diff options
Diffstat (limited to 'gn2/wqflask/wgcna/gn3_wgcna.py')
-rw-r--r-- | gn2/wqflask/wgcna/gn3_wgcna.py | 118 |
1 files changed, 118 insertions, 0 deletions
diff --git a/gn2/wqflask/wgcna/gn3_wgcna.py b/gn2/wqflask/wgcna/gn3_wgcna.py new file mode 100644 index 00000000..2cae4f18 --- /dev/null +++ b/gn2/wqflask/wgcna/gn3_wgcna.py @@ -0,0 +1,118 @@ +"""module contains code to consume gn3-wgcna api +and process data to be rendered by datatables +""" + +import requests +from types import SimpleNamespace + +from gn2.utility.helper_functions import get_trait_db_obs +from gn2.utility.tools import GN3_LOCAL_URL + + +def fetch_trait_data(requestform): + """fetch trait data""" + db_obj = SimpleNamespace() + get_trait_db_obs(db_obj, + [trait.strip() + for trait in requestform['trait_list'].split(',')]) + + return process_dataset(db_obj.trait_list) + + +def process_dataset(trait_list): + """process datasets and strains""" + + input_data = {} + traits = [] + strains = [] + + for trait in trait_list: + traits.append(trait[0].name) + + input_data[trait[0].name] = {} + for strain in trait[0].data: + strains.append(strain) + input_data[trait[0].name][strain] = trait[0].data[strain].value + + return { + "input": input_data, + "trait_names": traits, + "sample_names": strains + } + + +def process_wgcna_data(response): + """function for processing modeigene genes + for create row data for datataba""" + mod_eigens = response["output"]["ModEigens"] + + sample_names = response["input"]["sample_names"] + + mod_dataset = [[sample] for sample in sample_names] + + for _, mod_values in mod_eigens.items(): + for (index, _sample) in enumerate(sample_names): + mod_dataset[index].append(round(mod_values[index], 3)) + + return { + "col_names": ["sample_names", *mod_eigens.keys()], + "mod_dataset": mod_dataset + } + + +def process_image(response): + """function to process image check if byte string is empty""" + image_data = response["output"]["image_data"] + return ({ + "image_generated": True, + "image_data": image_data + } if image_data else { + "image_generated": False + }) + + +def run_wgcna(form_data): + """function to run wgcna""" + + wgcna_api = f"{GN3_LOCAL_URL}/api/wgcna/run_wgcna" + + trait_dataset = fetch_trait_data(form_data) + form_data["minModuleSize"] = int(form_data["MinModuleSize"]) + + form_data["SoftThresholds"] = [int(threshold.strip()) + for threshold in form_data['SoftThresholds'].rstrip().split(",")] + + try: + + unique_strains = list(set(trait_dataset["sample_names"])) + + response = requests.post(wgcna_api, json={ + "sample_names": unique_strains, + "trait_names": trait_dataset["trait_names"], + "trait_sample_data": list(trait_dataset["input"].values()), + **form_data + + } + ) + + status_code = response.status_code + response = response.json() + + parameters = { + "nstrains": len(unique_strains), + "nphe": len(trait_dataset["trait_names"]), + **{key: val for key, val in form_data.items() if key not in ["trait_list"]} + } + + return {"error": response} if status_code != 200 else { + "error": 'null', + "parameters": parameters, + "results": response, + "data": process_wgcna_data(response["data"]), + "image": process_image(response["data"]) + } + + except requests.exceptions.ConnectionError: + return { + "error": "A connection error to perform computation occurred" + } |