diff options
author | zsloan | 2022-02-21 21:18:46 +0000 |
---|---|---|
committer | zsloan | 2022-02-21 15:27:29 -0600 |
commit | 7c9e73f196575cd6d1de7df4430bc2b4ecb28466 (patch) | |
tree | 10c5f75b683f8438745b0a1d489069fc3225c6a9 /wqflask | |
parent | 17652b17455bd58bf82d130b60b3e80c57b7f80c (diff) | |
download | genenetwork2-7c9e73f196575cd6d1de7df4430bc2b4ecb28466.tar.gz |
Fix incorrect dataset trait data caching
Trait data caching wasn't working correctly because it didn't account
for the samplelist, causing caching to work incorrect in any situation
where the target dataset's samplelist wasn't the same as that of the
trait being correlated against. Trait data is stored as a dictionary
where the keys are trait IDs and values are *lists* of sample values.
This means that the caching needs to account for the exact same set of
samples; otherwise you'll end up with samples being mismatched (since
"the third sample with a value" for one dataset's trait might not be the
same as "the third sample with a value" for another dataset's trait).
To fix this, I added the samplelist to the functions that generate and
fetch the hash file. This will require more cache files, though, so this
should probably be reexamined later to make the code work with only a
single cache file for each dataset.
Diffstat (limited to 'wqflask')
-rw-r--r-- | wqflask/base/data_set.py | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/wqflask/base/data_set.py b/wqflask/base/data_set.py index af248659..d7e4e62f 100644 --- a/wqflask/base/data_set.py +++ b/wqflask/base/data_set.py @@ -756,7 +756,7 @@ class DataSet: chunk_size = 50 number_chunks = int(math.ceil(len(sample_ids) / chunk_size)) - cached_results = fetch_cached_results(self.name, self.type) + cached_results = fetch_cached_results(self.name, self.type, self.samplelist) if cached_results is None: trait_sample_data = [] for sample_ids_step in chunks.divide_into_chunks(sample_ids, number_chunks): @@ -812,9 +812,8 @@ class DataSet: trait_sample_data[chunk_counter][trait_counter][data_start_pos:]) cache_dataset_results( - self.name, self.type, self.trait_data) + self.name, self.type, self.samplelist, self.trait_data) else: - self.trait_data = cached_results @@ -1278,14 +1277,14 @@ def query_table_timestamp(dataset_type: str): return date_time_obj.strftime("%Y-%m-%d %H:%M:%S") -def generate_hash_file(dataset_name: str, dataset_type: str, dataset_timestamp: str): +def generate_hash_file(dataset_name: str, dataset_type: str, dataset_timestamp: str, samplelist: str): """given the trait_name generate a unique name for this""" - string_unicode = f"{dataset_name}{dataset_timestamp}".encode() + string_unicode = f"{dataset_name}{dataset_timestamp}{samplelist}".encode() md5hash = hashlib.md5(string_unicode) return md5hash.hexdigest() -def cache_dataset_results(dataset_name: str, dataset_type: str, query_results: List): +def cache_dataset_results(dataset_name: str, dataset_type: str, samplelist: List, query_results: List): """function to cache dataset query results to file input dataset_name and type query_results(already processed in default dict format) """ @@ -1293,21 +1292,22 @@ def cache_dataset_results(dataset_name: str, dataset_type: str, query_results: L # store the file path on redis table_timestamp = query_table_timestamp(dataset_type) + samplelist_as_str = ",".join(samplelist) - - file_name = generate_hash_file(dataset_name, dataset_type, table_timestamp) + file_name = generate_hash_file(dataset_name, dataset_type, table_timestamp, samplelist_as_str) file_path = os.path.join(TMPDIR, f"{file_name}.json") with open(file_path, "w") as file_handler: json.dump(query_results, file_handler) -def fetch_cached_results(dataset_name: str, dataset_type: str): +def fetch_cached_results(dataset_name: str, dataset_type: str, samplelist: List): """function to fetch the cached results""" table_timestamp = query_table_timestamp(dataset_type) + samplelist_as_str = ",".join(samplelist) - file_name = generate_hash_file(dataset_name, dataset_type, table_timestamp) + file_name = generate_hash_file(dataset_name, dataset_type, table_timestamp, samplelist_as_str) file_path = os.path.join(TMPDIR, f"{file_name}.json") try: with open(file_path, "r") as file_handler: |