aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
authorAlexander_Kabui2023-04-12 03:45:42 +0300
committerAlexander_Kabui2023-04-12 03:45:42 +0300
commit1eb4c6a9375d7c545132db1d90388c38b0a1ac32 (patch)
tree81ac4d341a9ed01b2841653352a6d5e7ee07598c /wqflask
parent62107ad6ec09052adcc373484d7a6752ddadf865 (diff)
downloadgenenetwork2-1eb4c6a9375d7c545132db1d90388c38b0a1ac32.tar.gz
delete dead code
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/correlation/pre_computes.py116
1 files changed, 0 insertions, 116 deletions
diff --git a/wqflask/wqflask/correlation/pre_computes.py b/wqflask/wqflask/correlation/pre_computes.py
index d5916673..2831bd39 100644
--- a/wqflask/wqflask/correlation/pre_computes.py
+++ b/wqflask/wqflask/correlation/pre_computes.py
@@ -82,122 +82,6 @@ def generate_filename(*args, suffix="", file_ext="json"):
return f"{hashlib.md5(string_unicode).hexdigest()}_{suffix}.{file_ext}"
-def cache_compute_results(base_dataset_type,
- base_dataset_name,
- target_dataset_name,
- corr_method,
- correlation_results,
- trait_name):
- """function to cache correlation results for heavy computations"""
-
- base_timestamp = query_table_timestamp(base_dataset_type)
-
- target_dataset_timestamp = base_timestamp
-
- file_name = generate_filename(
- base_dataset_name, target_dataset_name,
- base_timestamp, target_dataset_timestamp,
- suffix="corr_precomputes")
-
- file_path = os.path.join(TMPDIR, file_name)
-
- try:
- with open(file_path, "r+") as json_file_handler:
- data = json.load(json_file_handler)
-
- data[trait_name] = correlation_results
-
- json_file_handler.seek(0)
-
- json.dump(data, json_file_handler)
-
- json_file_handler.truncate()
-
- except FileNotFoundError:
- with open(file_path, "w+") as file_handler:
- data = {}
- data[trait_name] = correlation_results
-
- json.dump(data, file_handler)
-
-
-def fetch_precompute_results(base_dataset_name,
- target_dataset_name,
- dataset_type,
- trait_name):
- """function to check for precomputed results"""
-
- base_timestamp = target_dataset_timestamp = query_table_timestamp(
- dataset_type)
- file_name = generate_filename(
- base_dataset_name, target_dataset_name,
- base_timestamp, target_dataset_timestamp,
- suffix="corr_precomputes")
-
- file_path = os.path.join(TMPDIR, file_name)
-
- try:
- with open(file_path, "r+") as json_handler:
- correlation_results = json.load(json_handler)
-
- return correlation_results.get(trait_name)
-
- except FileNotFoundError:
- pass
-
-
-def pre_compute_dataset_vs_dataset(base_dataset,
- target_dataset,
- corr_method):
- """compute sample correlation between dataset vs dataset
- wn:heavy function should be invoked less frequently
- input:datasets_data(two dicts),corr_method
-
- output:correlation results for entire dataset against entire dataset
- """
- dataset_correlation_results = {}
-
- target_traits_data, base_traits_data = get_datasets_data(
- base_dataset, target_dataset_data)
-
- for (primary_trait_name, strain_values) in base_traits_data:
-
- this_trait_data = {
- "trait_sample_data": strain_values,
- "trait_id": primary_trait_name
- }
-
- trait_correlation_result = compute_all_sample_correlation(
- corr_method=corr_method,
- this_trait=this_trait_data,
- target_dataset=target_traits_data)
-
- dataset_correlation_results[primary_trait_name] = trait_correlation_result
-
- return dataset_correlation_results
-
-
-def get_datasets_data(base_dataset, target_dataset_data):
- """required to pass data in a given format to the pre compute
- function
-
- (works for bxd only probeset datasets)
-
- output:two dicts for datasets with key==trait and value==strains
- """
- samples_fetched = base_dataset.group.all_samples_ordered()
- target_traits_data = target_dataset.get_trait_data(
- samples_fetched)
-
- base_traits_data = base_dataset.get_trait_data(
- samples_fetched)
-
- target_results = map_shared_keys_to_values(
- samples_fetched, target_traits_data)
- base_results = map_shared_keys_to_values(
- samples_fetched, base_traits_data)
-
- return (target_results, base_results)
def fetch_text_file(dataset_name, conn, text_dir=TMPDIR):