diff options
author | BonfaceKilz | 2020-10-09 15:47:43 +0300 |
---|---|---|
committer | GitHub | 2020-10-09 15:47:43 +0300 |
commit | 58c3815571f83db0296dc099f1e4c6ff69619f64 (patch) | |
tree | 2f1841afed3281c8eb179aa2c695caf650a4e1cf /wqflask/wqflask | |
parent | 7db8f7da013eefdf518ccf024477d0abf4324c03 (diff) | |
parent | eae4f1e6fad57a77063a637f0b03c171b6437565 (diff) | |
download | genenetwork2-58c3815571f83db0296dc099f1e4c6ff69619f64.tar.gz |
Merge pull request #458 from BonfaceKilz/tests/add-extra-tests-for-collections
Tests/add extra tests for collections
Diffstat (limited to 'wqflask/wqflask')
-rw-r--r-- | wqflask/wqflask/collect.py | 37 | ||||
-rw-r--r-- | wqflask/wqflask/wgcna/wgcna_analysis.py | 181 |
2 files changed, 121 insertions, 97 deletions
diff --git a/wqflask/wqflask/collect.py b/wqflask/wqflask/collect.py index 42a09fed..4c558bfe 100644 --- a/wqflask/wqflask/collect.py +++ b/wqflask/wqflask/collect.py @@ -1,41 +1,30 @@ from __future__ import print_function, division, absolute_import - -import os -import hashlib import datetime -import time - -import uuid -import hashlib -import base64 - -import urlparse - import simplejson as json -from flask import (Flask, g, render_template, url_for, request, make_response, - redirect, flash, jsonify) +from flask import g +from flask import render_template +from flask import url_for +from flask import request +from flask import redirect +from flask import flash from wqflask import app - -from pprint import pformat as pf - -from wqflask.database import db_session - -from wqflask import model - -from utility import Bunch, Struct, hmac +from utility import hmac from utility.formatting import numify from utility.redis_tools import get_redis_conn -Redis = get_redis_conn() -from base.trait import create_trait, retrieve_trait_info, jsonable +from base.trait import create_trait +from base.trait import retrieve_trait_info +from base.trait import jsonable from base.data_set import create_dataset -import logging from utility.logger import getLogger + logger = getLogger(__name__) +Redis = get_redis_conn() + def process_traits(unprocessed_traits): if isinstance(unprocessed_traits, basestring): diff --git a/wqflask/wqflask/wgcna/wgcna_analysis.py b/wqflask/wqflask/wgcna/wgcna_analysis.py index 880a1cb2..70077703 100644 --- a/wqflask/wqflask/wgcna/wgcna_analysis.py +++ b/wqflask/wqflask/wgcna/wgcna_analysis.py @@ -1,5 +1,8 @@ -# WGCNA analysis for GN2 -# Author / Maintainer: Danny Arends <Danny.Arends@gmail.com> +""" +WGCNA analysis for GN2 + +Author / Maintainer: Danny Arends <Danny.Arends@gmail.com> +""" import sys from numpy import * import scipy as sp # SciPy @@ -17,106 +20,138 @@ from utility import helper_functions from rpy2.robjects.packages import importr utils = importr("utils") -## Get pointers to some common R functions -r_library = ro.r["library"] # Map the library function -r_options = ro.r["options"] # Map the options function -r_read_csv = ro.r["read.csv"] # Map the read.csv function -r_dim = ro.r["dim"] # Map the dim function -r_c = ro.r["c"] # Map the c function -r_cat = ro.r["cat"] # Map the cat function -r_paste = ro.r["paste"] # Map the paste function -r_unlist = ro.r["unlist"] # Map the unlist function -r_unique = ro.r["unique"] # Map the unique function -r_length = ro.r["length"] # Map the length function -r_unlist = ro.r["unlist"] # Map the unlist function -r_list = ro.r.list # Map the list function -r_matrix = ro.r.matrix # Map the matrix function -r_seq = ro.r["seq"] # Map the seq function -r_table = ro.r["table"] # Map the table function -r_names = ro.r["names"] # Map the names function -r_sink = ro.r["sink"] # Map the sink function -r_is_NA = ro.r["is.na"] # Map the is.na function -r_file = ro.r["file"] # Map the file function -r_png = ro.r["png"] # Map the png function for plotting -r_dev_off = ro.r["dev.off"] # Map the dev.off function +# Get pointers to some common R functions +r_library = ro.r["library"] # Map the library function +r_options = ro.r["options"] # Map the options function +r_read_csv = ro.r["read.csv"] # Map the read.csv function +r_dim = ro.r["dim"] # Map the dim function +r_c = ro.r["c"] # Map the c function +r_cat = ro.r["cat"] # Map the cat function +r_paste = ro.r["paste"] # Map the paste function +r_unlist = ro.r["unlist"] # Map the unlist function +r_unique = ro.r["unique"] # Map the unique function +r_length = ro.r["length"] # Map the length function +r_unlist = ro.r["unlist"] # Map the unlist function +r_list = ro.r.list # Map the list function +r_matrix = ro.r.matrix # Map the matrix function +r_seq = ro.r["seq"] # Map the seq function +r_table = ro.r["table"] # Map the table function +r_names = ro.r["names"] # Map the names function +r_sink = ro.r["sink"] # Map the sink function +r_is_NA = ro.r["is.na"] # Map the is.na function +r_file = ro.r["file"] # Map the file function +r_png = ro.r["png"] # Map the png function for plotting +r_dev_off = ro.r["dev.off"] # Map the dev.off function + class WGCNA(object): def __init__(self): + # To log output from stdout/stderr to a file add `r_sink(log)` print("Initialization of WGCNA") - #log = r_file("/tmp/genenetwork_wcgna.log", open = "wt") - #r_sink(log) # Uncomment the r_sink() commands to log output from stdout/stderr to a file - #r_sink(log, type = "message") - r_library("WGCNA") # Load WGCNA - Should only be done once, since it is quite expensive - r_options(stringsAsFactors = False) + + # Load WGCNA - Should only be done once, since it is quite expensive + r_library("WGCNA") + r_options(stringsAsFactors=False) print("Initialization of WGCNA done, package loaded in R session") - self.r_enableWGCNAThreads = ro.r["enableWGCNAThreads"] # Map the enableWGCNAThreads function - self.r_pickSoftThreshold = ro.r["pickSoftThreshold"] # Map the pickSoftThreshold function - self.r_blockwiseModules = ro.r["blockwiseModules"] # Map the blockwiseModules function - self.r_labels2colors = ro.r["labels2colors"] # Map the labels2colors function - self.r_plotDendroAndColors = ro.r["plotDendroAndColors"] # Map the plotDendroAndColors function + # Map the enableWGCNAThreads function + self.r_enableWGCNAThreads = ro.r["enableWGCNAThreads"] + # Map the pickSoftThreshold function + self.r_pickSoftThreshold = ro.r["pickSoftThreshold"] + # Map the blockwiseModules function + self.r_blockwiseModules = ro.r["blockwiseModules"] + # Map the labels2colors function + self.r_labels2colors = ro.r["labels2colors"] + # Map the plotDendroAndColors function + self.r_plotDendroAndColors = ro.r["plotDendroAndColors"] print("Obtained pointers to WGCNA functions") def run_analysis(self, requestform): print("Starting WGCNA analysis on dataset") - self.r_enableWGCNAThreads() # Enable multi threading - self.trait_db_list = [trait.strip() for trait in requestform['trait_list'].split(',')] - print("Retrieved phenotype data from database", requestform['trait_list']) + # Enable multi threading + self.r_enableWGCNAThreads() + self.trait_db_list = [trait.strip() + for trait in requestform['trait_list'].split(',')] + print("Retrieved phenotype data from database", + requestform['trait_list']) helper_functions.get_trait_db_obs(self, self.trait_db_list) - self.input = {} # self.input contains the phenotype values we need to send to R - strains = [] # All the strains we have data for (contains duplicates) - traits = [] # All the traits we have data for (should not contain duplicates) + # self.input contains the phenotype values we need to send to R + self.input = {} + # All the strains we have data for (contains duplicates) + strains = [] + # All the traits we have data for (should not contain duplicates) + traits = [] for trait in self.trait_list: traits.append(trait[0].name) self.input[trait[0].name] = {} for strain in trait[0].data: strains.append(strain) - self.input[trait[0].name][strain] = trait[0].data[strain].value + self.input[trait[0].name][strain] = trait[0].data[strain].value # Transfer the load data from python to R - uStrainsR = r_unique(ro.Vector(strains)) # Unique strains in R vector + # Unique strains in R vector + uStrainsR = r_unique(ro.Vector(strains)) uTraitsR = r_unique(ro.Vector(traits)) # Unique traits in R vector r_cat("The number of unique strains:", r_length(uStrainsR), "\n") r_cat("The number of unique traits:", r_length(uTraitsR), "\n") - # rM is the datamatrix holding all the data in R /rows = strains columns = traits - rM = ro.r.matrix(ri.NA_Real, nrow=r_length(uStrainsR), ncol=r_length(uTraitsR), dimnames = r_list(uStrainsR, uTraitsR)) + # rM is the datamatrix holding all the data in + # R /rows = strains columns = traits + rM = ro.r.matrix(ri.NA_Real, nrow=r_length(uStrainsR), ncol=r_length( + uTraitsR), dimnames=r_list(uStrainsR, uTraitsR)) for t in uTraitsR: - trait = t[0] # R uses vectors every single element is a vector + # R uses vectors every single element is a vector + trait = t[0] for s in uStrainsR: - strain = s[0] # R uses vectors every single element is a vector - #DEBUG: print(trait, strain, " in python: ", self.input[trait].get(strain), "in R:", rM.rx(strain,trait)[0]) - rM.rx[strain, trait] = self.input[trait].get(strain) # Update the matrix location + # R uses vectors every single element is a vector + strain = s[0] + rM.rx[strain, trait] = self.input[trait].get( + strain) # Update the matrix location sys.stdout.flush() self.results = {} - self.results['nphe'] = r_length(uTraitsR)[0] # Number of phenotypes/traits - self.results['nstr'] = r_length(uStrainsR)[0] # Number of strains + # Number of phenotypes/traits + self.results['nphe'] = r_length(uTraitsR)[0] + self.results['nstr'] = r_length( + uStrainsR)[0] # Number of strains self.results['phenotypes'] = uTraitsR # Traits used - self.results['strains'] = uStrainsR # Strains used in the analysis - self.results['requestform'] = requestform # Store the user specified parameters for the output page + # Strains used in the analysis + self.results['strains'] = uStrainsR + # Store the user specified parameters for the output page + self.results['requestform'] = requestform - # Calculate soft threshold if the user specified the SoftThreshold variable + # Calculate soft threshold if the user specified the + # SoftThreshold variable if requestform.get('SoftThresholds') is not None: - powers = [int(threshold.strip()) for threshold in requestform['SoftThresholds'].rstrip().split(",")] - rpow = r_unlist(r_c(powers)) - print "SoftThresholds: {} == {}".format(powers, rpow) - self.sft = self.r_pickSoftThreshold(rM, powerVector = rpow, verbose = 5) - - print "PowerEstimate: {}".format(self.sft[0]) - self.results['PowerEstimate'] = self.sft[0] - if self.sft[0][0] is ri.NA_Integer: - print "No power is suitable for the analysis, just use 1" - self.results['Power'] = 1 # No power could be estimated - else: - self.results['Power'] = self.sft[0][0] # Use the estimated power + powers = [int(threshold.strip()) + for threshold in requestform['SoftThresholds'].rstrip().split(",")] + rpow = r_unlist(r_c(powers)) + print("SoftThresholds: {} == {}".format(powers, rpow)) + self.sft = self.r_pickSoftThreshold( + rM, powerVector=rpow, verbose=5) + + print("PowerEstimate: {}".format(self.sft[0])) + self.results['PowerEstimate'] = self.sft[0] + if self.sft[0][0] is ri.NA_Integer: + print "No power is suitable for the analysis, just use 1" + # No power could be estimated + self.results['Power'] = 1 + else: + # Use the estimated power + self.results['Power'] = self.sft[0][0] else: - # The user clicked a button, so no soft threshold selection - self.results['Power'] = requestform.get('Power') # Use the power value the user gives + # The user clicked a button, so no soft threshold selection + # Use the power value the user gives + self.results['Power'] = requestform.get('Power') # Create the block wise modules using WGCNA - network = self.r_blockwiseModules(rM, power = self.results['Power'], TOMType = requestform['TOMtype'], minModuleSize = requestform['MinModuleSize'], verbose = 3) + network = self.r_blockwiseModules( + rM, + power=self.results['Power'], + TOMType=requestform['TOMtype'], + minModuleSize=requestform['MinModuleSize'], + verbose=3) # Save the network for the GUI self.results['network'] = network @@ -130,7 +165,9 @@ class WGCNA(object): self.results['imgloc'] = GENERATED_IMAGE_DIR + self.results['imgurl'] r_png(self.results['imgloc'], width=1000, height=600, type='cairo-png') mergedColors = self.r_labels2colors(network[1]) - self.r_plotDendroAndColors(network[5][0], mergedColors, "Module colors", dendroLabels = False, hang = 0.03, addGuide = True, guideHang = 0.05) + self.r_plotDendroAndColors(network[5][0], mergedColors, + "Module colors", dendroLabels=False, + hang=0.03, addGuide=True, guideHang=0.05) r_dev_off() sys.stdout.flush() @@ -146,11 +183,9 @@ class WGCNA(object): print("Processing WGCNA output") template_vars = {} template_vars["input"] = self.input - template_vars["powers"] = self.sft[1:] # Results from the soft threshold analysis + # Results from the soft threshold analysis + template_vars["powers"] = self.sft[1:] template_vars["results"] = self.results self.render_image(results) sys.stdout.flush() - #r_sink(type = "message") # This restores R output to the stdout/stderr - #r_sink() # We should end the Rpy session more or less return(dict(template_vars)) - |