aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
authorzsloan2015-03-17 22:44:41 +0000
committerzsloan2015-03-17 22:44:41 +0000
commit5eb5ccc135a24216481905226382ece03ae228b7 (patch)
treea40e1a491b50fe26b45970602c03f669781f8ba6 /wqflask
parentb4a92b6f9ef51c9ad32028720717c79dfb807054 (diff)
downloadgenenetwork2-5eb5ccc135a24216481905226382ece03ae228b7.tar.gz
Added r function for setting genotypes and generating the cross file
Diffstat (limited to 'wqflask')
-rwxr-xr-xwqflask/wqflask/marker_regression/marker_regression.py45
1 files changed, 41 insertions, 4 deletions
diff --git a/wqflask/wqflask/marker_regression/marker_regression.py b/wqflask/wqflask/marker_regression/marker_regression.py
index 140da0c5..64d3ef3d 100755
--- a/wqflask/wqflask/marker_regression/marker_regression.py
+++ b/wqflask/wqflask/marker_regression/marker_regression.py
@@ -229,10 +229,42 @@ class MarkerRegression(object):
count, p_values = self.parse_rqtl_output(plink_output_filename)
+ def geno_to_rqtl_function(self):
+
+ #TODO: Need to figure out why some genofiles have the wrong format and don't convert properly
+
+ print("Adding a function to the R environment")
+ ro.r("""
+ getGenoCode <- function(header, name = 'unk'){
+ mat = which(unlist(lapply(header,function(x){ length(grep(paste('@',name,sep=''), x)) })) == 1)
+ return(strsplit(header[mat],'')[[1]][6])
+ }
+
+ GENOtoCSVR <- function(genotypes = 'BXD.geno', out = 'cross.csvr', phenotype = NULL, sex = NULL, verbose = FALSE){
+ header = readLines(genotypes, 40)
+ toskip = which(unlist(lapply(header, function(x){ length(grep("Chr\t", x)) })) == 1)-1 # Major hack to skip the geno headers
+ genocodes <- c(getGenoCode(header, 'mat'), getGenoCode(header, 'het'), getGenoCode(header, 'pat')) # Get the genotype codes
+
+ genodata <- read.csv(genotypes, sep='\t', skip=toskip, header=TRUE, na.strings=getGenoCode(header,'unk'), colClasses='character', comment.char = '#')
+ cat('Genodata:', toskip, " ", dim(genodata), '\n')
+ if(is.null(phenotype)) phenotype <- runif((ncol(genodata)-4)) # If there isn't a phenotype, generate a random one
+ if(is.null(sex)) sex <- rep('m', (ncol(genodata)-4)) # If there isn't a sex phenotype, treat all as males
+ outCSVR <- rbind(c('Pheno', '', '', phenotype), # Phenotype
+ c('sex', '', '', sex), # Sex phenotype for the mice
+ cbind(genodata[,c('Locus','Chr', 'cM')], genodata[, 5:ncol(genodata)])) # Genotypes
+ write.table(outCSVR, file = out, row.names=FALSE, col.names=FALSE,quote=FALSE, sep=',') # Save it to a file
+ require(qtl)
+ return(read.cross(file=out, 'csvr', genotypes=genocodes)) # Load it using R/qtl read.cross
+ }
+ """)
+
def run_rqtl_geno(self):
print("Calling R/qtl from python")
+ #TODO: Need to get this working for other groups/inbred sets, calculating file on the fly
+ self.geno_to_rqtl_function()
+
## Get pointers to some common R functions
r_library = ro.r["library"] # Map the library function
r_c = ro.r["c"] # Map the c function
@@ -244,9 +276,14 @@ class MarkerRegression(object):
calc_genoprob = ro.r["calc.genoprob"] # Map the calc.genoprob function
read_cross = ro.r["read.cross"] # Map the read.cross function
write_cross = ro.r["write.cross"] # Map the write.cross function
+ GENOtoCSVR = ro.r["GENOtoCSVR"] # Map the write.cross function
+
+ genofilelocation = webqtlConfig.HTMLPATH + "genotypes/" + self.dataset.group.name + ".geno"
+ crossfilelocation = webqtlConfig.HTMLPATH + "genotypes/" + self.dataset.group.name + ".cross"
+ print("Conversion of geno to cross at location:", genofilelocation, " to ", crossfilelocation)
- cross_object = read_cross(file = "BXD.csvr", format = "csvr", dir="/home/zas1024/PLINK2RQTL/test", genotypes = r_c("B","H","D"))
+ cross_object = GENOtoCSVR(genofilelocation, crossfilelocation) # TODO: Add the SEX if that is available
if self.manhattan_plot:
cross_object = calc_genoprob(cross_object)
@@ -268,10 +305,10 @@ class MarkerRegression(object):
if int(self.num_perm) > 0:
# Do permutation
if(self.control.replace(" ", "") != ""):
- covar = self.create_covariatesShort(cross_object)
- perm_data_frame = scanone(cross_object, pheno = "the_pheno", addcovar = covar, n_perm=int(self.num_perm))
+ covar = self.create_covariates(cross_object)
+ perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", addcovar = covar, n_perm=int(self.num_perm))
else:
- perm_data_frame = scanone(cross_object, pheno = "the_pheno", n_perm=int(self.num_perm))
+ perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", n_perm=int(self.num_perm))
self.suggestive, self.significant = self.process_rqtl_perm_results(perm_data_frame)