about summary refs log tree commit diff
path: root/gn2/maintenance/quantile_normalize.py
diff options
context:
space:
mode:
Diffstat (limited to 'gn2/maintenance/quantile_normalize.py')
-rw-r--r--gn2/maintenance/quantile_normalize.py98
1 files changed, 98 insertions, 0 deletions
diff --git a/gn2/maintenance/quantile_normalize.py b/gn2/maintenance/quantile_normalize.py
new file mode 100644
index 00000000..5620b552
--- /dev/null
+++ b/gn2/maintenance/quantile_normalize.py
@@ -0,0 +1,98 @@
+import sys
+sys.path.insert(0, './')
+import urllib.parse
+
+import numpy as np
+import pandas as pd
+
+from flask import Flask, g, request
+
+from gn2.wqflask import app
+from gn2.wqflask.database import database_connection
+from gn2.utility.tools import get_setting
+
+
+def create_dataframe(input_file):
+    with open(input_file) as f:
+        ncols = len(f.readline().split("\t"))
+
+    input_array = np.loadtxt(open(
+        input_file, "rb"), delimiter="\t", skiprows=1, usecols=list(range(1, ncols)))
+    return pd.DataFrame(input_array)
+
+# This function taken from https://github.com/ShawnLYU/Quantile_Normalize
+
+
+def quantileNormalize(df_input):
+    df = df_input.copy()
+    # compute rank
+    dic = {}
+    for col in df:
+        dic.update({col: sorted(df[col])})
+    sorted_df = pd.DataFrame(dic)
+    rank = sorted_df.mean(axis=1).tolist()
+    # sort
+    for col in df:
+        t = np.searchsorted(np.sort(df[col]), df[col])
+        df[col] = [rank[i] for i in t]
+    return df
+
+
+def set_data(cursor, dataset_name):
+    orig_file = "/home/zas1024/cfw_data/" + dataset_name + ".txt"
+
+    sample_list = []
+    with open(orig_file, 'r') as orig_fh, open('/home/zas1024/cfw_data/quant_norm.csv', 'r') as quant_fh:
+        for i, (line1, line2) in enumerate(zip(orig_fh, quant_fh)):
+            trait_dict = {}
+            sample_list = []
+            if i == 0:
+                sample_names = line1.split('\t')[1:]
+            else:
+                trait_name = line1.split('\t')[0]
+                for i, sample in enumerate(sample_names):
+                    this_sample = {
+                        "name": sample,
+                        "value": line1.split('\t')[i + 1],
+                        "qnorm": line2.split('\t')[i + 1]
+                    }
+                    sample_list.append(this_sample)
+                query = """SELECT Species.SpeciesName, InbredSet.InbredSetName, ProbeSetFreeze.FullName
+                           FROM Species, InbredSet, ProbeSetFreeze, ProbeFreeze, ProbeSetXRef, ProbeSet
+                           WHERE Species.Id = InbredSet.SpeciesId and
+                                 InbredSet.Id = ProbeFreeze.InbredSetId and
+                                 ProbeFreeze.Id = ProbeSetFreeze.ProbeFreezeId and
+                                 ProbeSetFreeze.Name = '%s' and
+                                 ProbeSetFreeze.Id = ProbeSetXRef.ProbeSetFreezeId and
+                                 ProbeSetXRef.ProbeSetId = ProbeSet.Id and
+                                 ProbeSet.Name = '%s'""" % (dataset_name, line1.split('\t')[0])
+                cursor.execute(query)
+                result_info = cursor.fetchone()
+
+                yield {
+                    "_index": "traits",
+                    "_type": "trait",
+                    "_source": {
+                        "name": trait_name,
+                        "species": result_info[0],
+                        "group": result_info[1],
+                        "dataset": dataset_name,
+                        "dataset_fullname": result_info[2],
+                        "samples": sample_list,
+                        "transform_types": "qnorm"
+                    }
+                }
+
+
+if __name__ == '__main__':
+    with database_connection(get_setting("SQL_URI")) as conn:
+        with conn.cursor() as cursor:
+            success, _ = bulk(es, set_data(cursor, sys.argv[1]))
+
+            response = es.search(
+                index="traits", doc_type="trait", body={
+                    "query": {"match": {"name": "ENSMUSG00000028982"}}
+                }
+            )
+
+            print(response)