aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
authorzsloan2021-07-09 16:49:42 -0500
committerGitHub2021-07-09 16:49:42 -0500
commitbce7aaab7d65309dc0e755a74bf8339a721f2cd9 (patch)
tree9819308f9ae2a56b2810001720c0c44aa49d8558 /wqflask
parentbc2869179f2483d9ad5995d3abb0c9dbc1024acd (diff)
parent9f823f4e07be834d5c9e918902f7cf626b85dcba (diff)
downloadgenenetwork2-bce7aaab7d65309dc0e755a74bf8339a721f2cd9.tar.gz
Merge pull request #587 from zsloan/feature/use_gn3_for_correlations
Feature/use gn3 for correlations
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/base/data_set.py12
-rw-r--r--wqflask/base/trait.py17
-rw-r--r--wqflask/wqflask/correlation/correlation_gn3_api.py27
-rw-r--r--wqflask/wqflask/correlation/show_corr_results.py605
-rw-r--r--wqflask/wqflask/templates/correlation_page.html16
-rw-r--r--wqflask/wqflask/templates/show_trait_calculate_correlations.html2
-rw-r--r--wqflask/wqflask/views.py14
7 files changed, 196 insertions, 497 deletions
diff --git a/wqflask/base/data_set.py b/wqflask/base/data_set.py
index 6dc44829..4cb82665 100644
--- a/wqflask/base/data_set.py
+++ b/wqflask/base/data_set.py
@@ -557,6 +557,7 @@ class DataSet:
self.fullname = None
self.type = None
self.data_scale = None # ZS: For example log2
+ self.accession_id = None
self.setup()
@@ -573,6 +574,17 @@ class DataSet:
self.group.get_samplelist()
self.species = species.TheSpecies(self)
+ def as_dict(self):
+ return {
+ 'name': self.name,
+ 'shortname': self.shortname,
+ 'fullname': self.fullname,
+ 'type': self.type,
+ 'data_scale': self.data_scale,
+ 'group': self.group.name,
+ 'accession_id': self.accession_id
+ }
+
def get_accession_id(self):
if self.type == "Publish":
results = g.db.execute("""select InfoFiles.GN_AccesionId from InfoFiles, PublishFreeze, InbredSet where
diff --git a/wqflask/base/trait.py b/wqflask/base/trait.py
index d09cfd40..10851e00 100644
--- a/wqflask/base/trait.py
+++ b/wqflask/base/trait.py
@@ -284,17 +284,19 @@ def get_sample_data():
return None
-def jsonable(trait):
+def jsonable(trait, dataset=None):
"""Return a dict suitable for using as json
Actual turning into json doesn't happen here though"""
- dataset = create_dataset(dataset_name=trait.dataset.name,
- dataset_type=trait.dataset.type,
- group_name=trait.dataset.group.name)
+ if not dataset:
+ dataset = create_dataset(dataset_name=trait.dataset.name,
+ dataset_type=trait.dataset.type,
+ group_name=trait.dataset.group.name)
if dataset.type == "ProbeSet":
return dict(name=trait.name,
+ view=trait.view,
symbol=trait.symbol,
dataset=dataset.name,
dataset_name=dataset.shortname,
@@ -308,37 +310,44 @@ def jsonable(trait):
elif dataset.type == "Publish":
if trait.pubmed_id:
return dict(name=trait.name,
+ view=trait.view,
dataset=dataset.name,
dataset_name=dataset.shortname,
description=trait.description_display,
abbreviation=trait.abbreviation,
authors=trait.authors,
+ pubmed_id=trait.pubmed_id,
pubmed_text=trait.pubmed_text,
pubmed_link=trait.pubmed_link,
+ mean=trait.mean,
lrs_score=trait.LRS_score_repr,
lrs_location=trait.LRS_location_repr,
additive=trait.additive
)
else:
return dict(name=trait.name,
+ view=trait.view,
dataset=dataset.name,
dataset_name=dataset.shortname,
description=trait.description_display,
abbreviation=trait.abbreviation,
authors=trait.authors,
pubmed_text=trait.pubmed_text,
+ mean=trait.mean,
lrs_score=trait.LRS_score_repr,
lrs_location=trait.LRS_location_repr,
additive=trait.additive
)
elif dataset.type == "Geno":
return dict(name=trait.name,
+ view=trait.view,
dataset=dataset.name,
dataset_name=dataset.shortname,
location=trait.location_repr
)
elif dataset.name == "Temp":
return dict(name=trait.name,
+ view=trait.view,
dataset="Temp",
dataset_name="Temp")
else:
diff --git a/wqflask/wqflask/correlation/correlation_gn3_api.py b/wqflask/wqflask/correlation/correlation_gn3_api.py
index 30c05f03..aea91220 100644
--- a/wqflask/wqflask/correlation/correlation_gn3_api.py
+++ b/wqflask/wqflask/correlation/correlation_gn3_api.py
@@ -165,8 +165,14 @@ def fetch_sample_data(start_vars, this_trait, this_dataset, target_dataset):
return (this_trait_data, results)
-def compute_correlation(start_vars, method="pearson"):
- """compute correlation for to call gn3 api"""
+def compute_correlation(start_vars, method="pearson", compute_all=False):
+ """Compute correlations using GN3 API
+
+ Keyword arguments:
+ start_vars -- All input from form; includes things like the trait/dataset names
+ method -- Correlation method to be used (pearson, spearman, or bicor)
+ compute_all -- Include sample, tissue, and literature correlations (when applicable)
+ """
# pylint: disable-msg=too-many-locals
corr_type = start_vars['corr_type']
@@ -220,11 +226,9 @@ def compute_correlation(start_vars, method="pearson"):
correlation_results = correlation_results[0:corr_return_results]
- compute_all = True # later to be passed as argument
-
if (compute_all):
-
- correlation_results = compute_corr_for_top_results(correlation_results,
+ correlation_results = compute_corr_for_top_results(start_vars,
+ correlation_results,
this_trait,
this_dataset,
target_dataset,
@@ -238,7 +242,8 @@ def compute_correlation(start_vars, method="pearson"):
return correlation_data
-def compute_corr_for_top_results(correlation_results,
+def compute_corr_for_top_results(start_vars,
+ correlation_results,
this_trait,
this_dataset,
target_dataset,
@@ -261,8 +266,12 @@ def compute_corr_for_top_results(correlation_results,
correlation_results = merge_correlation_results(
correlation_results, lit_result)
- if corr_type != "sample":
- pass
+ if corr_type != "sample" and this_dataset.type == "ProbeSet" and target_dataset.type == "ProbeSet":
+ sample_result = sample_for_trait_lists(
+ correlation_results, target_dataset, this_trait, this_dataset, start_vars)
+ if sample_result:
+ correlation_results = merge_correlation_results(
+ correlation_results, sample_result)
return correlation_results
diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py
index f1cf3733..bebef9e7 100644
--- a/wqflask/wqflask/correlation/show_corr_results.py
+++ b/wqflask/wqflask/correlation/show_corr_results.py
@@ -18,491 +18,145 @@
#
# This module is used by GeneNetwork project (www.genenetwork.org)
-import collections
import json
-import scipy
-import numpy
-import rpy2.robjects as ro # R Objects
-import utility.logger
-import utility.webqtlUtil
-from base.trait import create_trait
+from base.trait import create_trait, jsonable
+from base.data_set import create_dataset
-from base import data_set
-from utility import helper_functions
-from utility import corr_result_helpers
from utility import hmac
-from wqflask.correlation import correlation_functions
-from utility.benchmark import Bench
+def set_template_vars(start_vars, correlation_data):
+ corr_type = start_vars['corr_type']
+ corr_method = start_vars['corr_sample_method']
-from utility.type_checking import is_str
-from utility.type_checking import get_float
-from utility.type_checking import get_int
-from utility.type_checking import get_string
-from utility.db_tools import escape
+ this_dataset_ob = create_dataset(dataset_name=start_vars['dataset'])
+ this_trait = create_trait(dataset=this_dataset_ob,
+ name=start_vars['trait_id'])
-from flask import g
+ correlation_data['this_trait'] = jsonable(this_trait, this_dataset_ob)
+ correlation_data['this_dataset'] = this_dataset_ob.as_dict()
-logger = utility.logger.getLogger(__name__)
+ target_dataset_ob = create_dataset(correlation_data['target_dataset'])
+ correlation_data['target_dataset'] = target_dataset_ob.as_dict()
-METHOD_LIT = "3"
-METHOD_TISSUE_PEARSON = "4"
-METHOD_TISSUE_RANK = "5"
+ table_json = correlation_json_for_table(correlation_data,
+ correlation_data['this_trait'],
+ correlation_data['this_dataset'],
+ target_dataset_ob)
-TISSUE_METHODS = [METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK]
+ correlation_data['table_json'] = table_json
-TISSUE_MOUSE_DB = 1
-
-
-class CorrelationResults:
- def __init__(self, start_vars):
- # get trait list from db (database name)
- # calculate correlation with Base vector and targets
-
- # Check parameters
- assert('corr_type' in start_vars)
- assert(is_str(start_vars['corr_type']))
- assert('dataset' in start_vars)
- # assert('group' in start_vars) permitted to be empty?
- assert('corr_sample_method' in start_vars)
- assert('corr_samples_group' in start_vars)
- assert('corr_dataset' in start_vars)
- assert('corr_return_results' in start_vars)
- if 'loc_chr' in start_vars:
- assert('min_loc_mb' in start_vars)
- assert('max_loc_mb' in start_vars)
-
- with Bench("Doing correlations"):
- if start_vars['dataset'] == "Temp":
- self.dataset = data_set.create_dataset(
- dataset_name="Temp", dataset_type="Temp", group_name=start_vars['group'])
- self.trait_id = start_vars['trait_id']
- self.this_trait = create_trait(dataset=self.dataset,
- name=self.trait_id,
- cellid=None)
- else:
- helper_functions.get_species_dataset_trait(self, start_vars)
-
- corr_samples_group = start_vars['corr_samples_group']
-
- self.sample_data = {}
- self.corr_type = start_vars['corr_type']
- self.corr_method = start_vars['corr_sample_method']
- self.min_expr = get_float(start_vars, 'min_expr')
- self.p_range_lower = get_float(start_vars, 'p_range_lower', -1.0)
- self.p_range_upper = get_float(start_vars, 'p_range_upper', 1.0)
-
-
- if ('loc_chr' in start_vars
- and 'min_loc_mb' in start_vars
- and 'max_loc_mb' in start_vars):
-
- self.location_type = get_string(start_vars, 'location_type')
- self.location_chr = get_string(start_vars, 'loc_chr')
- self.min_location_mb = get_int(start_vars, 'min_loc_mb')
- self.max_location_mb = get_int(start_vars, 'max_loc_mb')
- else:
- self.location_type = self.location_chr = self.min_location_mb = self.max_location_mb = None
-
- self.get_formatted_corr_type()
- self.return_number = int(start_vars['corr_return_results'])
-
- # The two if statements below append samples to the sample list based upon whether the user
- # rselected Primary Samples Only, Other Samples Only, or All Samples
-
- primary_samples = self.dataset.group.samplelist
- if self.dataset.group.parlist != None:
- primary_samples += self.dataset.group.parlist
- if self.dataset.group.f1list != None:
- primary_samples += self.dataset.group.f1list
-
- # If either BXD/whatever Only or All Samples, append all of that group's samplelist
- if corr_samples_group != 'samples_other':
- self.process_samples(start_vars, primary_samples)
-
- # If either Non-BXD/whatever or All Samples, get all samples from this_trait.data and
- # exclude the primary samples (because they would have been added in the previous
- # if statement if the user selected All Samples)
- if corr_samples_group != 'samples_primary':
- if corr_samples_group == 'samples_other':
- primary_samples = [x for x in primary_samples if x not in (
- self.dataset.group.parlist + self.dataset.group.f1list)]
- self.process_samples(start_vars, list(
- self.this_trait.data.keys()), primary_samples)
-
- self.target_dataset = data_set.create_dataset(
- start_vars['corr_dataset'])
- self.target_dataset.get_trait_data(list(self.sample_data.keys()))
-
- self.header_fields = get_header_fields(
- self.target_dataset.type, self.corr_method)
-
- if self.target_dataset.type == "ProbeSet":
- self.filter_cols = [7, 6]
- elif self.target_dataset.type == "Publish":
- self.filter_cols = [6, 0]
- else:
- self.filter_cols = [4, 0]
-
- self.correlation_results = []
-
- self.correlation_data = {}
-
- if self.corr_type == "tissue":
- self.trait_symbol_dict = self.dataset.retrieve_genes("Symbol")
-
- tissue_corr_data = self.do_tissue_correlation_for_all_traits()
- if tissue_corr_data != None:
- for trait in list(tissue_corr_data.keys())[:self.return_number]:
- self.get_sample_r_and_p_values(
- trait, self.target_dataset.trait_data[trait])
- else:
- for trait, values in list(self.target_dataset.trait_data.items()):
- self.get_sample_r_and_p_values(trait, values)
-
- elif self.corr_type == "lit":
- self.trait_geneid_dict = self.dataset.retrieve_genes("GeneId")
- lit_corr_data = self.do_lit_correlation_for_all_traits()
-
- for trait in list(lit_corr_data.keys())[:self.return_number]:
- self.get_sample_r_and_p_values(
- trait, self.target_dataset.trait_data[trait])
-
- elif self.corr_type == "sample":
- for trait, values in list(self.target_dataset.trait_data.items()):
- self.get_sample_r_and_p_values(trait, values)
-
- self.correlation_data = collections.OrderedDict(sorted(list(self.correlation_data.items()),
- key=lambda t: -abs(t[1][0])))
-
- # ZS: Convert min/max chromosome to an int for the location range option
- range_chr_as_int = None
- for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
- if 'loc_chr' in start_vars:
- if chr_info.name == self.location_chr:
- range_chr_as_int = order_id
-
- for _trait_counter, trait in enumerate(list(self.correlation_data.keys())[:self.return_number]):
- trait_object = create_trait(
- dataset=self.target_dataset, name=trait, get_qtl_info=True, get_sample_info=False)
- if not trait_object:
- continue
-
- chr_as_int = 0
- for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
- if self.location_type == "highest_lod":
- if chr_info.name == trait_object.locus_chr:
- chr_as_int = order_id
- else:
- if chr_info.name == trait_object.chr:
- chr_as_int = order_id
-
-
- if (float(self.correlation_data[trait][0]) >= self.p_range_lower
- and float(self.correlation_data[trait][0]) <= self.p_range_upper):
-
- if (self.target_dataset.type == "ProbeSet" or self.target_dataset.type == "Publish") and bool(trait_object.mean):
- if (self.min_expr != None) and (float(trait_object.mean) < self.min_expr):
- continue
-
- if range_chr_as_int != None and (chr_as_int != range_chr_as_int):
- continue
- if self.location_type == "highest_lod":
- if (self.min_location_mb != None) and (float(trait_object.locus_mb) < float(self.min_location_mb)):
- continue
- if (self.max_location_mb != None) and (float(trait_object.locus_mb) > float(self.max_location_mb)):
- continue
- else:
- if (self.min_location_mb != None) and (float(trait_object.mb) < float(self.min_location_mb)):
- continue
- if (self.max_location_mb != None) and (float(trait_object.mb) > float(self.max_location_mb)):
- continue
-
- (trait_object.sample_r,
- trait_object.sample_p,
- trait_object.num_overlap) = self.correlation_data[trait]
-
- # Set some sane defaults
- trait_object.tissue_corr = 0
- trait_object.tissue_pvalue = 0
- trait_object.lit_corr = 0
- if self.corr_type == "tissue" and tissue_corr_data != None:
- trait_object.tissue_corr = tissue_corr_data[trait][1]
- trait_object.tissue_pvalue = tissue_corr_data[trait][2]
- elif self.corr_type == "lit":
- trait_object.lit_corr = lit_corr_data[trait][1]
-
- self.correlation_results.append(trait_object)
-
- if self.corr_type != "lit" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
- self.do_lit_correlation_for_trait_list()
-
- if self.corr_type != "tissue" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
- self.do_tissue_correlation_for_trait_list()
-
- self.json_results = generate_corr_json(
- self.correlation_results, self.this_trait, self.dataset, self.target_dataset)
-
-############################################################################################################################################
-
- def get_formatted_corr_type(self):
- self.formatted_corr_type = ""
- if self.corr_type == "lit":
- self.formatted_corr_type += "Literature Correlation "
- elif self.corr_type == "tissue":
- self.formatted_corr_type += "Tissue Correlation "
- elif self.corr_type == "sample":
- self.formatted_corr_type += "Genetic Correlation "
-
- if self.corr_method == "pearson":
- self.formatted_corr_type += "(Pearson's r)"
- elif self.corr_method == "spearman":
- self.formatted_corr_type += "(Spearman's rho)"
- elif self.corr_method == "bicor":
- self.formatted_corr_type += "(Biweight r)"
-
- def do_tissue_correlation_for_trait_list(self, tissue_dataset_id=1):
- """Given a list of correlation results (self.correlation_results), gets the tissue correlation value for each"""
-
- # Gets tissue expression values for the primary trait
- primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
- symbol_list=[self.this_trait.symbol])
-
- if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
- primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower(
- )]
- gene_symbol_list = [
- trait.symbol for trait in self.correlation_results if trait.symbol]
-
- corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
- symbol_list=gene_symbol_list)
-
- for trait in self.correlation_results:
- if trait.symbol and trait.symbol.lower() in corr_result_tissue_vals_dict:
- this_trait_tissue_values = corr_result_tissue_vals_dict[trait.symbol.lower(
- )]
-
- result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values,
- this_trait_tissue_values,
- self.corr_method)
-
- trait.tissue_corr = result[0]
- trait.tissue_pvalue = result[2]
-
- def do_tissue_correlation_for_all_traits(self, tissue_dataset_id=1):
- # Gets tissue expression values for the primary trait
- primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
- symbol_list=[self.this_trait.symbol])
-
- if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
- primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower(
- )]
-
- #print("trait_gene_symbols: ", pf(trait_gene_symbols.values()))
- corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
- symbol_list=list(self.trait_symbol_dict.values()))
-
- #print("corr_result_tissue_vals: ", pf(corr_result_tissue_vals_dict))
-
- #print("trait_gene_symbols: ", pf(trait_gene_symbols))
-
- tissue_corr_data = {}
- for trait, symbol in list(self.trait_symbol_dict.items()):
- if symbol and symbol.lower() in corr_result_tissue_vals_dict:
- this_trait_tissue_values = corr_result_tissue_vals_dict[symbol.lower(
- )]
-
- result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values,
- this_trait_tissue_values,
- self.corr_method)
-
- tissue_corr_data[trait] = [symbol, result[0], result[2]]
-
- tissue_corr_data = collections.OrderedDict(sorted(list(tissue_corr_data.items()),
- key=lambda t: -abs(t[1][1])))
-
- return tissue_corr_data
-
- def do_lit_correlation_for_trait_list(self):
-
- input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(
- self.dataset.group.species.lower(), self.this_trait.geneid)
-
- for trait in self.correlation_results:
-
- if trait.geneid:
- trait.mouse_gene_id = self.convert_to_mouse_gene_id(
- self.dataset.group.species.lower(), trait.geneid)
- else:
- trait.mouse_gene_id = None
+ if target_dataset_ob.type == "ProbeSet":
+ filter_cols = [7, 6]
+ elif target_dataset_ob.type == "Publish":
+ filter_cols = [6, 0]
+ else:
+ filter_cols = [4, 0]
- if trait.mouse_gene_id and str(trait.mouse_gene_id).find(";") == -1:
- result = g.db.execute(
- """SELECT value
- FROM LCorrRamin3
- WHERE GeneId1='%s' and
- GeneId2='%s'
- """ % (escape(str(trait.mouse_gene_id)), escape(str(input_trait_mouse_gene_id)))
- ).fetchone()
- if not result:
- result = g.db.execute("""SELECT value
- FROM LCorrRamin3
- WHERE GeneId2='%s' and
- GeneId1='%s'
- """ % (escape(str(trait.mouse_gene_id)), escape(str(input_trait_mouse_gene_id)))
- ).fetchone()
+ correlation_data['corr_method'] = corr_method
+ correlation_data['filter_cols'] = filter_cols
+ correlation_data['header_fields'] = get_header_fields(target_dataset_ob.type, correlation_data['corr_method'])
+ correlation_data['formatted_corr_type'] = get_formatted_corr_type(corr_type, corr_method)
- if result:
- lit_corr = result.value
- trait.lit_corr = lit_corr
- else:
- trait.lit_corr = 0
- else:
- trait.lit_corr = 0
+ return correlation_data
- def do_lit_correlation_for_all_traits(self):
- input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(
- self.dataset.group.species.lower(), self.this_trait.geneid)
+def correlation_json_for_table(correlation_data, this_trait, this_dataset, target_dataset_ob):
+ """Return JSON data for use with the DataTable in the correlation result page
- lit_corr_data = {}
- for trait, gene_id in list(self.trait_geneid_dict.items()):
- mouse_gene_id = self.convert_to_mouse_gene_id(
- self.dataset.group.species.lower(), gene_id)
+ Keyword arguments:
+ correlation_data -- Correlation results
+ this_trait -- Trait being correlated against a dataset, as a dict
+ this_dataset -- Dataset of this_trait, as a dict
+ target_dataset_ob - Target dataset, as a Dataset ob
+ """
+ this_trait = correlation_data['this_trait']
+ this_dataset = correlation_data['this_dataset']
+ target_dataset = target_dataset_ob.as_dict()
- if mouse_gene_id and str(mouse_gene_id).find(";") == -1:
- #print("gene_symbols:", input_trait_mouse_gene_id + " / " + mouse_gene_id)
- result = g.db.execute(
- """SELECT value
- FROM LCorrRamin3
- WHERE GeneId1='%s' and
- GeneId2='%s'
- """ % (escape(mouse_gene_id), escape(input_trait_mouse_gene_id))
- ).fetchone()
- if not result:
- result = g.db.execute("""SELECT value
- FROM LCorrRamin3
- WHERE GeneId2='%s' and
- GeneId1='%s'
- """ % (escape(mouse_gene_id), escape(input_trait_mouse_gene_id))
- ).fetchone()
- if result:
- #print("result:", result)
- lit_corr = result.value
- lit_corr_data[trait] = [gene_id, lit_corr]
+ corr_results = correlation_data['correlation_results']
+ results_list = []
+ for i, trait_dict in enumerate(corr_results):
+ trait_name = list(trait_dict.keys())[0]
+ trait = trait_dict[trait_name]
+ target_trait_ob = create_trait(dataset=target_dataset_ob,
+ name=trait_name,
+ get_qtl_info=True)
+ target_trait = jsonable(target_trait_ob, target_dataset_ob)
+ if target_trait['view'] == False:
+ continue
+ results_dict = {}
+ results_dict['index'] = i + 1
+ results_dict['trait_id'] = target_trait['name']
+ results_dict['dataset'] = target_dataset['name']
+ results_dict['hmac'] = hmac.data_hmac(
+ '{}:{}'.format(target_trait['name'], target_dataset['name']))
+ results_dict['sample_r'] = f"{float(trait['corr_coeffient']):.3f}"
+ results_dict['num_overlap'] = trait['num_overlap']
+ results_dict['sample_p'] = f"{float(trait['p_value']):.3e}"
+ if target_dataset['type'] == "ProbeSet":
+ results_dict['symbol'] = target_trait['symbol']
+ results_dict['description'] = "N/A"
+ results_dict['location'] = target_trait['location']
+ results_dict['mean'] = "N/A"
+ results_dict['additive'] = "N/A"
+ if bool(target_trait['description']):
+ results_dict['description'] = target_trait['description']
+ if bool(target_trait['mean']):
+ results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
+ try:
+ results_dict['lod_score'] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
+ except:
+ results_dict['lod_score'] = "N/A"
+ results_dict['lrs_location'] = target_trait['lrs_location']
+ if bool(target_trait['additive']):
+ results_dict['additive'] = f"{float(target_trait['additive']):.3f}"
+ results_dict['lit_corr'] = "--"
+ results_dict['tissue_corr'] = "--"
+ results_dict['tissue_pvalue'] = "--"
+ if this_dataset['type'] == "ProbeSet":
+ if 'lit_corr' in trait:
+ results_dict['lit_corr'] = f"{float(trait['lit_corr']):.3f}"
+ if 'tissue_corr' in trait:
+ results_dict['tissue_corr'] = f"{float(trait['tissue_corr']):.3f}"
+ results_dict['tissue_pvalue'] = f"{float(trait['tissue_p_val']):.3e}"
+ elif target_dataset['type'] == "Publish":
+ results_dict['abbreviation_display'] = "N/A"
+ results_dict['description'] = "N/A"
+ results_dict['mean'] = "N/A"
+ results_dict['authors_display'] = "N/A"
+ results_dict['additive'] = "N/A"
+ results_dict['pubmed_link'] = "N/A"
+ results_dict['pubmed_text'] = "N/A"
+
+ if bool(target_trait['abbreviation']):
+ results_dict['abbreviation_display'] = target_trait['abbreviation']
+ if bool(target_trait['description']):
+ results_dict['description'] = target_trait['description']
+ if bool(target_trait['mean']):
+ results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
+ if bool(target_trait['authors']):
+ authors_list = target_trait['authors'].split(',')
+ if len(authors_list) > 6:
+ results_dict['authors_display'] = ", ".join(
+ authors_list[:6]) + ", et al."
else:
- lit_corr_data[trait] = [gene_id, 0]
- else:
- lit_corr_data[trait] = [gene_id, 0]
-
- lit_corr_data = collections.OrderedDict(sorted(list(lit_corr_data.items()),
- key=lambda t: -abs(t[1][1])))
-
- return lit_corr_data
-
- def convert_to_mouse_gene_id(self, species=None, gene_id=None):
- """If the species is rat or human, translate the gene_id to the mouse geneid
-
- If there is no input gene_id or there's no corresponding mouse gene_id, return None
-
- """
- if not gene_id:
- return None
-
- mouse_gene_id = None
-
- if species == 'mouse':
- mouse_gene_id = gene_id
-
- elif species == 'rat':
-
- query = """SELECT mouse
- FROM GeneIDXRef
- WHERE rat='%s'""" % escape(gene_id)
-
- result = g.db.execute(query).fetchone()
- if result != None:
- mouse_gene_id = result.mouse
-
- elif species == 'human':
-
- query = """SELECT mouse
- FROM GeneIDXRef
- WHERE human='%s'""" % escape(gene_id)
-
- result = g.db.execute(query).fetchone()
- if result != None:
- mouse_gene_id = result.mouse
-
- return mouse_gene_id
-
- def get_sample_r_and_p_values(self, trait, target_samples):
- """Calculates the sample r (or rho) and p-value
-
- Given a primary trait and a target trait's sample values,
- calculates either the pearson r or spearman rho and the p-value
- using the corresponding scipy functions.
-
- """
-
- self.this_trait_vals = []
- target_vals = []
- for index, sample in enumerate(self.target_dataset.samplelist):
- if sample in self.sample_data:
- sample_value = self.sample_data[sample]
- target_sample_value = target_samples[index]
- self.this_trait_vals.append(sample_value)
- target_vals.append(target_sample_value)
-
- self.this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(
- self.this_trait_vals, target_vals)
-
- if num_overlap > 5:
- # ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/
- if self.corr_method == 'bicor':
- sample_r, sample_p = do_bicor(
- self.this_trait_vals, target_vals)
- if self.corr_method == 'pearson':
- sample_r, sample_p = scipy.stats.pearsonr(
- self.this_trait_vals, target_vals)
- else:
- sample_r, sample_p = scipy.stats.spearmanr(
- self.this_trait_vals, target_vals)
-
- if numpy.isnan(sample_r):
- pass
- else:
- self.correlation_data[trait] = [
- sample_r, sample_p, num_overlap]
-
- def process_samples(self, start_vars, sample_names, excluded_samples=None):
- if not excluded_samples:
- excluded_samples = ()
-
- sample_val_dict = json.loads(start_vars['sample_vals'])
- for sample in sample_names:
- if sample not in excluded_samples:
- value = sample_val_dict[sample]
- if not value.strip().lower() == 'x':
- self.sample_data[str(sample)] = float(value)
-
-
-def do_bicor(this_trait_vals, target_trait_vals):
- r_library = ro.r["library"] # Map the library function
- r_options = ro.r["options"] # Map the options function
-
- r_library("WGCNA")
- r_bicor = ro.r["bicorAndPvalue"] # Map the bicorAndPvalue function
-
- r_options(stringsAsFactors=False)
-
- this_vals = ro.FloatVector(this_trait_vals)
- target_vals = ro.FloatVector(target_trait_vals)
+ results_dict['authors_display'] = target_trait['authors']
+ if 'pubmed_id' in target_trait:
+ results_dict['pubmed_link'] = target_trait['pubmed_link']
+ results_dict['pubmed_text'] = target_trait['pubmed_text']
+ try:
+ results_dict['lod_score'] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
+ except:
+ results_dict['lod_score'] = "N/A"
+ results_dict['lrs_location'] = target_trait['lrs_location']
+ if bool(target_trait['additive']):
+ results_dict['additive'] = f"{float(target_trait['additive']):.3f}"
+ else:
+ results_dict['location'] = target_trait['location']
- the_r, the_p, _fisher_transform, _the_t, _n_obs = [
- numpy.asarray(x) for x in r_bicor(x=this_vals, y=target_vals)]
+ results_list.append(results_dict)
- return the_r, the_p
+ return json.dumps(results_list)
def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api=False):
@@ -598,6 +252,25 @@ def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_ap
return json.dumps(results_list)
+def get_formatted_corr_type(corr_type, corr_method):
+ formatted_corr_type = ""
+ if corr_type == "lit":
+ formatted_corr_type += "Literature Correlation "
+ elif corr_type == "tissue":
+ formatted_corr_type += "Tissue Correlation "
+ elif corr_type == "sample":
+ formatted_corr_type += "Genetic Correlation "
+
+ if corr_method == "pearson":
+ formatted_corr_type += "(Pearson's r)"
+ elif corr_method == "spearman":
+ formatted_corr_type += "(Spearman's rho)"
+ elif corr_method == "bicor":
+ formatted_corr_type += "(Biweight r)"
+
+ return formatted_corr_type
+
+
def get_header_fields(data_type, corr_method):
if data_type == "ProbeSet":
if corr_method == "spearman":
diff --git a/wqflask/wqflask/templates/correlation_page.html b/wqflask/wqflask/templates/correlation_page.html
index 4cad2749..f66eb4bd 100644
--- a/wqflask/wqflask/templates/correlation_page.html
+++ b/wqflask/wqflask/templates/correlation_page.html
@@ -17,9 +17,9 @@
<hr style="height: 1px; background-color: #A9A9A9;">
</div>
<div style="max-width: 100%;">
- <p>Values of record {{ this_trait.name }} in the <a href="http://genenetwork.org/webqtl/main.py?FormID=sharinginfo&{% if dataset.accession_id != 'None' %}GN_AccessionId={{ dataset.accession_id }}{% else %}InfoPageName={{ dataset.name }}{% endif %}">{{ dataset.fullname }}</a>
+ <p>Values of record {{ this_trait.name }} in the <a href="http://genenetwork.org/webqtl/main.py?FormID=sharinginfo&{% if this_dataset.accession_id != 'None' %}GN_AccessionId={{ this_dataset.accession_id }}{% else %}InfoPageName={{ this_dataset.name }}{% endif %}">{{ this_dataset.fullname }}</a>
dataset were compared to all records in the <a href="http://genenetwork.org/webqtl/main.py?FormID=sharinginfo&{% if target_dataset.accession_id != 'None' %}GN_AccessionId={{ target_dataset.accession_id }}{% else %}InfoPageName={{ target_dataset.name }}{% endif %}">{{ target_dataset.fullname }}</a>
- dataset. The top {{ return_number }} correlations ranked by the {{ formatted_corr_type }} are displayed.
+ dataset. The top {{ return_results }} correlations ranked by the {{ formatted_corr_type }} are displayed.
You can resort this list by clicking the headers. Select the Record ID to open the trait data
and analysis page.
</p>
@@ -30,7 +30,7 @@
<input type="hidden" name="form_url" value="" />
<input type="hidden" name="trait_list" id="trait_list" value= "
{% for this_trait in trait_list %}
- {{ this_trait.name }}:{{ this_trait.dataset }},
+ {{ this_trait }}:{{ this_dataset.name }},
{% endfor %}" >
{% include 'tool_buttons.html' %}
</form>
@@ -43,7 +43,7 @@
<button class="btn btn-success" id="add" type="button" disabled><span class="glyphicon glyphicon-plus-sign"></span> Add</button>
<input type="hidden" name="database_name" id="database_name" value="None">
<input type="hidden" name="export_data" id="export_data" value="">
- <input type="hidden" name="file_name" id="file_name" value="{{ this_trait.name }}_{{ dataset.name }}_correlation">
+ <input type="hidden" name="file_name" id="file_name" value="{{ this_trait.name }}_{{ this_dataset.name }}_correlation">
<input type="text" id="searchbox" class="form-control" style="width: 200px; display: inline;" placeholder="Search Table For ...">
<input type="text" id="select_top" class="form-control" style="width: 200px; display: inline;" placeholder="Select Top ...">
<button class="btn btn-default" id="deselect_all" type="button"><span class="glyphicon glyphicon-remove"></span> Deselect</button>
@@ -146,7 +146,7 @@
<script type="text/javascript" charset="utf-8">
- var table_json = {{ json_results | safe }}
+ var table_json = {{ table_json | safe }}
</script>
<script type="text/javascript" charset="utf-8">
@@ -313,7 +313,7 @@
'orderSequence': [ "desc", "asc"],
'render': function(data, type, row, meta) {
if (data.sample_r != "N/A") {
- return "<a target\"_blank\" href=\"corr_scatter_plot?method={% if corr_method == 'spearman' %}spearman{% else %}pearson{% endif %}&dataset_1={% if dataset.name == 'Temp' %}Temp_{{ dataset.group.name }}{% else %}{{ dataset.name }}{% endif %}&dataset_2=" + data.dataset + "&trait_1={{ this_trait.name }}&trait_2=" + data.trait_id + "\">" + data.sample_r + "</a>"
+ return "<a target\"_blank\" href=\"corr_scatter_plot?method={% if corr_method == 'spearman' %}spearman{% else %}pearson{% endif %}&dataset_1={% if this_dataset.name == 'Temp' %}Temp_{{ this_dataset.group }}{% else %}{{ this_dataset.name }}{% endif %}&dataset_2=" + data.dataset + "&trait_1={{ this_trait.name }}&trait_2=" + data.trait_id + "\">" + data.sample_r + "</a>"
} else {
return data.sample_r
}
@@ -441,7 +441,7 @@
'orderSequence': [ "desc", "asc"],
'render': function(data, type, row, meta) {
if (data.sample_r != "N/A") {
- return "<a target\"_blank\" href=\"corr_scatter_plot?method={% if corr_method == 'spearman' %}spearman{% else %}pearson{% endif %}&dataset_1={% if dataset.name == 'Temp' %}Temp_{{ dataset.group.name }}{% else %}{{ dataset.name }}{% endif %}&dataset_2=" + data.dataset + "&trait_1={{ this_trait.name }}&trait_2=" + data.trait_id + "\">" + data.sample_r + "</a>"
+ return "<a target\"_blank\" href=\"corr_scatter_plot?method={% if corr_method == 'spearman' %}spearman{% else %}pearson{% endif %}&dataset_1={% if this_dataset.name== 'Temp' %}Temp_{{ this_dataset.group }}{% else %}{{ this_dataset.name }}{% endif %}&dataset_2=" + data.dataset + "&trait_1={{ this_trait.name }}&trait_2=" + data.trait_id + "\">" + data.sample_r + "</a>"
} else {
return data.sample_r
}
@@ -495,7 +495,7 @@
'orderSequence': [ "desc", "asc"],
'render': function(data, type, row, meta) {
if (data.sample_r != "N/A") {
- return "<a target\"_blank\" href=\"corr_scatter_plot?method={% if corr_method == 'spearman' %}spearman{% else %}pearson{% endif %}&dataset_1={% if dataset.name == 'Temp' %}Temp_{{ dataset.group.name }}{% else %}{{ dataset.name }}{% endif %}&dataset_2=" + data.dataset + "&trait_1={{ this_trait.name }}&trait_2=" + data.trait_id + "\">" + data.sample_r + "</a>"
+ return "<a target\"_blank\" href=\"corr_scatter_plot?method={% if corr_method == 'spearman' %}spearman{% else %}pearson{% endif %}&dataset_1={% if this_dataset.name == 'Temp' %}Temp_{{ this_dataset.group }}{% else %}{{ this_dataset.name }}{% endif %}&dataset_2=" + data.dataset + "&trait_1={{ this_trait.name }}&trait_2=" + data.trait_id + "\">" + data.sample_r + "</a>"
} else {
return data.sample_r
}
diff --git a/wqflask/wqflask/templates/show_trait_calculate_correlations.html b/wqflask/wqflask/templates/show_trait_calculate_correlations.html
index 59f9b47c..16a819fa 100644
--- a/wqflask/wqflask/templates/show_trait_calculate_correlations.html
+++ b/wqflask/wqflask/templates/show_trait_calculate_correlations.html
@@ -7,8 +7,10 @@
<div class="col-xs-3 controls">
<select name="corr_type" class="form-control">
<option value="sample">Sample r</option>
+ {% if dataset.type == 'ProbeSet' %}
<option value="lit">Literature r</option>
<option value="tissue">Tissue r</option>
+ {% endif %}
</select>
</div>
</div>
diff --git a/wqflask/wqflask/views.py b/wqflask/wqflask/views.py
index b9181368..da427bfe 100644
--- a/wqflask/wqflask/views.py
+++ b/wqflask/wqflask/views.py
@@ -65,7 +65,7 @@ from wqflask.comparison_bar_chart import comparison_bar_chart
from wqflask.marker_regression import run_mapping
from wqflask.marker_regression import display_mapping_results
from wqflask.network_graph import network_graph
-from wqflask.correlation import show_corr_results
+from wqflask.correlation.show_corr_results import set_template_vars
from wqflask.correlation.correlation_gn3_api import compute_correlation
from wqflask.correlation_matrix import show_corr_matrix
from wqflask.correlation import corr_scatter_plot
@@ -1082,15 +1082,9 @@ def network_graph_page():
@app.route("/corr_compute", methods=('POST',))
def corr_compute_page():
- logger.info("In corr_compute, request.form is:", pf(request.form))
- logger.info(request.url)
- template_vars = show_corr_results.CorrelationResults(request.form)
- return render_template("correlation_page.html", **template_vars.__dict__)
-
- # to test/disable the new correlation api uncomment these lines
-
- # correlation_results = compute_correlation(request.form)
- # return render_template("test_correlation_page.html", correlation_results=correlation_results)
+ correlation_results = compute_correlation(request.form, compute_all=True)
+ correlation_results = set_template_vars(request.form, correlation_results)
+ return render_template("correlation_page.html", **correlation_results)
@app.route("/test_corr_compute", methods=["POST"])