diff options
| author | Alexander Kabui | 2021-04-20 01:38:26 +0300 |
|---|---|---|
| committer | Alexander Kabui | 2021-04-20 01:38:26 +0300 |
| commit | 34e4933de5a1cd444abe618fcfd93b424bf3442e (patch) | |
| tree | a623ba0663e71d86447b660948401ee16989433e /wqflask/wqflask | |
| parent | 50c0ee93a59eecd40a6fbd19139671c94003c21b (diff) | |
| download | genenetwork2-34e4933de5a1cd444abe618fcfd93b424bf3442e.tar.gz | |
refactor code for iterating mrna tissue data
Diffstat (limited to 'wqflask/wqflask')
| -rw-r--r-- | wqflask/wqflask/correlation/correlation_functions.py | 6 | ||||
| -rw-r--r-- | wqflask/wqflask/correlation/correlation_gn3_api.py | 24 |
2 files changed, 17 insertions, 13 deletions
diff --git a/wqflask/wqflask/correlation/correlation_functions.py b/wqflask/wqflask/correlation/correlation_functions.py index fd7691d4..af1d6060 100644 --- a/wqflask/wqflask/correlation/correlation_functions.py +++ b/wqflask/wqflask/correlation/correlation_functions.py @@ -82,6 +82,6 @@ def cal_zero_order_corr_for_tiss (primaryValue=[], targetValue=[], method='pears def get_trait_symbol_and_tissue_values(symbol_list=None): tissue_data = MrnaAssayTissueData(gene_symbols=symbol_list) - - if len(tissue_data.gene_symbols): - return tissue_data.get_symbol_values_pairs() + if len(tissue_data.gene_symbols) >0: + results = tissue_data.get_symbol_values_pairs() + return results diff --git a/wqflask/wqflask/correlation/correlation_gn3_api.py b/wqflask/wqflask/correlation/correlation_gn3_api.py index ba606b92..e7394647 100644 --- a/wqflask/wqflask/correlation/correlation_gn3_api.py +++ b/wqflask/wqflask/correlation/correlation_gn3_api.py @@ -12,6 +12,7 @@ from gn3.computations.correlations import compute_all_sample_correlation from gn3.computations.correlations import map_shared_keys_to_values from gn3.computations.correlations import compute_all_tissue_correlation from gn3.computations.correlations import compute_all_lit_correlation +from gn3.computations.correlations import experimental_compute_all_tissue_correlation from gn3.db_utils import database_connector GN3_CORRELATION_API = "http://127.0.0.1:8202/api/correlation" @@ -37,7 +38,6 @@ def process_samples(start_vars, sample_names, excluded_samples=None): def create_target_this_trait(start_vars): """this function creates the required trait and target dataset for correlation""" - this_dataset = data_set.create_dataset(dataset_name=start_vars['dataset']) target_dataset = data_set.create_dataset( dataset_name=start_vars['corr_dataset']) @@ -81,7 +81,7 @@ def compute_correlation(start_vars, method="pearson"): target_dataset.get_trait_data(list(sample_data.keys())) this_trait = retrieve_sample_data(this_trait, this_dataset) - print("Creating dataset and trait took",time.time()-initial_time) + print("Creating dataset and trait took", time.time()-initial_time) this_trait_data = { "trait_sample_data": sample_data, @@ -94,7 +94,7 @@ def compute_correlation(start_vars, method="pearson"): this_trait=this_trait_data, target_dataset=results) - print("doing sample correlation took",time.time()-initial_time) + print("doing sample correlation took", time.time()-initial_time) # requests_url = f"{GN3_CORRELATION_API}/sample_x/{method}" return correlation_results @@ -109,11 +109,16 @@ def compute_correlation(start_vars, method="pearson"): "target_tissues_dict": target_tissue_data } initial_time = time.time() - correlation_results = compute_all_tissue_correlation(primary_tissue_dict=corr_input_data["primary_tissue"], - target_tissues_data=corr_input_data["target_tissues_dict"], - corr_method=method) - print("time taken for compute tissue is",time.time()-initial_time) - + correlation_results = experimental_compute_all_tissue_correlation(primary_tissue_dict=corr_input_data["primary_tissue"], + target_tissues_data=corr_input_data[ + "target_tissues_dict"], + corr_method=method) + print("correlation y took", time.time()-initial_time) + # initial_time = time.time() + # correlation_results = compute_all_tissue_correlation(primary_tissue_dict=corr_input_data["primary_tissue"], + # target_tissues_data=corr_input_data["target_tissues_dict"], + # corr_method=method) + # print("time taken for compute tissue is", time.time()-initial_time) # requests_url = f"{GN3_CORRELATION_API}/tissue_corr/{method}" return correlation_results @@ -131,7 +136,7 @@ def compute_correlation(start_vars, method="pearson"): species=species, gene_id=this_trait_geneid) return lit_corr_results - print("the time taken is",time.time()-initial_time) + print("the time taken is", time.time()-initial_time) # requests_url = f"{GN3_CORRELATION_API}/lit_corr/{species}/{this_trait_geneid}" # corr_input_data = geneid_dict # corr_results = requests.post(requests_url, json=corr_input_data) @@ -161,7 +166,6 @@ def get_tissue_correlation_input(this_trait, trait_symbol_dict): primary_trait_tissue_values = primary_trait_tissue_vals_dict[this_trait.symbol.lower( )] - time_to_to_fetch_all = time.time() corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values( symbol_list=list(trait_symbol_dict.values())) primary_tissue_data = { |
