("black","black"))
+
+ lineSizeSel = HT.Select(name="lineSizeSel", onChange="changeLineSize(); submit();", selected=self.lineSize)
+ lineSizeSel.append(("thin", "thin"))
+ lineSizeSel.append(("medium", "medium"))
+ lineSizeSel.append(("thick", "thick"))
+
+
+ markerOptions.append(HT.TD(HT.Text(HT.Bold("Marker Settings: ")), align="left"))
+ markerOptions.append(HT.TD(HT.Text(text="Marker: "), symbolSel))
+ markerOptions.append(HT.TD(HT.Text(text="Color: "), colorSel))
+ markerOptions.append(HT.TD(HT.Text(text="Fill: "), fillSel))
+ markerOptions.append(HT.TD(HT.Text(text="Size: "), sizeSel))
+
+ lineOptions.append(HT.TD(HT.Text(HT.Bold("Line Settings: ")), align="left"))
+ lineOptions.append(HT.TD(HT.Text(text="Width: "), lineSizeSel))
+ lineOptions.append(HT.TD(HT.Text(text="Color: "), lineColorSel))
+
+ replotButton = HT.Input(type='button', name='', value=' Replot ',onClick="checkWidth(); submit();", Class="button")
+
+ if fd.allstrainlist and mdpchoice:
+ replot_mdpOptions.append(HT.TD(replotButton, align="left"), HT.TD(allStrainList, mdpChoice, btn0, btn1, btn2, align="center", colspan=3))
+ optionsTable.append(markerOptions, lineOptions, HT.TR(HT.TD(HT.BR())), replot_mdpOptions )
+ else:
+ replot_mdpOptions.append(HT.TD(replotButton, align="left"))
+ optionsTable.append(markerOptions, lineOptions, HT.TR(HT.TD(HT.BR())), replot_mdpOptions)
+
+ containerCell.append(optionsTable)
+ containerRow.append(containerCell)
+ containerTable.append(containerRow)
+
+ options.append(containerTable)
+
+ return options
+
+ def setHiddenParameters(self, fd, rankPrimary):
+ """
+ Create the dictionary of hidden form parameters from PlotCorrelationPage's class parameters
+ """
+
+ graph_hddn = {'FormID':'showCorrelationPlot','RISet':fd.RISet, 'identification':fd.identification, "incparentsf1":1, "showIdentifiers":self.showIdentifiers}
+
+ if self.database: graph_hddn['database']=self.database
+ if self.ProbeSetID: graph_hddn['ProbeSetID']=self.ProbeSetID
+ if self.CellID: graph_hddn['CellID']=self.CellID
+ if self.database2: graph_hddn['database2']=self.database2
+ if self.ProbeSetID2: graph_hddn['ProbeSetID2']=self.ProbeSetID2
+ if self.CellID2: graph_hddn['CellID2']=self.CellID2
+ if self.showstrains: graph_hddn['ShowStrains']=self.showstrains
+ if self.showline: graph_hddn['ShowLine']=self.showline
+ if self.X_geneSymbol: graph_hddn['X_geneSymbol']=self.X_geneSymbol
+ if self.Y_geneSymbol: graph_hddn['Y_geneSymbol']=self.Y_geneSymbol
+ if self.TissueProbeSetFreezeId: graph_hddn['TissueProbeSetFreezeId']=self.TissueProbeSetFreezeId
+ if self.rankOrder: graph_hddn['rankOrder'] = rankPrimary
+ if fd.formdata.getvalue('fullname'): graph_hddn['fullname']=fd.formdata.getvalue('fullname')
+ if self.lineColor: graph_hddn['lineColor'] = self.lineColor
+ if self.lineSize: graph_hddn['lineSize'] = self.lineSize
+ if self.idColor: graph_hddn['idColor'] = self.idColor
+ if self.idFont: graph_hddn['idFont'] = self.idFont
+ if self.idSize: graph_hddn['idSize'] = self.idSize
+ if self.symbolColor: graph_hddn['symbolColor'] = self.symbolColor
+ if self.symbol: graph_hddn['symbol'] = self.symbol
+ if self.filled: graph_hddn['filled'] = self.filled
+ if self.symbolSize: graph_hddn['symbolSize'] = self.symbolSize
+ if self.showOptions: graph_hddn['showOptions'] = self.showOptions
+
+ return graph_hddn
+
+ def setIdColor(self):
+ """
+ Set the plot tag/ID color based upon the value of the idColor class parameter
+ """
+
+ if self.idColor == 'black':
+ idColor = pid.black
+ elif self.idColor == 'white':
+ idColor = pid.white
+ elif self.idColor == 'yellow':
+ idColor = pid.yellow
+ elif self.idColor == 'grey':
+ idColor = pid.grey
+ elif self.idColor == 'blue':
+ idColor = pid.blue
+ elif self.idColor == 'purple':
+ idColor = pid.purple
+ elif self.idColor == 'brown':
+ idColor = pid.brown
+ elif self.idColor == 'green':
+ idColor = pid.green
+ else:
+ idColor = pid.red
+
+ return idColor
+
+ def setSymbolColor(self):
+ """
+ Set the plot symbol color based upon the value of the symbolColor class parameter
+ """
+
+ if self.symbolColor == 'black':
+ symbolColor = pid.black
+ elif self.symbolColor == 'grey':
+ symbolColor = pid.grey
+ elif self.symbolColor == 'yellow':
+ symbolColor = pid.yellow
+ elif self.symbolColor == 'blue':
+ symbolColor = pid.blue
+ elif self.symbolColor == 'purple':
+ symbolColor = pid.purple
+ elif self.symbolColor == 'brown':
+ symbolColor = pid.brown
+ elif self.symbolColor== 'green':
+ symbolColor = pid.green
+ else:
+ symbolColor = pid.red
+
+ return symbolColor
+
+ def setLineColor(self):
+ """
+ Set the plot line color based upon the lineColor class parameter
+ """
+
+ if self.lineColor == 'black':
+ lineColor = pid.black
+ elif self.lineColor == 'grey':
+ lineColor = pid.grey
+ elif self.lineColor == 'yellow':
+ lineColor = pid.yellow
+ elif self.lineColor == 'blue':
+ lineColor = pid.blue
+ elif self.lineColor == 'purple':
+ lineColor = pid.purple
+ elif self.lineColor == 'brown':
+ lineColor = pid.brown
+ elif self.lineColor== 'green':
+ lineColor = pid.green
+ else:
+ lineColor = pid.red
+
+ return lineColor
+
+
+ def getTissueLabelsValues(self, X_geneSymbol=None, Y_geneSymbol=None, TissueProbeSetFreezeId=None ):
+
+ dataX = []
+ dataY = []
+ data_fullLabel = []
+ data_shortLabel = []
+ # updated by NL, 2011-01-11 using new function getTissueProbeSetXRefInfo to get dataId value
+ X_symbolList,X_geneIdDict,X_dataIdDict,X_ChrDict,X_MbDict,X_descDict,X_pTargetDescDict = correlationFunction.getTissueProbeSetXRefInfo(cursor=self.cursor,GeneNameLst=[X_geneSymbol],TissueProbeSetFreezeId=TissueProbeSetFreezeId)
+ Y_symbolList,Y_geneIdDict,Y_dataIdDict,Y_ChrDict,Y_MbDict,Y_descDict,Y_pTargetDescDict = correlationFunction.getTissueProbeSetXRefInfo(cursor=self.cursor,GeneNameLst=[Y_geneSymbol],TissueProbeSetFreezeId=TissueProbeSetFreezeId)
+ # in dataIdDict, key is the lower cased geneSymbol
+ X_DataId = X_dataIdDict[X_geneSymbol.lower()]
+ Y_DataId = Y_dataIdDict[Y_geneSymbol.lower()]
+
+ self.cursor.execute("SELECT TissueID,value FROM TissueProbeSetData WHERE Id = %d ORDER BY TissueID" % int(X_DataId) )
+ results = self.cursor.fetchall()
+ for item in results:
+ TissueID, Value = item
+ dataX.append(Value)
+ self.cursor.execute("SELECT Tissue.Name, Tissue.Short_Name FROM Tissue WHERE Id = %d" % int(TissueID) )
+ temp = self.cursor.fetchone()
+ data_fullLabel.append( temp[0] )
+ data_shortLabel.append( temp[1] )
+
+ self.cursor.execute("SELECT TissueID,value FROM TissueProbeSetData WHERE Id = %d ORDER BY TissueID" % int(Y_DataId) )
+ results = self.cursor.fetchall()
+ for item in results:
+ TissueID, Value = item
+ dataY.append(Value)
+
+ X_label = "%s" % X_geneSymbol
+ Y_label = "%s" % Y_geneSymbol
+
+ return dataX, dataY, X_label, Y_label, data_shortLabel, data_fullLabel
diff --git a/web/webqtl/correlation/__init__.py b/web/webqtl/correlation/__init__.py
new file mode 100755
index 00000000..e69de29b
--- /dev/null
+++ b/web/webqtl/correlation/__init__.py
diff --git a/web/webqtl/correlation/correlationFunction.py b/web/webqtl/correlation/correlationFunction.py
new file mode 100755
index 00000000..cc19f54e
--- /dev/null
+++ b/web/webqtl/correlation/correlationFunction.py
@@ -0,0 +1,923 @@
+# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+#
+# This program is free software: you can redistribute it and/or modify it
+# under the terms of the GNU Affero General Public License
+# as published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+# See the GNU Affero General Public License for more details.
+#
+# This program is available from Source Forge: at GeneNetwork Project
+# (sourceforge.net/projects/genenetwork/).
+#
+# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
+# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
+#
+#
+#
+# This module is used by GeneNetwork project (www.genenetwork.org)
+#
+# Created by GeneNetwork Core Team 2010/08/10
+#
+# Last updated by NL 2011/03/23
+
+
+import math
+import rpy2.robjects
+import pp
+import string
+
+from utility import webqtlUtil
+from base.webqtlTrait import webqtlTrait
+from dbFunction import webqtlDatabaseFunction
+
+
+
+#XZ: The input 'controls' is String. It contains the full name of control traits.
+#XZ: The input variable 'strainlst' is List. It contains the strain names of primary trait.
+#XZ: The returned tcstrains is the list of list [[],[]...]. So are tcvals and tcvars. The last returned parameter is list of numbers.
+#XZ, 03/29/2010: For each returned control trait, there is no None value in it.
+def controlStrains(controls, strainlst):
+
+ controls = controls.split(',')
+
+ cvals = {}
+ for oneTraitName in controls:
+ oneTrait = webqtlTrait(fullname=oneTraitName, cursor=webqtlDatabaseFunction.getCursor() )
+ oneTrait.retrieveData()
+ cvals[oneTraitName] = oneTrait.data
+
+ tcstrains = []
+ tcvals = []
+ tcvars = []
+
+ for oneTraitName in controls:
+ strains = []
+ vals = []
+ vars = []
+
+ for _strain in strainlst:
+ if cvals[oneTraitName].has_key(_strain):
+ _val = cvals[oneTraitName][_strain].val
+ if _val != None:
+ strains.append(_strain)
+ vals.append(_val)
+ vars.append(None)
+
+ tcstrains.append(strains)
+ tcvals.append(vals)
+ tcvars.append(vars)
+
+ return tcstrains, tcvals, tcvars, [len(x) for x in tcstrains]
+
+
+
+#XZ, 03/29/2010: After execution of functon "controlStrains" and "fixStrains", primary trait and control traits have the same strains and in the same order. There is no 'None' value in them.
+def fixStrains(_strains,_controlstrains,_vals,_controlvals,_vars,_controlvars):
+ """Corrects strains, vals, and vars so that all contrain only those strains common
+ to the reference trait and all control traits."""
+
+ def dictify(strains,vals,vars):
+ subdict = {}
+ for i in xrange(len(strains)):
+ subdict[strains[i]] = (vals[i],vars[i])
+ return subdict
+
+ #XZ: The 'dicts' is a list of dictionary. The first element is the dictionary of reference trait. The rest elements are for control traits.
+ dicts = []
+ dicts.append(dictify(_strains,_vals,_vars))
+
+ nCstrains = len(_controlstrains)
+ for i in xrange(nCstrains):
+ dicts.append(dictify(_controlstrains[i],_controlvals[i],_controlvars[i]))
+
+ _newstrains = []
+ _vals = []
+ _vars = []
+ _controlvals = [[] for x in xrange(nCstrains)]
+ _controlvars = [[] for x in xrange(nCstrains)]
+
+ for strain in _strains:
+ inall = True
+ for d in dicts:
+ if strain not in d:
+ inall = False
+ break
+ if inall:
+ _newstrains.append(strain)
+ _vals.append(dicts[0][strain][0])
+ _vars.append(dicts[0][strain][1])
+ for i in xrange(nCstrains):
+ _controlvals[i].append(dicts[i+1][strain][0])
+ _controlvars[i].append(dicts[i+1][strain][1])
+
+ return _newstrains, _vals, _controlvals, _vars, _controlvars
+
+
+#XZ, 6/15/2010: If there is no identical control traits, the returned list is empty.
+#else, the returned list has two elements of control trait name.
+def findIdenticalControlTraits ( controlVals, controlNames ):
+ nameOfIdenticalTraits = []
+
+ controlTraitNumber = len(controlVals)
+
+ if controlTraitNumber > 1:
+
+ #XZ: reset the precision of values and convert to string type
+ for oneTraitVal in controlVals:
+ for oneStrainVal in oneTraitVal:
+ oneStrainVal = '%.3f' % oneStrainVal
+
+ for i, oneTraitVal in enumerate( controlVals ):
+ for j in range(i+1, controlTraitNumber):
+ if oneTraitVal == controlVals[j]:
+ nameOfIdenticalTraits.append(controlNames[i])
+ nameOfIdenticalTraits.append(controlNames[j])
+
+ return nameOfIdenticalTraits
+
+#XZ, 6/15/2010: If there is no identical control traits, the returned list is empty.
+#else, the returned list has two elements of control trait name.
+#primaryVal is of list type. It contains value of primary trait.
+#primaryName is of string type.
+#controlVals is of list type. Each element is list too. Each element contain value of one control trait.
+#controlNames is of list type.
+def findIdenticalTraits (primaryVal, primaryName, controlVals, controlNames ):
+ nameOfIdenticalTraits = []
+
+ #XZ: reset the precision of values and convert to string type
+ for oneStrainVal in primaryVal:
+ oneStrainVal = '%.3f' % oneStrainVal
+
+ for oneTraitVal in controlVals:
+ for oneStrainVal in oneTraitVal:
+ oneStrainVal = '%.3f' % oneStrainVal
+
+ controlTraitNumber = len(controlVals)
+
+ if controlTraitNumber > 1:
+ for i, oneTraitVal in enumerate( controlVals ):
+ for j in range(i+1, controlTraitNumber):
+ if oneTraitVal == controlVals[j]:
+ nameOfIdenticalTraits.append(controlNames[i])
+ nameOfIdenticalTraits.append(controlNames[j])
+ break
+
+ if len(nameOfIdenticalTraits) == 0:
+ for i, oneTraitVal in enumerate( controlVals ):
+ if primaryVal == oneTraitVal:
+ nameOfIdenticalTraits.append(primaryName)
+ nameOfIdenticalTraits.append(controlNames[i])
+ break
+
+ return nameOfIdenticalTraits
+
+
+
+#XZ, 03/29/2010: The strains in primaryVal, controlVals, targetVals must be of the same number and in same order.
+#XZ: No value in primaryVal and controlVals could be None.
+
+def determinePartialsByR (primaryVal, controlVals, targetVals, targetNames, method='p'):
+
+ def compute_partial ( primaryVal, controlVals, targetVals, targetNames, method ):
+
+ rpy2.robjects.r("""
+pcor.test <- function(x,y,z,use="mat",method="p",na.rm=T){
+ # The partial correlation coefficient between x and y given z
+ #
+ # pcor.test is free and comes with ABSOLUTELY NO WARRANTY.
+ #
+ # x and y should be vectors
+ #
+ # z can be either a vector or a matrix
+ #
+ # use: There are two methods to calculate the partial correlation coefficient.
+ # One is by using variance-covariance matrix ("mat") and the other is by using recursive formula ("rec").
+ # Default is "mat".
+ #
+ # method: There are three ways to calculate the correlation coefficient,
+ # which are Pearson's ("p"), Spearman's ("s"), and Kendall's ("k") methods.
+ # The last two methods which are Spearman's and Kendall's coefficient are based on the non-parametric analysis.
+ # Default is "p".
+ #
+ # na.rm: If na.rm is T, then all the missing samples are deleted from the whole dataset, which is (x,y,z).
+ # If not, the missing samples will be removed just when the correlation coefficient is calculated.
+ # However, the number of samples for the p-value is the number of samples after removing
+ # all the missing samples from the whole dataset.
+ # Default is "T".
+
+ x <- c(x)
+ y <- c(y)
+ z <- as.data.frame(z)
+
+ if(use == "mat"){
+ p.use <- "Var-Cov matrix"
+ pcor = pcor.mat(x,y,z,method=method,na.rm=na.rm)
+ }else if(use == "rec"){
+ p.use <- "Recursive formula"
+ pcor = pcor.rec(x,y,z,method=method,na.rm=na.rm)
+ }else{
+ stop("use should be either rec or mat!\n")
+ }
+
+ # print the method
+ if(gregexpr("p",method)[[1]][1] == 1){
+ p.method <- "Pearson"
+ }else if(gregexpr("s",method)[[1]][1] == 1){
+ p.method <- "Spearman"
+ }else if(gregexpr("k",method)[[1]][1] == 1){
+ p.method <- "Kendall"
+ }else{
+ stop("method should be pearson or spearman or kendall!\n")
+ }
+
+ # sample number
+ n <- dim(na.omit(data.frame(x,y,z)))[1]
+
+ # given variables' number
+ gn <- dim(z)[2]
+
+ # p-value
+ if(p.method == "Kendall"){
+ statistic <- pcor/sqrt(2*(2*(n-gn)+5)/(9*(n-gn)*(n-1-gn)))
+ p.value <- 2*pnorm(-abs(statistic))
+
+ }else{
+ statistic <- pcor*sqrt((n-2-gn)/(1-pcor^2))
+ p.value <- 2*pnorm(-abs(statistic))
+ }
+
+ data.frame(estimate=pcor,p.value=p.value,statistic=statistic,n=n,gn=gn,Method=p.method,Use=p.use)
+}
+
+# By using var-cov matrix
+pcor.mat <- function(x,y,z,method="p",na.rm=T){
+
+ x <- c(x)
+ y <- c(y)
+ z <- as.data.frame(z)
+
+ if(dim(z)[2] == 0){
+ stop("There should be given data\n")
+ }
+
+ data <- data.frame(x,y,z)
+
+ if(na.rm == T){
+ data = na.omit(data)
+ }
+
+ xdata <- na.omit(data.frame(data[,c(1,2)]))
+ Sxx <- cov(xdata,xdata,m=method)
+
+ xzdata <- na.omit(data)
+ xdata <- data.frame(xzdata[,c(1,2)])
+ zdata <- data.frame(xzdata[,-c(1,2)])
+ Sxz <- cov(xdata,zdata,m=method)
+
+ zdata <- na.omit(data.frame(data[,-c(1,2)]))
+ Szz <- cov(zdata,zdata,m=method)
+
+ # is Szz positive definite?
+ zz.ev <- eigen(Szz)$values
+ if(min(zz.ev)[1]<0){
+ stop("\'Szz\' is not positive definite!\n")
+ }
+
+ # partial correlation
+ Sxx.z <- Sxx - Sxz %*% solve(Szz) %*% t(Sxz)
+
+ rxx.z <- cov2cor(Sxx.z)[1,2]
+
+ rxx.z
+}
+
+# By using recursive formula
+pcor.rec <- function(x,y,z,method="p",na.rm=T){
+ #
+
+ x <- c(x)
+ y <- c(y)
+ z <- as.data.frame(z)
+
+ if(dim(z)[2] == 0){
+ stop("There should be given data\n")
+ }
+
+ data <- data.frame(x,y,z)
+
+ if(na.rm == T){
+ data = na.omit(data)
+ }
+
+ # recursive formula
+ if(dim(z)[2] == 1){
+ tdata <- na.omit(data.frame(data[,1],data[,2]))
+ rxy <- cor(tdata[,1],tdata[,2],m=method)
+
+ tdata <- na.omit(data.frame(data[,1],data[,-c(1,2)]))
+ rxz <- cor(tdata[,1],tdata[,2],m=method)
+
+ tdata <- na.omit(data.frame(data[,2],data[,-c(1,2)]))
+ ryz <- cor(tdata[,1],tdata[,2],m=method)
+
+ rxy.z <- (rxy - rxz*ryz)/( sqrt(1-rxz^2)*sqrt(1-ryz^2) )
+
+ return(rxy.z)
+ }else{
+ x <- c(data[,1])
+ y <- c(data[,2])
+ z0 <- c(data[,3])
+ zc <- as.data.frame(data[,-c(1,2,3)])
+
+ rxy.zc <- pcor.rec(x,y,zc,method=method,na.rm=na.rm)
+ rxz0.zc <- pcor.rec(x,z0,zc,method=method,na.rm=na.rm)
+ ryz0.zc <- pcor.rec(y,z0,zc,method=method,na.rm=na.rm)
+
+ rxy.z <- (rxy.zc - rxz0.zc*ryz0.zc)/( sqrt(1-rxz0.zc^2)*sqrt(1-ryz0.zc^2) )
+ return(rxy.z)
+ }
+}
+""")
+
+ R_pcorr_function = rpy2.robjects.r['pcor.test']
+ R_corr_test = rpy2.robjects.r['cor.test']
+
+ primary = rpy2.robjects.FloatVector(range(len(primaryVal)))
+ for i in range(len(primaryVal)):
+ primary[i] = primaryVal[i]
+
+ control = rpy2.robjects.r.matrix(rpy2.robjects.FloatVector( range(len(controlVals)*len(controlVals[0])) ), ncol=len(controlVals))
+ for i in range(len(controlVals)):
+ for j in range(len(controlVals[0])):
+ control[i*len(controlVals[0]) + j] = controlVals[i][j]
+
+ allcorrelations = []
+
+ for targetIndex, oneTargetVals in enumerate(targetVals):
+
+ this_primary = None
+ this_control = None
+ this_target = None
+
+ if None in oneTargetVals:
+
+ goodIndex = []
+ for i in range(len(oneTargetVals)):
+ if oneTargetVals[i] != None:
+ goodIndex.append(i)
+
+ this_primary = rpy2.robjects.FloatVector(range(len(goodIndex)))
+ for i in range(len(goodIndex)):
+ this_primary[i] = primaryVal[goodIndex[i]]
+
+ this_control = rpy2.robjects.r.matrix(rpy2.robjects.FloatVector( range(len(controlVals)*len(goodIndex)) ), ncol=len(controlVals))
+ for i in range(len(controlVals)):
+ for j in range(len(goodIndex)):
+ this_control[i*len(goodIndex) + j] = controlVals[i][goodIndex[j]]
+
+ this_target = rpy2.robjects.FloatVector(range(len(goodIndex)))
+ for i in range(len(goodIndex)):
+ this_target[i] = oneTargetVals[goodIndex[i]]
+
+ else:
+ this_primary = primary
+ this_control = control
+ this_target = rpy2.robjects.FloatVector(range(len(oneTargetVals)))
+ for i in range(len(oneTargetVals)):
+ this_target[i] = oneTargetVals[i]
+
+ one_name = targetNames[targetIndex]
+ one_N = len(this_primary)
+
+ #calculate partial correlation
+ one_pc_coefficient = 'NA'
+ one_pc_p = 1
+
+ try:
+ if method == 's':
+ result = R_pcorr_function(this_primary, this_target, this_control, method='s')
+ else:
+ result = R_pcorr_function(this_primary, this_target, this_control)
+
+ #XZ: In very few cases, the returned coefficient is nan.
+ #XZ: One way to detect nan is to compare the number to itself. NaN is always != NaN
+ if result[0][0] == result[0][0]:
+ one_pc_coefficient = result[0][0]
+ #XZ: when the coefficient value is 1 (primary trait and target trait are the same),
+ #XZ: occationally, the returned p value is nan instead of 0.
+ if result[1][0] == result[1][0]:
+ one_pc_p = result[1][0]
+ elif abs(one_pc_coefficient - 1) < 0.0000001:
+ one_pc_p = 0
+ except:
+ pass
+
+ #calculate zero order correlation
+ one_corr_coefficient = 0
+ one_corr_p = 1
+
+ try:
+ if method == 's':
+ R_result = R_corr_test(this_primary, this_target, method='spearman')
+ else:
+ R_result = R_corr_test(this_primary, this_target)
+
+ one_corr_coefficient = R_result[3][0]
+ one_corr_p = R_result[2][0]
+ except:
+ pass
+
+ traitinfo = [ one_name, one_N, one_pc_coefficient, one_pc_p, one_corr_coefficient, one_corr_p ]
+
+ allcorrelations.append(traitinfo)
+
+ return allcorrelations
+ #End of function compute_partial
+
+
+ allcorrelations = []
+
+ target_trait_number = len(targetVals)
+
+ if target_trait_number < 1000:
+ allcorrelations = compute_partial ( primaryVal, controlVals, targetVals, targetNames, method )
+ else:
+ step = 1000
+ job_number = math.ceil( float(target_trait_number)/step )
+
+ job_targetVals_lists = []
+ job_targetNames_lists = []
+
+ for job_index in range( int(job_number) ):
+ starti = job_index*step
+ endi = min((job_index+1)*step, target_trait_number)
+
+ one_job_targetVals_list = []
+ one_job_targetNames_list = []
+
+ for i in range( starti, endi ):
+ one_job_targetVals_list.append( targetVals[i] )
+ one_job_targetNames_list.append( targetNames[i] )
+
+ job_targetVals_lists.append( one_job_targetVals_list )
+ job_targetNames_lists.append( one_job_targetNames_list )
+
+ ppservers = ()
+ # Creates jobserver with automatically detected number of workers
+ job_server = pp.Server(ppservers=ppservers)
+
+ jobs = []
+ results = []
+
+ for i, one_job_targetVals_list in enumerate( job_targetVals_lists ):
+ one_job_targetNames_list = job_targetNames_lists[i]
+ #pay attention to modules from outside
+ jobs.append( job_server.submit(func=compute_partial, args=( primaryVal, controlVals, one_job_targetVals_list, one_job_targetNames_list, method), depfuncs=(), modules=("rpy2.robjects",)) )
+
+ for one_job in jobs:
+ one_result = one_job()
+ results.append( one_result )
+
+ for one_result in results:
+ for one_traitinfo in one_result:
+ allcorrelations.append( one_traitinfo )
+
+ return allcorrelations
+
+
+
+#XZ, April 30, 2010: The input primaryTrait and targetTrait are instance of webqtlTrait
+#XZ: The primaryTrait and targetTrait should have executed retrieveData function
+def calZeroOrderCorr (primaryTrait, targetTrait, method='pearson'):
+
+ #primaryTrait.retrieveData()
+
+ #there is no None value in primary_val
+ primary_strain, primary_val, primary_var = primaryTrait.exportInformative()
+
+ #targetTrait.retrieveData()
+
+ #there might be None value in target_val
+ target_val = targetTrait.exportData(primary_strain, type="val")
+
+ R_primary = rpy2.robjects.FloatVector(range(len(primary_val)))
+ for i in range(len(primary_val)):
+ R_primary[i] = primary_val[i]
+
+ N = len(target_val)
+
+ if None in target_val:
+ goodIndex = []
+ for i in range(len(target_val)):
+ if target_val[i] != None:
+ goodIndex.append(i)
+
+ N = len(goodIndex)
+
+ R_primary = rpy2.robjects.FloatVector(range(len(goodIndex)))
+ for i in range(len(goodIndex)):
+ R_primary[i] = primary_val[goodIndex[i]]
+
+ R_target = rpy2.robjects.FloatVector(range(len(goodIndex)))
+ for i in range(len(goodIndex)):
+ R_target[i] = target_val[goodIndex[i]]
+
+ else:
+ R_target = rpy2.robjects.FloatVector(range(len(target_val)))
+ for i in range(len(target_val)):
+ R_target[i] = target_val[i]
+
+ R_corr_test = rpy2.robjects.r['cor.test']
+
+ if method == 'spearman':
+ R_result = R_corr_test(R_primary, R_target, method='spearman')
+ else:
+ R_result = R_corr_test(R_primary, R_target)
+
+ corr_result = []
+ corr_result.append( R_result[3][0] )
+ corr_result.append( N )
+ corr_result.append( R_result[2][0] )
+
+ return corr_result
+
+#####################################################################################
+#Input: primaryValue(list): one list of expression values of one probeSet,
+# targetValue(list): one list of expression values of one probeSet,
+# method(string): indicate correlation method ('pearson' or 'spearman')
+#Output: corr_result(list): first item is Correlation Value, second item is tissue number,
+# third item is PValue
+#Function: get correlation value,Tissue quantity ,p value result by using R;
+#Note : This function is special case since both primaryValue and targetValue are from
+#the same dataset. So the length of these two parameters is the same. They are pairs.
+#Also, in the datatable TissueProbeSetData, all Tissue values are loaded based on
+#the same tissue order
+#####################################################################################
+
+def calZeroOrderCorrForTiss (primaryValue=[], targetValue=[], method='pearson'):
+
+ R_primary = rpy2.robjects.FloatVector(range(len(primaryValue)))
+ N = len(primaryValue)
+ for i in range(len(primaryValue)):
+ R_primary[i] = primaryValue[i]
+
+ R_target = rpy2.robjects.FloatVector(range(len(targetValue)))
+ for i in range(len(targetValue)):
+ R_target[i]=targetValue[i]
+
+ R_corr_test = rpy2.robjects.r['cor.test']
+ if method =='spearman':
+ R_result = R_corr_test(R_primary, R_target, method='spearman')
+ else:
+ R_result = R_corr_test(R_primary, R_target)
+
+ corr_result =[]
+ corr_result.append( R_result[3][0])
+ corr_result.append( N )
+ corr_result.append( R_result[2][0])
+
+ return corr_result
+
+
+
+
+def batchCalTissueCorr(primaryTraitValue=[], SymbolValueDict={}, method='pearson'):
+
+ def cal_tissue_corr(primaryTraitValue, oneSymbolValueDict, method ):
+
+ oneSymbolCorrDict = {}
+ oneSymbolPvalueDict = {}
+
+ R_corr_test = rpy2.robjects.r['cor.test']
+
+ R_primary = rpy2.robjects.FloatVector(range(len(primaryTraitValue)))
+
+ for i in range(len(primaryTraitValue)):
+ R_primary[i] = primaryTraitValue[i]
+
+ for (oneTraitSymbol, oneTraitValue) in oneSymbolValueDict.iteritems():
+ R_target = rpy2.robjects.FloatVector(range(len(oneTraitValue)))
+ for i in range(len(oneTraitValue)):
+ R_target[i] = oneTraitValue[i]
+
+ if method =='spearman':
+ R_result = R_corr_test(R_primary, R_target, method='spearman')
+ else:
+ R_result = R_corr_test(R_primary, R_target)
+
+ oneSymbolCorrDict[oneTraitSymbol] = R_result[3][0]
+ oneSymbolPvalueDict[oneTraitSymbol] = R_result[2][0]
+
+ return(oneSymbolCorrDict, oneSymbolPvalueDict)
+
+
+
+ symbolCorrDict = {}
+ symbolPvalueDict = {}
+
+ items_number = len(SymbolValueDict)
+
+ if items_number <= 1000:
+ symbolCorrDict, symbolPvalueDict = cal_tissue_corr(primaryTraitValue, SymbolValueDict, method)
+ else:
+ items_list = SymbolValueDict.items()
+
+ step = 1000
+ job_number = math.ceil( float(items_number)/step )
+
+ job_oneSymbolValueDict_list = []
+
+ for job_index in range( int(job_number) ):
+ starti = job_index*step
+ endi = min((job_index+1)*step, items_number)
+
+ oneSymbolValueDict = {}
+
+ for i in range( starti, endi ):
+ one_item = items_list[i]
+ one_symbol = one_item[0]
+ one_value = one_item[1]
+ oneSymbolValueDict[one_symbol] = one_value
+
+ job_oneSymbolValueDict_list.append( oneSymbolValueDict )
+
+
+ ppservers = ()
+ # Creates jobserver with automatically detected number of workers
+ job_server = pp.Server(ppservers=ppservers)
+
+ jobs = []
+ results = []
+
+ for i, oneSymbolValueDict in enumerate( job_oneSymbolValueDict_list ):
+
+ #pay attention to modules from outside
+ jobs.append( job_server.submit(func=cal_tissue_corr, args=(primaryTraitValue, oneSymbolValueDict, method), depfuncs=(), modules=("rpy2.robjects",)) )
+
+ for one_job in jobs:
+ one_result = one_job()
+ results.append( one_result )
+
+ for one_result in results:
+ oneSymbolCorrDict, oneSymbolPvalueDict = one_result
+ symbolCorrDict.update( oneSymbolCorrDict )
+ symbolPvalueDict.update( oneSymbolPvalueDict )
+
+ return (symbolCorrDict, symbolPvalueDict)
+
+###########################################################################
+#Input: cursor, GeneNameLst (list), TissueProbeSetFreezeId
+#output: geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict (Dict)
+#function: get multi dicts for short and long label functions, and for getSymbolValuePairDict and
+# getGeneSymbolTissueValueDict to build dict to get CorrPvArray
+#Note: If there are multiple probesets for one gene, select the one with highest mean.
+###########################################################################
+def getTissueProbeSetXRefInfo(cursor=None,GeneNameLst=[],TissueProbeSetFreezeId=0):
+ Symbols =""
+ symbolList =[]
+ geneIdDict ={}
+ dataIdDict = {}
+ ChrDict = {}
+ MbDict = {}
+ descDict = {}
+ pTargetDescDict = {}
+
+ count = len(GeneNameLst)
+
+ # Added by NL 01/06/2011
+ # Note that:inner join is necessary in this query to get distinct record in one symbol group with highest mean value
+ # Duo to the limit size of TissueProbeSetFreezeId table in DB, performance of inner join is acceptable.
+ if count==0:
+ query='''
+ select t.Symbol,t.GeneId, t.DataId,t.Chr, t.Mb,t.description,t.Probe_Target_Description
+ from (
+ select Symbol, max(Mean) as maxmean
+ from TissueProbeSetXRef
+ where TissueProbeSetFreezeId=%s and Symbol!='' and Symbol Is Not Null group by Symbol)
+ as x inner join TissueProbeSetXRef as t on t.Symbol = x.Symbol and t.Mean = x.maxmean;
+ '''%TissueProbeSetFreezeId
+
+ else:
+ for i, item in enumerate(GeneNameLst):
+
+ if i == count-1:
+ Symbols += "'%s'" %item
+ else:
+ Symbols += "'%s'," %item
+
+ Symbols = "("+ Symbols+")"
+ query='''
+ select t.Symbol,t.GeneId, t.DataId,t.Chr, t.Mb,t.description,t.Probe_Target_Description
+ from (
+ select Symbol, max(Mean) as maxmean
+ from TissueProbeSetXRef
+ where TissueProbeSetFreezeId=%s and Symbol in %s group by Symbol)
+ as x inner join TissueProbeSetXRef as t on t.Symbol = x.Symbol and t.Mean = x.maxmean;
+ '''% (TissueProbeSetFreezeId,Symbols)
+
+ try:
+
+ cursor.execute(query)
+ results =cursor.fetchall()
+ resultCount = len(results)
+ # Key in all dicts is the lower-cased symbol
+ for i, item in enumerate(results):
+ symbol = item[0]
+ symbolList.append(symbol)
+
+ key =symbol.lower()
+ geneIdDict[key]=item[1]
+ dataIdDict[key]=item[2]
+ ChrDict[key]=item[3]
+ MbDict[key]=item[4]
+ descDict[key]=item[5]
+ pTargetDescDict[key]=item[6]
+
+ except:
+ symbolList = None
+ geneIdDict=None
+ dataIdDict=None
+ ChrDict=None
+ MbDict=None
+ descDict=None
+ pTargetDescDict=None
+
+ return symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict
+
+###########################################################################
+#Input: cursor, symbolList (list), dataIdDict(Dict)
+#output: symbolValuepairDict (dictionary):one dictionary of Symbol and Value Pair,
+# key is symbol, value is one list of expression values of one probeSet;
+#function: get one dictionary whose key is gene symbol and value is tissue expression data (list type).
+#Attention! All keys are lower case!
+###########################################################################
+def getSymbolValuePairDict(cursor=None,symbolList=None,dataIdDict={}):
+ symbolList = map(string.lower, symbolList)
+ symbolValuepairDict={}
+ valueList=[]
+
+ for key in symbolList:
+ if dataIdDict.has_key(key):
+ DataId = dataIdDict[key]
+
+ valueQuery = "select value from TissueProbeSetData where Id=%s" % DataId
+ try :
+ cursor.execute(valueQuery)
+ valueResults = cursor.fetchall()
+ for item in valueResults:
+ item =item[0]
+ valueList.append(item)
+ symbolValuepairDict[key] = valueList
+ valueList=[]
+ except:
+ symbolValuepairDict[key] = None
+
+ return symbolValuepairDict
+
+
+########################################################################################################
+#input: cursor, symbolList (list), dataIdDict(Dict): key is symbol
+#output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair.
+# key is symbol, value is one list of expression values of one probeSet.
+#function: wrapper function for getSymbolValuePairDict function
+# build gene symbol list if necessary, cut it into small lists if necessary,
+# then call getSymbolValuePairDict function and merge the results.
+########################################################################################################
+
+def getGeneSymbolTissueValueDict(cursor=None,symbolList=None,dataIdDict={}):
+ limitNum=1000
+ count = len(symbolList)
+
+ SymbolValuePairDict = {}
+
+ if count !=0 and count <=limitNum:
+ SymbolValuePairDict = getSymbolValuePairDict(cursor=cursor,symbolList=symbolList,dataIdDict=dataIdDict)
+
+ elif count >limitNum:
+ SymbolValuePairDict={}
+ n = count/limitNum
+ start =0
+ stop =0
+
+ for i in range(n):
+ stop =limitNum*(i+1)
+ gList1 = symbolList[start:stop]
+ PairDict1 = getSymbolValuePairDict(cursor=cursor,symbolList=gList1,dataIdDict=dataIdDict)
+ start =limitNum*(i+1)
+
+ SymbolValuePairDict.update(PairDict1)
+
+ if stop < count:
+ stop = count
+ gList2 = symbolList[start:stop]
+ PairDict2 = getSymbolValuePairDict(cursor=cursor,symbolList=gList2,dataIdDict=dataIdDict)
+ SymbolValuePairDict.update(PairDict2)
+
+ return SymbolValuePairDict
+
+########################################################################################################
+#input: cursor, GeneNameLst (list), TissueProbeSetFreezeId(int)
+#output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair.
+# key is symbol, value is one list of expression values of one probeSet.
+#function: wrapper function of getGeneSymbolTissueValueDict function
+# for CorrelationPage.py
+########################################################################################################
+
+def getGeneSymbolTissueValueDictForTrait(cursor=None,GeneNameLst=[],TissueProbeSetFreezeId=0):
+ SymbolValuePairDict={}
+ symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict = getTissueProbeSetXRefInfo(cursor=cursor,GeneNameLst=GeneNameLst,TissueProbeSetFreezeId=TissueProbeSetFreezeId)
+ if symbolList:
+ SymbolValuePairDict = getGeneSymbolTissueValueDict(cursor=cursor,symbolList=symbolList,dataIdDict=dataIdDict)
+ return SymbolValuePairDict
+
+########################################################################################################
+#Input: cursor(cursor): MySQL connnection cursor;
+# priGeneSymbolList(list): one list of gene symbol;
+# symbolValuepairDict(dictionary): one dictionary of Symbol and Value Pair,
+# key is symbol, value is one list of expression values of one probeSet;
+#Output: corrArray(array): array of Correlation Value,
+# pvArray(array): array of PValue;
+#Function: build corrArray, pvArray for display by calling calculation function:calZeroOrderCorrForTiss
+########################################################################################################
+
+def getCorrPvArray(cursor=None,priGeneSymbolList=[],symbolValuepairDict={}):
+ # setting initial value for corrArray, pvArray equal to 0
+ Num = len(priGeneSymbolList)
+
+ corrArray = [([0] * (Num))[:] for i in range(Num)]
+ pvArray = [([0] * (Num))[:] for i in range(Num)]
+ i = 0
+ for pkey in priGeneSymbolList:
+ j = 0
+ pkey = pkey.strip().lower()# key in symbolValuepairDict is low case
+ if symbolValuepairDict.has_key(pkey):
+ priValue = symbolValuepairDict[pkey]
+ for tkey in priGeneSymbolList:
+ tkey = tkey.strip().lower()# key in symbolValuepairDict is low case
+ if priValue and symbolValuepairDict.has_key(tkey):
+ tarValue = symbolValuepairDict[tkey]
+
+ if tarValue:
+ if i>j:
+ # corrArray stores Pearson Correlation values
+ # pvArray stores Pearson P-Values
+ pcorr_result =calZeroOrderCorrForTiss(primaryValue=priValue,targetValue=tarValue)
+ corrArray[i][j] =pcorr_result[0]
+ pvArray[i][j] =pcorr_result[2]
+ elif i<j:
+ # corrArray stores Spearman Correlation values
+ # pvArray stores Spearman P-Values
+ scorr_result =calZeroOrderCorrForTiss(primaryValue=priValue,targetValue=tarValue,method='spearman')
+ corrArray[i][j] =scorr_result[0]
+ pvArray[i][j] =scorr_result[2]
+ else:
+ # on the diagonal line, correlation value is 1, P-Values is 0
+ corrArray[i][j] =1
+ pvArray[i][j] =0
+ j+=1
+ else:
+ corrArray[i][j] = None
+ pvArray[i][j] = None
+ j+=1
+ else:
+ corrArray[i][j] = None
+ pvArray[i][j] = None
+ j+=1
+ else:
+ corrArray[i][j] = None
+ pvArray[i][j] = None
+
+ i+=1
+
+ return corrArray, pvArray
+
+########################################################################################################
+#Input: cursor(cursor): MySQL connnection cursor;
+# primaryTraitSymbol(string): one gene symbol;
+# TissueProbeSetFreezeId (int): Id of related TissueProbeSetFreeze
+# method: '0' default value, Pearson Correlation; '1', Spearman Correlation
+#Output: symbolCorrDict(Dict): Dict of Correlation Value, key is symbol
+# symbolPvalueDict(Dict): Dict of PValue,key is symbol ;
+#Function: build symbolCorrDict, symbolPvalueDict for display by calling calculation function:calZeroOrderCorrForTiss
+########################################################################################################
+def calculateCorrOfAllTissueTrait(cursor=None, primaryTraitSymbol=None, TissueProbeSetFreezeId=None,method='0'):
+
+ symbolCorrDict = {}
+ symbolPvalueDict = {}
+
+ primaryTraitSymbolValueDict = getGeneSymbolTissueValueDictForTrait(cursor=cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TissueProbeSetFreezeId)
+ primaryTraitValue = primaryTraitSymbolValueDict.values()[0]
+
+ SymbolValueDict = getGeneSymbolTissueValueDictForTrait(cursor=cursor, GeneNameLst=[], TissueProbeSetFreezeId=TissueProbeSetFreezeId)
+
+ if method =='1':
+ symbolCorrDict, symbolPvalueDict = batchCalTissueCorr(primaryTraitValue,SymbolValueDict,method='spearman')
+ else:
+ symbolCorrDict, symbolPvalueDict = batchCalTissueCorr(primaryTraitValue,SymbolValueDict)
+
+
+ return (symbolCorrDict, symbolPvalueDict)