aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
authorzsloan2019-11-26 16:00:36 -0600
committerzsloan2019-11-26 16:00:36 -0600
commit9fedd52b1517c73ffeb19e90a2436e29d80bdd7a (patch)
treec4d89e0d27139f6ef3fef1d15be789a9e0df02b5 /wqflask
parent022180f032c7ff790dc0badf9458b959ac48ee8c (diff)
downloadgenenetwork2-9fedd52b1517c73ffeb19e90a2436e29d80bdd7a.tar.gz
Added biweight correlation option, though still need to probably add sub-options for it
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/correlation/show_corr_results.py70
-rw-r--r--wqflask/wqflask/templates/show_trait_calculate_correlations.html1
2 files changed, 49 insertions, 22 deletions
diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py
index be27da7b..0654e5d3 100644
--- a/wqflask/wqflask/correlation/show_corr_results.py
+++ b/wqflask/wqflask/correlation/show_corr_results.py
@@ -34,6 +34,11 @@ import json
import scipy
import numpy
+import rpy2.robjects as ro # R Objects
+import rpy2.rinterface as ri
+
+from rpy2.robjects.packages import importr
+utils = importr("utils")
from pprint import pformat as pf
@@ -258,6 +263,8 @@ class CorrelationResults(object):
self.formatted_corr_type += "(Pearson's r)"
elif self.corr_method == "spearman":
self.formatted_corr_type += "(Spearman's rho)"
+ elif self.corr_method == "bicor":
+ self.formatted_corr_type += "(Biweight r)"
def do_tissue_correlation_for_trait_list(self, tissue_dataset_id=1):
"""Given a list of correlation results (self.correlation_results), gets the tissue correlation value for each"""
@@ -446,7 +453,9 @@ class CorrelationResults(object):
self.this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(self.this_trait_vals, target_vals)
#ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/
- if self.corr_method == 'pearson':
+ if self.corr_method == 'bicor':
+ sample_r, sample_p = do_bicor(self.this_trait_vals, target_vals)
+ elif self.corr_method == 'pearson':
sample_r, sample_p = scipy.stats.pearsonr(self.this_trait_vals, target_vals)
else:
sample_r, sample_p = scipy.stats.spearmanr(self.this_trait_vals, target_vals)
@@ -469,6 +478,22 @@ class CorrelationResults(object):
if not value.strip().lower() == 'x':
self.sample_data[str(sample)] = float(value)
+def do_bicor(this_trait_vals, target_trait_vals):
+ r_library = ro.r["library"] # Map the library function
+ r_options = ro.r["options"] # Map the options function
+
+ r_library("WGCNA")
+ r_bicor = ro.r["bicorAndPvalue"] # Map the bicorAndPvalue function
+
+ r_options(stringsAsFactors = False)
+
+ this_vals = ro.Vector(this_trait_vals)
+ target_vals = ro.Vector(target_trait_vals)
+
+ the_r, the_p, _fisher_transform, _the_t, _n_obs = [numpy.asarray(x) for x in r_bicor(x = this_vals, y = target_vals)]
+
+ return the_r, the_p
+
def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api = False):
results_list = []
for i, trait in enumerate(corr_results):
@@ -549,19 +574,19 @@ def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_ap
def get_header_fields(data_type, corr_method):
if data_type == "ProbeSet":
- if corr_method == "pearson":
+ if corr_method == "spearman":
header_fields = ['Index',
'Record',
'Symbol',
'Description',
'Location',
'Mean',
- 'Sample r',
+ 'Sample rho',
'N',
- 'Sample p(r)',
- 'Lit r',
- 'Tissue r',
- 'Tissue p(r)',
+ 'Sample p(rho)',
+ 'Lit rho',
+ 'Tissue rho',
+ 'Tissue p(rho)',
'Max LRS',
'Max LRS Location',
'Additive Effect']
@@ -572,25 +597,25 @@ def get_header_fields(data_type, corr_method):
'Description',
'Location',
'Mean',
- 'Sample rho',
+ 'Sample r',
'N',
- 'Sample p(rho)',
- 'Lit rho',
- 'Tissue rho',
- 'Tissue p(rho)',
+ 'Sample p(r)',
+ 'Lit r',
+ 'Tissue r',
+ 'Tissue p(r)',
'Max LRS',
'Max LRS Location',
'Additive Effect']
elif data_type == "Publish":
- if corr_method == "pearson":
+ if corr_method == "spearman":
header_fields = ['Index',
'Record',
'Description',
'Authors',
'Year',
- 'Sample r',
+ 'Sample rho',
'N',
- 'Sample p(r)',
+ 'Sample p(rho)',
'Max LRS',
'Max LRS Location',
'Additive Effect']
@@ -600,26 +625,27 @@ def get_header_fields(data_type, corr_method):
'Description',
'Authors',
'Year',
- 'Sample rho',
+ 'Sample r',
'N',
- 'Sample p(rho)',
+ 'Sample p(r)',
'Max LRS',
'Max LRS Location',
'Additive Effect']
+
else:
- if corr_method == "pearson":
+ if corr_method == "spearman":
header_fields = ['Index',
'ID',
'Location',
- 'Sample r',
+ 'Sample rho',
'N',
- 'Sample p(r)']
+ 'Sample p(rho)']
else:
header_fields = ['Index',
'ID',
'Location',
- 'Sample rho',
+ 'Sample r',
'N',
- 'Sample p(rho)']
+ 'Sample p(r)']
return header_fields \ No newline at end of file
diff --git a/wqflask/wqflask/templates/show_trait_calculate_correlations.html b/wqflask/wqflask/templates/show_trait_calculate_correlations.html
index 8ceec4fa..297d62ce 100644
--- a/wqflask/wqflask/templates/show_trait_calculate_correlations.html
+++ b/wqflask/wqflask/templates/show_trait_calculate_correlations.html
@@ -70,6 +70,7 @@
<select name="corr_sample_method" class="form-control">
<option value="pearson">Pearson</option>
<option value="spearman">Spearman Rank</option>
+ <option value="bicor">Biweight Midcorrelation</option>
</select>
</div>
</div>