aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
authorzsloan2021-06-15 18:00:54 +0000
committerzsloan2021-06-15 18:00:54 +0000
commitd31f3f763471b19559ca74e73b52b3cb5e7153ce (patch)
treef9e8e9a2745cd62f7df8e6f0e7a189147e46d155 /wqflask
parenta4ccb745e1d0a877eb0c22b24c64287cfc902c77 (diff)
downloadgenenetwork2-d31f3f763471b19559ca74e73b52b3cb5e7153ce.tar.gz
Commented out rpy2 code and import from show_corr_results.py
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/correlation/show_corr_results.py32
1 files changed, 16 insertions, 16 deletions
diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py
index 10e0d626..2f3df67a 100644
--- a/wqflask/wqflask/correlation/show_corr_results.py
+++ b/wqflask/wqflask/correlation/show_corr_results.py
@@ -22,7 +22,7 @@ import collections
import json
import scipy
import numpy
-import rpy2.robjects as ro # R Objects
+# import rpy2.robjects as ro # R Objects
import utility.logger
import utility.webqtlUtil
@@ -459,10 +459,10 @@ class CorrelationResults:
if num_overlap > 5:
# ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/
- if self.corr_method == 'bicor':
- sample_r, sample_p = do_bicor(
- self.this_trait_vals, target_vals)
- elif self.corr_method == 'pearson':
+ # if self.corr_method == 'bicor':
+ # sample_r, sample_p = do_bicor(
+ # self.this_trait_vals, target_vals)
+ if self.corr_method == 'pearson':
sample_r, sample_p = scipy.stats.pearsonr(
self.this_trait_vals, target_vals)
else:
@@ -487,22 +487,22 @@ class CorrelationResults:
self.sample_data[str(sample)] = float(value)
-def do_bicor(this_trait_vals, target_trait_vals):
- r_library = ro.r["library"] # Map the library function
- r_options = ro.r["options"] # Map the options function
+# def do_bicor(this_trait_vals, target_trait_vals):
+# r_library = ro.r["library"] # Map the library function
+# r_options = ro.r["options"] # Map the options function
- r_library("WGCNA")
- r_bicor = ro.r["bicorAndPvalue"] # Map the bicorAndPvalue function
+# r_library("WGCNA")
+# r_bicor = ro.r["bicorAndPvalue"] # Map the bicorAndPvalue function
- r_options(stringsAsFactors=False)
+# r_options(stringsAsFactors=False)
- this_vals = ro.Vector(this_trait_vals)
- target_vals = ro.Vector(target_trait_vals)
+# this_vals = ro.Vector(this_trait_vals)
+# target_vals = ro.Vector(target_trait_vals)
- the_r, the_p, _fisher_transform, _the_t, _n_obs = [
- numpy.asarray(x) for x in r_bicor(x=this_vals, y=target_vals)]
+# the_r, the_p, _fisher_transform, _the_t, _n_obs = [
+# numpy.asarray(x) for x in r_bicor(x=this_vals, y=target_vals)]
- return the_r, the_p
+# return the_r, the_p
def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api=False):