about summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--wqflask/utility/webqtlUtil.py700
-rw-r--r--wqflask/wqflask/correlation/correlation_functions.py56
-rw-r--r--wqflask/wqflask/correlation/show_corr_results.py30
3 files changed, 1 insertions, 785 deletions
diff --git a/wqflask/utility/webqtlUtil.py b/wqflask/utility/webqtlUtil.py
index 94dd7cbf..83fa90b7 100644
--- a/wqflask/utility/webqtlUtil.py
+++ b/wqflask/utility/webqtlUtil.py
@@ -65,41 +65,6 @@ ParInfo ={
 #      Accessory Functions
 #########################################
 
-def exportData(hddn, tdata, NP = None):
-    for key in tdata.keys():
-        _val, _var, _N = tdata[key].val, tdata[key].var, tdata[key].N
-        if _val != None:
-            hddn[key] = _val
-            if _var != None:
-                hddn['V'+key] = _var
-            if NP and _N != None:
-                hddn['N'+key] = _N
-
-def genShortStrainName(RISet='', input_strainName=''):
-    #aliasStrainDict = {'C57BL/6J':'B6','DBA/2J':'D2'}
-    strainName = input_strainName
-    if RISet != 'AXBXA':
-        if RISet == 'BXD300':
-            this_RISet = 'BXD'
-        elif RISet == 'BDF2-2005':
-            this_RISet = 'CASE05_'
-        else:
-            this_RISet = RISet
-        strainName = string.replace(strainName,this_RISet,'')
-        strainName = string.replace(strainName,'CASE','')
-        try:
-            strainName = "%02d" % int(strainName)
-        except:
-            pass
-    else:
-        strainName = string.replace(strainName,'AXB','A')
-        strainName = string.replace(strainName,'BXA','B')
-        try:
-            strainName = strainName[0] + "%02d" % int(strainName[1:])
-        except:
-            pass
-    return strainName
-
 def genRandStr(prefix = "", length=8, chars=string.letters+string.digits):
     from random import choice
     _str = prefix[:]
@@ -107,63 +72,6 @@ def genRandStr(prefix = "", length=8, chars=string.letters+string.digits):
         _str += choice(chars)
     return _str
 
-def StringAsFloat(str):
-    'Converts string to float but catches any exception and returns None'
-    try:
-        return float(str)
-    except:
-        return None
-
-def IntAsFloat(str):
-    'Converts string to Int but catches any exception and returns None'
-    try:
-        return int(str)
-    except:
-        return None
-
-def FloatAsFloat(flt):
-    'Converts float to string but catches any exception and returns None'
-    try:
-        return float("%2.3f" % flt)
-    except:
-        return None
-
-def RemoveZero(flt):
-    'Converts string to float but catches any exception and returns None'
-    try:
-        if abs(flt) < 1e-6:
-            return None
-        else:
-            return flt
-    except:
-        return None
-
-
-def SciFloat(d):
-    'Converts string to float but catches any exception and returns None'
-
-    try:
-        if abs(d) <= 1.0e-4:
-            return "%1.2e" % d
-        else:
-            return "%1.5f" % d
-    except:
-        return None
-
-###To be removed
-def FloatList2String(lst):
-    'Converts float list to string but catches any exception and returns None'
-    tt=''
-    try:
-        for item in lst:
-            if item == None:
-                tt += 'X '
-            else:
-                tt += '%f ' % item
-        return tt
-    except:
-        return ""
-
 def ListNotNull(lst):
     '''Obsolete - Use built in function any (or all or whatever)
 
@@ -176,427 +84,6 @@ def ListNotNull(lst):
             return 1
     return None
 
-###To be removed
-def FileDataProcess(str):
-    'Remove the description text from the input file if theres any'
-    i=0
-    while i<len(str):
-        if str[i]<'\x7f' and str[i]>'\x20':
-            break
-        else:
-            i+=1
-    str=str[i:]
-    str=string.join(string.split(str,'\000'),'')
-    i=string.find(str,"*****")
-    if i>-1:
-        return str[i+5:]
-    else:
-        return str
-
-def rank(a,lst,offset=0):
-    """Calculate the integer rank of a number in an array, can be used to calculate p-value"""
-    n = len(lst)
-    if n == 2:
-        if a <lst[0]:
-            return offset
-        elif a > lst[1]:
-            return offset + 2
-        else:
-            return offset +1
-    elif n == 1:
-        if a <lst[0]:
-            return offset
-        else:
-            return offset +1
-    elif n== 0:
-        return offset
-    else:
-        mid = n/2
-        if a < lst[mid]:
-            return rank(a,lst[:mid-1],offset)
-        else:
-            return rank(a,lst[mid:],offset+mid)
-
-def cmpScanResult(A,B):
-    try:
-        if A.LRS > B.LRS:
-            return 1
-        elif A.LRS == B.LRS:
-            return 0
-        else:
-            return -1
-    except:
-        return 0
-
-
-def cmpScanResult2(A,B):
-    try:
-        if A.LRS < B.LRS:
-            return 1
-        elif A.LRS == B.LRS:
-            return 0
-        else:
-            return -1
-    except:
-        return 0
-
-def cmpOrder(A,B):
-    try:
-        if A[1] < B[1]:
-            return -1
-        elif A[1] == B[1]:
-            return 0
-        else:
-            return 1
-    except:
-        return 0
-
-def cmpOrder2(A,B):
-    try:
-        if A[-1] < B[-1]:
-            return -1
-        elif A[-1] == B[-1]:
-            return 0
-        else:
-            return 1
-    except:
-        return 0
-
-
-
-
-def calRank(xVals, yVals, N): ###  Zach Sloan, February 4 2010
-    """
-    Returns a ranked set of X and Y values. These are used when generating
-    a Spearman scatterplot. Bear in mind that this sets values equal to each
-    other as the same rank.
-    """
-    XX = []
-    YY = []
-    X = [0]*len(xVals)
-    Y = [0]*len(yVals)
-    j = 0
-
-    for i in range(len(xVals)):
-
-        if xVals[i] != None and yVals[i] != None:
-            XX.append((j, xVals[i]))
-            YY.append((j, yVals[i]))
-            j = j + 1
-
-    NN = len(XX)
-
-    XX.sort(cmpOrder2)
-    YY.sort(cmpOrder2)
-
-    j = 1
-    rank = 0.0
-
-    while j < NN:
-
-        if XX[j][1] != XX[j-1][1]:
-            X[XX[j-1][0]] = j
-            j = j+1
-
-        else:
-            jt = j+1
-            ji = j
-            for jt in range(j+1, NN):
-                if (XX[jt][1] != XX[j-1][1]):
-                    break
-            rank = 0.5*(j+jt)
-            for ji in range(j-1, jt):
-                X[XX[ji][0]] = rank
-            if (jt == NN-1):
-                if (XX[jt][1] == XX[j-1][1]):
-                    X[XX[NN-1][0]] = rank
-            j = jt+1
-
-    if j == NN:
-        if X[XX[NN-1][0]] == 0:
-            X[XX[NN-1][0]] = NN
-
-    j = 1
-    rank = 0.0
-
-    while j < NN:
-
-        if YY[j][1] != YY[j-1][1]:
-            Y[YY[j-1][0]] = j
-            j = j+1
-        else:
-            jt = j+1
-            ji = j
-            for jt in range(j+1, NN):
-                if (YY[jt][1] != YY[j-1][1]):
-                    break
-            rank = 0.5*(j+jt)
-            for ji in range(j-1, jt):
-                Y[YY[ji][0]] = rank
-            if (jt == NN-1):
-                if (YY[jt][1] == YY[j-1][1]):
-                    Y[YY[NN-1][0]] = rank
-            j = jt+1
-
-    if j == NN:
-        if Y[YY[NN-1][0]] == 0:
-            Y[YY[NN-1][0]] = NN
-
-    return (X,Y)
-
-def calCorrelationRank(xVals,yVals,N):
-    """
-    Calculated Spearman Ranked Correlation. The algorithm works
-    by setting all tied ranks to the average of those ranks (for
-    example, if ranks 5-10 all have the same value, each will be set
-    to rank 7.5).
-    """
-
-    XX = []
-    YY = []
-    j = 0
-
-    for i in range(len(xVals)):
-        if (xVals[i]!= None and yVals[i]!= None) and (xVals[i] != "None" and yVals[i] != "None"):
-            XX.append((j,xVals[i]))
-            YY.append((j,yVals[i]))
-            j = j+1
-
-    NN = len(XX)
-    if NN <6:
-        return (0.0,NN)
-    XX.sort(cmpOrder2)
-    YY.sort(cmpOrder2)
-    X = [0]*NN
-    Y = [0]*NN
-
-    j = 1
-    rank = 0.0
-    t = 0.0
-    sx = 0.0
-
-    while j < NN:
-
-        if XX[j][1] != XX[j-1][1]:
-            X[XX[j-1][0]] = j
-            j = j+1
-
-        else:
-            jt = j+1
-            ji = j
-            for jt in range(j+1, NN):
-                if (XX[jt][1] != XX[j-1][1]):
-                    break
-            rank = 0.5*(j+jt)
-            for ji in range(j-1, jt):
-                X[XX[ji][0]] = rank
-            t = jt-j
-            sx = sx + (t*t*t-t)
-            if (jt == NN-1):
-                if (XX[jt][1] == XX[j-1][1]):
-                    X[XX[NN-1][0]] = rank
-            j = jt+1
-
-    if j == NN:
-        if X[XX[NN-1][0]] == 0:
-            X[XX[NN-1][0]] = NN
-
-    j = 1
-    rank = 0.0
-    t = 0.0
-    sy = 0.0
-
-    while j < NN:
-
-        if YY[j][1] != YY[j-1][1]:
-            Y[YY[j-1][0]] = j
-            j = j+1
-        else:
-            jt = j+1
-            ji = j
-            for jt in range(j+1, NN):
-                if (YY[jt][1] != YY[j-1][1]):
-                    break
-            rank = 0.5*(j+jt)
-            for ji in range(j-1, jt):
-                Y[YY[ji][0]] = rank
-            t = jt - j
-            sy = sy + (t*t*t-t)
-            if (jt == NN-1):
-                if (YY[jt][1] == YY[j-1][1]):
-                    Y[YY[NN-1][0]] = rank
-            j = jt+1
-
-    if j == NN:
-        if Y[YY[NN-1][0]] == 0:
-            Y[YY[NN-1][0]] = NN
-
-    D = 0.0
-
-    for i in range(NN):
-        D += (X[i]-Y[i])*(X[i]-Y[i])
-
-    fac = (1.0 -sx/(NN*NN*NN-NN))*(1.0-sy/(NN*NN*NN-NN))
-
-    return ((1-(6.0/(NN*NN*NN-NN))*(D+(sx+sy)/12.0))/math.sqrt(fac),NN)
-
-
-def calCorrelationRankText(dbdata,userdata,N): ### dcrowell = David Crowell, July 2008
-    """Calculates correlation ranks with data formatted from the text file.
-    dbdata, userdata are lists of strings.  N is an int.  Returns a float.
-    Used by correlationPage"""
-    XX = []
-    YY = []
-    j = 0
-    for i in range(N):
-        if (dbdata[i]!= None and userdata[i]!=None) and (dbdata[i]!= 'None' and userdata[i]!='None'):
-            XX.append((j,float(dbdata[i])))
-            YY.append((j,float(userdata[i])))
-            j += 1
-    NN = len(XX)
-    if NN <6:
-        return (0.0,NN)
-    XX.sort(cmpOrder2)
-    YY.sort(cmpOrder2)
-    X = [0]*NN
-    Y = [0]*NN
-
-    j = 1
-    rank = 0.0
-    t = 0.0
-    sx = 0.0
-
-    while j < NN:
-
-        if XX[j][1] != XX[j-1][1]:
-            X[XX[j-1][0]] = j
-            j = j+1
-
-        else:
-            jt = j+1
-            ji = j
-            for jt in range(j+1, NN):
-                if (XX[jt][1] != XX[j-1][1]):
-                    break
-            rank = 0.5*(j+jt)
-            for ji in range(j-1, jt):
-                X[XX[ji][0]] = rank
-            t = jt-j
-            sx = sx + (t*t*t-t)
-            if (jt == NN-1):
-                if (XX[jt][1] == XX[j-1][1]):
-                    X[XX[NN-1][0]] = rank
-            j = jt+1
-
-    if j == NN:
-        if X[XX[NN-1][0]] == 0:
-            X[XX[NN-1][0]] = NN
-
-    j = 1
-    rank = 0.0
-    t = 0.0
-    sy = 0.0
-
-    while j < NN:
-
-        if YY[j][1] != YY[j-1][1]:
-            Y[YY[j-1][0]] = j
-            j = j+1
-        else:
-            jt = j+1
-            ji = j
-            for jt in range(j+1, NN):
-                if (YY[jt][1] != YY[j-1][1]):
-                    break
-            rank = 0.5*(j+jt)
-            for ji in range(j-1, jt):
-                Y[YY[ji][0]] = rank
-            t = jt - j
-            sy = sy + (t*t*t-t)
-            if (jt == NN-1):
-                if (YY[jt][1] == YY[j-1][1]):
-                    Y[YY[NN-1][0]] = rank
-            j = jt+1
-
-    if j == NN:
-        if Y[YY[NN-1][0]] == 0:
-            Y[YY[NN-1][0]] = NN
-
-    D = 0.0
-
-    for i in range(NN):
-        D += (X[i]-Y[i])*(X[i]-Y[i])
-
-    fac = (1.0 -sx/(NN*NN*NN-NN))*(1.0-sy/(NN*NN*NN-NN))
-
-    return ((1-(6.0/(NN*NN*NN-NN))*(D+(sx+sy)/12.0))/math.sqrt(fac),NN)
-
-
-
-def calCorrelation(dbdata,userdata,N):
-    X = []
-    Y = []
-    for i in range(N):
-        if dbdata[i]!= None and userdata[i]!= None:
-            X.append(dbdata[i])
-            Y.append(userdata[i])
-    NN = len(X)
-    if NN <6:
-        return (0.0,NN)
-    sx = reduce(lambda x,y:x+y,X,0.0)
-    sy = reduce(lambda x,y:x+y,Y,0.0)
-    meanx = sx/NN
-    meany = sy/NN
-    xyd = 0.0
-    sxd = 0.0
-    syd = 0.0
-    for i in range(NN):
-        xyd += (X[i] - meanx)*(Y[i]-meany)
-        sxd += (X[i] - meanx)*(X[i] - meanx)
-        syd += (Y[i] - meany)*(Y[i] - meany)
-    try:
-        corr = xyd/(sqrt(sxd)*sqrt(syd))
-    except:
-        corr = 0
-    return (corr,NN)
-
-def calCorrelationText(dbdata,userdata,N): ### dcrowell July 2008
-    """Calculates correlation coefficients with values formatted from text files. dbdata, userdata are lists of strings.  N is an int.  Returns a float
-    Used by correlationPage"""
-    X = []
-    Y = []
-    for i in range(N):
-        #if (dbdata[i]!= None and userdata[i]!= None) and (dbdata[i]!= 'None' and userdata[i]!= 'None'):
-        #               X.append(float(dbdata[i]))
-        #               Y.append(float(userdata[i]))
-        if dbdata[i] == None or dbdata[i] == 'None' or userdata[i] == None or userdata[i] == 'None':
-            continue
-        else:
-            X.append(float(dbdata[i]))
-            Y.append(float(userdata[i]))
-    NN = len(X)
-    if NN <6:
-        return (0.0,NN)
-    sx = sum(X)
-    sy = sum(Y)
-    meanx = sx/float(NN)
-    meany = sy/float(NN)
-    xyd = 0.0
-    sxd = 0.0
-    syd = 0.0
-    for i in range(NN):
-        x1 = X[i]-meanx
-        y1 = Y[i]-meany
-        xyd += x1*y1
-        sxd += x1**2
-        syd += y1**2
-    try:
-        corr = xyd/(sqrt(sxd)*sqrt(syd))
-    except:
-        corr = 0
-    return (corr,NN)
-
-
 def readLineCSV(line): ### dcrowell July 2008
     """Parses a CSV string of text and returns a list containing each element as a string.
     Used by correlationPage"""
@@ -605,45 +92,6 @@ def readLineCSV(line): ### dcrowell July 2008
     returnList[0]=returnList[0][1:]
     return returnList
 
-
-def cmpCorr(A,B):
-    try:
-        if abs(A[1]) < abs(B[1]):
-            return 1
-        elif abs(A[1]) == abs(B[1]):
-            return 0
-        else:
-            return -1
-    except:
-        return 0
-
-def cmpLitCorr(A,B):
-    try:
-        if abs(A[3]) < abs(B[3]): return 1
-        elif abs(A[3]) == abs(B[3]):
-            if abs(A[1]) < abs(B[1]): return 1
-            elif abs(A[1]) == abs(B[1]): return 0
-            else: return -1
-        else: return -1
-    except:
-        return 0
-
-def cmpPValue(A,B):
-    try:
-        if A.corrPValue < B.corrPValue:
-            return -1
-        elif A.corrPValue == B.corrPValue:
-            if abs(A.corr) > abs(B.corr):
-                return -1
-            elif abs(A.corr) < abs(B.corr):
-                return 1
-            else:
-                return 0
-        else:
-            return 1
-    except:
-        return 0
-
 def cmpEigenValue(A,B):
     try:
         if A[0] > B[0]:
@@ -655,80 +103,6 @@ def cmpEigenValue(A,B):
     except:
         return 0
 
-
-def cmpLRSFull(A,B):
-    try:
-        if A[0] < B[0]:
-            return -1
-        elif A[0] == B[0]:
-            return 0
-        else:
-            return 1
-    except:
-        return 0
-
-def cmpLRSInteract(A,B):
-    try:
-        if A[1] < B[1]:
-            return -1
-        elif A[1] == B[1]:
-            return 0
-        else:
-            return 1
-    except:
-        return 0
-
-
-def cmpPos(A,B):
-    try:
-        try:
-            AChr = int(A.chr)
-        except:
-            AChr = 20
-        try:
-            BChr = int(B.chr)
-        except:
-            BChr = 20
-        if AChr > BChr:
-            return 1
-        elif AChr == BChr:
-            if A.mb > B.mb:
-                return 1
-            if A.mb == B.mb:
-                return 0
-            else:
-                return -1
-        else:
-            return -1
-    except:
-        return 0
-
-def cmpGenoPos(A,B):
-    try:
-        A1 = A.chr
-        B1 = B.chr
-        try:
-            A1 = int(A1)
-        except:
-            A1 = 25
-        try:
-            B1 = int(B1)
-        except:
-            B1 = 25
-        if A1 > B1:
-            return 1
-        elif A1 == B1:
-            if A.mb > B.mb:
-                return 1
-            if A.mb == B.mb:
-                return 0
-            else:
-                return -1
-        else:
-            return -1
-    except:
-        return 0
-
 def hasAccessToConfidentialPhenotypeTrait(privilege, userName, authorized_users):
     access_to_confidential_phenotype_trait = 0
     if webqtlConfig.USERDICT[privilege] > webqtlConfig.USERDICT['user']:
@@ -737,76 +111,4 @@ def hasAccessToConfidentialPhenotypeTrait(privilege, userName, authorized_users)
         AuthorizedUsersList=map(string.strip, string.split(authorized_users, ','))
         if AuthorizedUsersList.__contains__(userName):
             access_to_confidential_phenotype_trait = 1
-    return access_to_confidential_phenotype_trait
-
-
-class VisualizeException(Exception):
-    def __init__(self, message):
-        self.message = message
-    def __str__(self):
-        return self.message
-
-# safeConvert : (string -> A) -> A -> A
-# to convert a string to type A, using the supplied default value
-# if the given conversion function doesn't work
-def safeConvert(f, value, default):
-    try:
-        return f(value)
-    except:
-        return default
-
-# safeFloat : string -> float -> float
-# to convert a string to a float safely
-def safeFloat(value, default):
-    return safeConvert(float, value, default)
-
-# safeInt: string -> int -> int
-# to convert a string to an int safely
-def safeInt(value, default):
-    return safeConvert(int, value, default)
-
-# safeString : string -> (arrayof string) -> string -> string
-# if a string is not in a list of strings to pick a default value
-# for that string
-def safeString(value, validChoices, default):
-    if value in validChoices:
-        return value
-    else:
-        return default
-
-# yesNoToInt: string -> int
-# map "yes" -> 1 and "no" -> 0
-def yesNoToInt(value):
-    if value == "yes":
-        return 1
-    elif value == "no":
-        return 0
-    else:
-        return None
-
-# IntToYesNo: int -> string
-# map 1 -> "yes" and 0 -> "no"
-def intToYesNo(value):
-    if value == 1:
-        return "yes"
-    elif value == 0:
-        return "no"
-    else:
-        return None
-
-def formatField(name):
-    name = name.replace("_", " ")
-    name = name.title()
-    #name = name.replace("Mb Mm6", "Mb");
-    return name.replace("Id", "ID")
-
-def natsort_key(string):
-    r = []
-    for c in string:
-        try:
-            c = int(c)
-            try: r[-1] = r[-1] * 10 + c
-            except: r.append(c)
-        except:
-            r.append(c)
-    return r
\ No newline at end of file
+    return access_to_confidential_phenotype_trait
\ No newline at end of file
diff --git a/wqflask/wqflask/correlation/correlation_functions.py b/wqflask/wqflask/correlation/correlation_functions.py
index 80a0818c..1ee9b558 100644
--- a/wqflask/wqflask/correlation/correlation_functions.py
+++ b/wqflask/wqflask/correlation/correlation_functions.py
@@ -491,62 +491,6 @@ pcor.rec <- function(x,y,z,method="p",na.rm=T){
     return allcorrelations
 
 
-
-#XZ, April 30, 2010: The input primaryTrait and targetTrait are instance of webqtlTrait
-#XZ: The primaryTrait and targetTrait should have executed retrieveData function
-def calZeroOrderCorr(primaryTrait, targetTrait, method='pearson'):
-
-    #primaryTrait.retrieveData()
-
-    #there is no None value in primary_val
-    primary_strain, primary_val, primary_var = primaryTrait.exportInformative()
-
-    #targetTrait.retrieveData()
-
-    #there might be None value in target_val
-    target_val = targetTrait.exportData(primary_strain, type="val")
-
-    R_primary = rpy2.robjects.FloatVector(range(len(primary_val)))
-    for i in range(len(primary_val)):
-        R_primary[i] = primary_val[i]
-
-    N = len(target_val)
-
-    if None in target_val:
-        goodIndex = []
-        for i in range(len(target_val)):
-            if target_val[i] != None:
-                goodIndex.append(i)
-
-        N = len(goodIndex)
-
-        R_primary = rpy2.robjects.FloatVector(range(len(goodIndex)))
-        for i in range(len(goodIndex)):
-            R_primary[i] = primary_val[goodIndex[i]]
-
-        R_target = rpy2.robjects.FloatVector(range(len(goodIndex)))
-        for i in range(len(goodIndex)):
-            R_target[i] = target_val[goodIndex[i]]
-
-    else:
-        R_target = rpy2.robjects.FloatVector(range(len(target_val)))
-        for i in range(len(target_val)):
-            R_target[i] = target_val[i]
-
-    R_corr_test = rpy2.robjects.r['cor.test']
-
-    if method == 'spearman':
-        R_result = R_corr_test(R_primary, R_target, method='spearman')
-    else:
-        R_result = R_corr_test(R_primary, R_target)
-
-    corr_result = []
-    corr_result.append( R_result[3][0] )
-    corr_result.append( N )
-    corr_result.append( R_result[2][0] )
-
-    return corr_result
-
 #####################################################################################
 #Input: primaryValue(list): one list of expression values of one probeSet,
 #       targetValue(list): one list of expression values of one probeSet,
diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py
index abf9fc89..85a8c0ef 100644
--- a/wqflask/wqflask/correlation/show_corr_results.py
+++ b/wqflask/wqflask/correlation/show_corr_results.py
@@ -555,21 +555,6 @@ class CorrelationResults(object):
 
         self.record_count = len(traits) #ZS: This isn't a good way to get this value, so I need to change it later
 
-        #XZ, 3/31/2010: Theoretically, we should create one function 'comTissueCorr'
-        #to compare each trait by their tissue corr p values.
-        #But because the tissue corr p values are generated by permutation test,
-        #the top ones always have p value 0. So comparing p values actually does nothing.
-        #In addition, for the tissue data in our database, the N is always the same.
-        #So it's safe to compare with tissue corr statistic value.
-        #That's the same as literature corr.
-        #if self.method in [METHOD_LIT, METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK] and self.gene_id:
-        #    traits.sort(webqtlUtil.cmpLitCorr)
-        #else:
-        #if self.method in TISSUE_METHODS:
-        #    sort(traits, key=lambda A: math.fabs(A.tissue_corr))
-        #elif self.method == METHOD_LIT:
-        #    traits.sort(traits, key=lambda A: math.fabs(A.lit_corr))
-        #else:
         traits = sortTraitCorrelations(traits, self.method)
 
         # Strip to the top N correlations
@@ -1069,21 +1054,6 @@ class CorrelationResults(object):
 
         return (symbolCorrDict, symbolPvalueDict)
 
-
-    def correlate(self):
-        self.correlation_data = collections.defaultdict(list)
-        for trait, values in self.target_dataset.trait_data.iteritems():
-            values_1 = []
-            values_2 = []
-            for index,sample in enumerate(self.target_dataset.samplelist):
-                target_value = values[index]
-                if sample in self.sample_data.keys():
-                    this_value = self.sample_data[sample]
-                    values_1.append(this_value)
-                    values_2.append(target_value)
-            correlation = calCorrelation(values_1, values_2)
-            self.correlation_data[trait] = correlation
-
     def getFileName(self, target_db_name):  ### dcrowell  August 2008
         """Returns the name of the reference database file with which correlations are calculated.
         Takes argument cursor which is a cursor object of any instance of a subclass of templatePage