diff options
Diffstat (limited to 'gn2/wqflask/wgcna/wgcna_analysis.py')
-rw-r--r-- | gn2/wqflask/wgcna/wgcna_analysis.py | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/gn2/wqflask/wgcna/wgcna_analysis.py b/gn2/wqflask/wgcna/wgcna_analysis.py new file mode 100644 index 00000000..f982c021 --- /dev/null +++ b/gn2/wqflask/wgcna/wgcna_analysis.py @@ -0,0 +1,189 @@ +""" +WGCNA analysis for GN2 + +Author / Maintainer: Danny Arends <Danny.Arends@gmail.com> +""" +import base64 +import sys +import rpy2.robjects as ro # R Objects +import rpy2.rinterface as ri + +from array import array as arr +from numpy import * +from gn2.base.webqtlConfig import GENERATED_IMAGE_DIR +from rpy2.robjects.packages import importr + +from gn2.utility import webqtlUtil # Random number for the image +from gn2.utility import helper_functions + +utils = importr("utils") + +# Get pointers to some common R functions +r_library = ro.r["library"] # Map the library function +r_options = ro.r["options"] # Map the options function +r_read_csv = ro.r["read.csv"] # Map the read.csv function +r_dim = ro.r["dim"] # Map the dim function +r_c = ro.r["c"] # Map the c function +r_cat = ro.r["cat"] # Map the cat function +r_paste = ro.r["paste"] # Map the paste function +r_unlist = ro.r["unlist"] # Map the unlist function +r_unique = ro.r["unique"] # Map the unique function +r_length = ro.r["length"] # Map the length function +r_unlist = ro.r["unlist"] # Map the unlist function +r_list = ro.r.list # Map the list function +r_matrix = ro.r.matrix # Map the matrix function +r_seq = ro.r["seq"] # Map the seq function +r_table = ro.r["table"] # Map the table function +r_names = ro.r["names"] # Map the names function +r_sink = ro.r["sink"] # Map the sink function +r_is_NA = ro.r["is.na"] # Map the is.na function +r_file = ro.r["file"] # Map the file function +r_png = ro.r["png"] # Map the png function for plotting +r_dev_off = ro.r["dev.off"] # Map the dev.off function + + +class WGCNA: + def __init__(self): + # To log output from stdout/stderr to a file add `r_sink(log)` + print("Initialization of WGCNA") + + # Load WGCNA - Should only be done once, since it is quite expensive + r_library("WGCNA") + r_options(stringsAsFactors=False) + print("Initialization of WGCNA done, package loaded in R session") + # Map the enableWGCNAThreads function + self.r_enableWGCNAThreads = ro.r["enableWGCNAThreads"] + # Map the pickSoftThreshold function + self.r_pickSoftThreshold = ro.r["pickSoftThreshold"] + # Map the blockwiseModules function + self.r_blockwiseModules = ro.r["blockwiseModules"] + # Map the labels2colors function + self.r_labels2colors = ro.r["labels2colors"] + # Map the plotDendroAndColors function + self.r_plotDendroAndColors = ro.r["plotDendroAndColors"] + print("Obtained pointers to WGCNA functions") + + def run_analysis(self, requestform): + print("Starting WGCNA analysis on dataset") + # Enable multi threading + self.r_enableWGCNAThreads() + self.trait_db_list = [trait.strip() + for trait in requestform['trait_list'].split(',')] + print(("Retrieved phenotype data from database", + requestform['trait_list'])) + helper_functions.get_trait_db_obs(self, self.trait_db_list) + + # self.input contains the phenotype values we need to send to R + self.input = {} + # All the strains we have data for (contains duplicates) + strains = [] + # All the traits we have data for (should not contain duplicates) + traits = [] + for trait in self.trait_list: + traits.append(trait[0].name) + self.input[trait[0].name] = {} + for strain in trait[0].data: + strains.append(strain) + self.input[trait[0].name][strain] = trait[0].data[strain].value + + # Transfer the load data from python to R + # Unique strains in R vector + uStrainsR = r_unique(ro.Vector(strains)) + uTraitsR = r_unique(ro.Vector(traits)) # Unique traits in R vector + + r_cat("The number of unique strains:", r_length(uStrainsR), "\n") + r_cat("The number of unique traits:", r_length(uTraitsR), "\n") + + # rM is the datamatrix holding all the data in + # R /rows = strains columns = traits + rM = ro.r.matrix(ri.NA_Real, nrow=r_length(uStrainsR), ncol=r_length( + uTraitsR), dimnames=r_list(uStrainsR, uTraitsR)) + for t in uTraitsR: + # R uses vectors every single element is a vector + trait = t[0] + for s in uStrainsR: + # R uses vectors every single element is a vector + strain = s[0] + rM.rx[strain, trait] = self.input[trait].get( + strain) # Update the matrix location + sys.stdout.flush() + + self.results = {} + # Number of phenotypes/traits + self.results['nphe'] = r_length(uTraitsR)[0] + self.results['nstr'] = r_length( + uStrainsR)[0] # Number of strains + self.results['phenotypes'] = uTraitsR # Traits used + # Strains used in the analysis + self.results['strains'] = uStrainsR + # Store the user specified parameters for the output page + self.results['requestform'] = requestform + + # Calculate soft threshold if the user specified the + # SoftThreshold variable + if requestform.get('SoftThresholds') is not None: + powers = [int(threshold.strip()) + for threshold in requestform['SoftThresholds'].rstrip().split(",")] + rpow = r_unlist(r_c(powers)) + print(("SoftThresholds: {} == {}".format(powers, rpow))) + self.sft = self.r_pickSoftThreshold( + rM, powerVector=rpow, verbose=5) + + print(("PowerEstimate: {}".format(self.sft[0]))) + self.results['PowerEstimate'] = self.sft[0] + if self.sft[0][0] is ri.NA_Integer: + print("No power is suitable for the analysis, just use 1") + # No power could be estimated + self.results['Power'] = 1 + else: + # Use the estimated power + self.results['Power'] = self.sft[0][0] + else: + # The user clicked a button, so no soft threshold selection + # Use the power value the user gives + self.results['Power'] = requestform.get('Power') + + # Create the block wise modules using WGCNA + network = self.r_blockwiseModules( + rM, + power=self.results['Power'], + TOMType=requestform['TOMtype'], + minModuleSize=requestform['MinModuleSize'], + verbose=3) + + # Save the network for the GUI + self.results['network'] = network + + # How many modules and how many gene per module ? + print(("WGCNA found {} modules".format(r_table(network[1])))) + self.results['nmod'] = r_length(r_table(network[1]))[0] + + # The iconic WCGNA plot of the modules in the hanging tree + self.results['imgurl'] = webqtlUtil.genRandStr("WGCNAoutput_") + ".png" + self.results['imgloc'] = GENERATED_IMAGE_DIR + self.results['imgurl'] + r_png(self.results['imgloc'], width=1000, height=600, type='cairo-png') + mergedColors = self.r_labels2colors(network[1]) + self.r_plotDendroAndColors(network[5][0], mergedColors, + "Module colors", dendroLabels=False, + hang=0.03, addGuide=True, guideHang=0.05) + r_dev_off() + sys.stdout.flush() + + def render_image(self, results): + print(("pre-loading imgage results:", self.results['imgloc'])) + imgfile = open(self.results['imgloc'], 'rb') + imgdata = imgfile.read() + imgB64 = base64.b64encode(imgdata) + bytesarray = arr('B', imgB64) + self.results['imgdata'] = bytesarray + + def process_results(self, results): + print("Processing WGCNA output") + template_vars = {} + template_vars["input"] = self.input + # Results from the soft threshold analysis + template_vars["powers"] = self.sft[1:] + template_vars["results"] = self.results + self.render_image(results) + sys.stdout.flush() + return(dict(template_vars)) |