aboutsummaryrefslogtreecommitdiff
path: root/web/webqtl/correlation
diff options
context:
space:
mode:
authorzsloan2015-03-27 20:28:51 +0000
committerzsloan2015-03-27 20:28:51 +0000
commitd0911a04958a04042da02a334ccc528dae79cc17 (patch)
tree3c48e2e937c1dbeaf00a5697c87ed251afa5c8f1 /web/webqtl/correlation
parenta840ad18e1fe3db98a359a159e9b9b72367a2839 (diff)
downloadgenenetwork2-d0911a04958a04042da02a334ccc528dae79cc17.tar.gz
Removed everything from 'web' directory except genofiles and renamed the directory to 'genotype_files'
Diffstat (limited to 'web/webqtl/correlation')
-rwxr-xr-xweb/webqtl/correlation/CorrelationPage.py2065
-rwxr-xr-xweb/webqtl/correlation/PartialCorrDBPage.py1359
-rwxr-xr-xweb/webqtl/correlation/PartialCorrInputPage.py484
-rwxr-xr-xweb/webqtl/correlation/PartialCorrTraitPage.py310
-rwxr-xr-xweb/webqtl/correlation/PlotCorrelationPage.py683
-rwxr-xr-xweb/webqtl/correlation/__init__.py0
-rwxr-xr-xweb/webqtl/correlation/correlationFunction.py923
7 files changed, 0 insertions, 5824 deletions
diff --git a/web/webqtl/correlation/CorrelationPage.py b/web/webqtl/correlation/CorrelationPage.py
deleted file mode 100755
index 0c98f032..00000000
--- a/web/webqtl/correlation/CorrelationPage.py
+++ /dev/null
@@ -1,2065 +0,0 @@
-## Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
-#
-# This program is free software: you can redistribute it and/or modify it
-# under the terms of the GNU Affero General Public License
-# as published by the Free Software Foundation, either version 3 of the
-# License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-# See the GNU Affero General Public License for more details.
-#
-# This program is available from Source Forge: at GeneNetwork Project
-# (sourceforge.net/projects/genenetwork/).
-#
-# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
-# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
-#
-#
-#
-# This module is used by GeneNetwork project (www.genenetwork.org)
-#
-# Created by GeneNetwork Core Team 2010/08/10
-#
-# Last updated by NL 2011/02/11
-# Last updated by Christian Fernandez 2012/04/07
-# Refactored correlation calculation into smaller functions in preparation of
-# separating html from existing code
-
-import string
-from math import *
-import cPickle
-import os
-import time
-import pyXLWriter as xl
-import pp
-import math
-
-from htmlgen import HTMLgen2 as HT
-import reaper
-
-from base import webqtlConfig
-from utility.THCell import THCell
-from utility.TDCell import TDCell
-from base.webqtlTrait import webqtlTrait
-from base.webqtlDataset import webqtlDataset
-from base.templatePage import templatePage
-from utility import webqtlUtil
-from dbFunction import webqtlDatabaseFunction
-import utility.webqtlUtil #this is for parallel computing only.
-from correlation import correlationFunction
-
-import logging
-logging.basicConfig(filename="/tmp/gn_log", level=logging.INFO)
-_log = logging.getLogger("correlation")
-
-METHOD_SAMPLE_PEARSON = "1"
-METHOD_SAMPLE_RANK = "2"
-METHOD_LIT = "3"
-METHOD_TISSUE_PEARSON = "4"
-METHOD_TISSUE_RANK = "5"
-
-TISSUE_METHODS = [METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK]
-
-TISSUE_MOUSE_DB = 1
-
-class AuthException(Exception): pass
-
-
-class Trait(object):
- def __init__(self, name, raw_values = None, lit_corr = None, tissue_corr = None, p_tissue = None):
- self.name = name
- self.raw_values = raw_values
- self.lit_corr = lit_corr
- self.tissue_corr = tissue_corr
- self.p_tissue = p_tissue
- self.correlation = 0
- self.p_value = 0
-
- @staticmethod
- def from_csv(line, data_start = 1):
- name = line[0]
- numbers = line[data_start:]
- # _log.info(numbers)
- numbers = [ float(number) for number in numbers ]
-
- return Trait(name, raw_values = numbers)
-
- def calculate_correlation(self, values, method):
- """Calculate the correlation value and p value according to the method specified"""
-
- #ZS: This takes the list of values of the trait our selected trait is being correlated against and removes the values of the samples our trait has no value for
- #There's probably a better way of dealing with this, but I'll have to ask Christian
- updated_raw_values = []
- updated_values = []
- for i in range(len(values)):
- if values[i] != "None":
- updated_raw_values.append(self.raw_values[i])
- updated_values.append(values[i])
-
- self.raw_values = updated_raw_values
- values = updated_values
-
- if method == METHOD_SAMPLE_PEARSON or method == METHOD_LIT or method == METHOD_TISSUE_PEARSON:
- corr,nOverlap = webqtlUtil.calCorrelation(self.raw_values, values, len(values))
- else:
- corr,nOverlap = webqtlUtil.calCorrelationRank(self.raw_values, values, len(values))
-
- self.correlation = corr
- self.overlap = nOverlap
-
- if self.overlap < 3:
- self.p_value = 1.0
- else:
- #ZS - This is probably the wrong way to deal with this. Correlation values of 1.0 definitely exist (the trait correlated against itself), so zero division needs to br prevented.
- if abs(self.correlation) >= 1.0:
- self.p_value = 0.0
- else:
- ZValue = 0.5*log((1.0+self.correlation)/(1.0-self.correlation))
- ZValue = ZValue*sqrt(self.overlap-3)
- self.p_value = 2.0*(1.0 - reaper.normp(abs(ZValue)))
-
-
-
-#XZ, 01/14/2009: This method is for parallel computing only.
-#XZ: It is supposed to be called when "Genetic Correlation, Pearson's r" (method 1)
-#XZ: or "Genetic Correlation, Spearman's rho" (method 2) is selected
-def compute_corr( input_nnCorr, input_trait, input_list, computing_method):
-
- allcorrelations = []
-
- for line in input_list:
- tokens = line.split('","')
- tokens[-1] = tokens[-1][:-2] #remove the last "
- tokens[0] = tokens[0][1:] #remove the first "
-
- traitdataName = tokens[0]
- database_trait = tokens[1:]
-
- if computing_method == "1": #XZ: Pearson's r
- corr,nOverlap = utility.webqtlUtil.calCorrelationText(input_trait, database_trait, input_nnCorr)
- else: #XZ: Spearman's rho
- corr,nOverlap = utility.webqtlUtil.calCorrelationRankText(input_trait, database_trait, input_nnCorr)
- traitinfo = [traitdataName,corr,nOverlap]
- allcorrelations.append(traitinfo)
-
- return allcorrelations
-
-def get_correlation_method_key(form_data):
- #XZ, 09/28/2008: if user select "1", then display 1, 3 and 4.
- #XZ, 09/28/2008: if user select "2", then display 2, 3 and 5.
- #XZ, 09/28/2008: if user select "3", then display 1, 3 and 4.
- #XZ, 09/28/2008: if user select "4", then display 1, 3 and 4.
- #XZ, 09/28/2008: if user select "5", then display 2, 3 and 5.
-
- method = form_data.formdata.getvalue("method")
- if method not in ["1", "2", "3" ,"4", "5"]:
- return "1"
-
- return method
-
-
-def get_custom_trait(form_data, cursor):
- """Pulls the custom trait, if it exists, out of the form data"""
- trait_name = form_data.formdata.getvalue('fullname')
-
- if trait_name:
- trait = webqtlTrait(fullname=trait_name, cursor=cursor)
- trait.retrieveInfo()
- return trait
- else:
- return None
-
-
-#XZ, 09/18/2008: get the information such as value, variance of the input strain names from the form.
-def get_sample_data(form_data):
- if form_data.allstrainlist:
- mdpchoice = form_data.formdata.getvalue('MDPChoice')
- #XZ, in HTML source code, it is "BXD Only" or "BXH only", and so on
- if mdpchoice == "1":
- strainlist = form_data.f1list + form_data.strainlist
- #XZ, in HTML source code, it is "MDP Only"
- elif mdpchoice == "2":
- strainlist = []
- strainlist2 = form_data.f1list + form_data.strainlist
- for strain in form_data.allstrainlist:
- if strain not in strainlist2:
- strainlist.append(strain)
- #So called MDP Panel
- if strainlist:
- strainlist = form_data.f1list+form_data.parlist+strainlist
- #XZ, in HTML source code, it is "All Cases"
- else:
- strainlist = form_data.allstrainlist
- #XZ, 09/18/2008: put the trait data into dictionary form_data.allTraitData
- form_data.readData(form_data.allstrainlist)
- else:
- mdpchoice = None
- strainlist = form_data.strainlist
- #XZ, 09/18/2008: put the trait data into dictionary form_data.allTraitData
- form_data.readData()
-
- return strainlist
-
-
-def get_mdp_choice(form_data):
- if form_data.allstrainlist:
- return form_data.formdata.getvalue("MDPChoice")
- else:
- return None
-
-
-def get_species(fd, cursor):
- #XZ, 3/16/2010: variable RISet must be pass by the form
- RISet = fd.RISet
- #XZ, 12/12/2008: get species infomation
- species = webqtlDatabaseFunction.retrieveSpecies(cursor=cursor, RISet=RISet)
- return species
-
-
-def sortTraitCorrelations(traits, method="1"):
- if method in TISSUE_METHODS:
- traits.sort(key=lambda trait: trait.tissue_corr != None and abs(trait.tissue_corr), reverse=True)
- elif method == METHOD_LIT:
- traits.sort(key=lambda trait: trait.lit_corr != None and abs(trait.lit_corr), reverse=True)
- else:
- traits.sort(key=lambda trait: trait.correlation != None and abs(trait.correlation), reverse=True)
-
- return traits
-
-
-def auth_user_for_db(db, cursor, target_db_name, privilege, username):
- """Authorize a user for access to a database if that database is
- confidential. A db (identified by a record in ProbeSetFreeze) contains a
- list of authorized users who may access it, as well as its confidentiality
- level.
-
- If the current user's privilege level is greater than 'user', ie: root or
- admin, then they are automatically authed, otherwise, check the
- AuthorizedUsers field for the presence of their name."""
-
- if db.type == 'ProbeSet':
- cursor.execute('SELECT Id, Name, FullName, confidentiality, AuthorisedUsers FROM ProbeSetFreeze WHERE Name = "%s"' % target_db_name)
- indId, indName, indFullName, confidential, AuthorisedUsers = cursor.fetchall()[0]
-
- if confidential:
- authorized = 0
-
- #for the dataset that confidentiality is 1
- #1. 'admin' and 'root' can see all of the dataset
- #2. 'user' can see the dataset that AuthorisedUsers contains his id(stored in the Id field of User table)
- if webqtlConfig.USERDICT[privilege] > webqtlConfig.USERDICT['user']:
- authorized = 1
- else:
- if username in AuthorisedUsers.split(","):
- authorized = 1
-
- if not authorized:
- raise AuthException("The %s database you selected is not open to the public at this time, please go back and select other database." % indFullName)
-
-
-class CorrelationPage(templatePage):
-
- corrMinInformative = 4
-
- PAGE_HEADING = "Correlation Table"
- CORRELATION_METHODS = {"1" : "Genetic Correlation (Pearson's r)",
- "2" : "Genetic Correlation (Spearman's rho)",
- "3" : "SGO Literature Correlation",
- "4" : "Tissue Correlation (Pearson's r)",
- "5" : "Tissue Correlation (Spearman's rho)"}
-
- RANK_ORDERS = {"1": 0, "2": 1, "3": 0, "4": 0, "5": 1}
-
-
- def error(self, message, error="Error", heading = None):
- heading = heading or self.PAGE_HEADING
- return templatePage.error(heading = heading, detail = [message], error=error)
-
- def __init__(self, fd):
-
- # Call the superclass constructor
- templatePage.__init__(self, fd)
-
- # Connect to the database
- if not self.openMysql():
- return
-
- # Read the genotype from a file
- if not fd.genotype:
- fd.readGenotype()
-
- sample_list = get_sample_data(fd)
- mdp_choice = get_mdp_choice(fd) # No idea what this is yet
- self.species = get_species(fd, self.cursor)
-
- #XZ, 09/18/2008: get all information about the user selected database.
- target_db_name = fd.formdata.getvalue('database')
- self.target_db_name = target_db_name
-
- try:
- self.db = webqtlDataset(target_db_name, self.cursor)
- except:
- detail = ["The database you just requested has not been established yet."]
- self.error(detail)
- return
-
- # Auth if needed
- try:
- auth_user_for_db(self.db, self.cursor, target_db_name, self.privilege, self.userName)
- except AuthException, e:
- detail = [e.message]
- return self.error(detail)
-
- #XZ, 09/18/2008: filter out the strains that have no value.
- self.sample_names, vals, vars, N = fd.informativeStrains(sample_list)
-
- #CF - If less than a minimum number of strains/cases in common, don't calculate anything
- if len(self.sample_names) < self.corrMinInformative:
- detail = ['Fewer than %d strain data were entered for %s data set. No calculation of correlation has been attempted.' % (self.corrMinInformative, fd.RISet)]
- self.error(heading=PAGE_HEADING,detail=detail)
-
-
- self.method = get_correlation_method_key(fd)
- correlation_method = self.CORRELATION_METHODS[self.method]
- rankOrder = self.RANK_ORDERS[self.method]
-
- # CF - Number of results returned
- self.returnNumber = int(fd.formdata.getvalue('criteria'))
-
- self.record_count = 0
-
- myTrait = get_custom_trait(fd, self.cursor)
-
-
- # We will not get Literature Correlations if there is no GeneId because there is nothing to look against
- self.gene_id = int(fd.formdata.getvalue('GeneId') or 0)
-
- # We will not get Tissue Correlations if there is no gene symbol because there is nothing to look against
- self.trait_symbol = myTrait.symbol
-
-
- #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid
- self.input_trait_mouse_gene_id = self.translateToMouseGeneID(self.species, self.gene_id)
-
- #XZ: As of Nov/13/2010, this dataset is 'UTHSC Illumina V6.2 RankInv B6 D2 average CNS GI average (May 08)'
- self.tissue_probeset_freeze_id = 1
-
- traitList = self.correlate(vals)
-
- _log.info("Done doing correlation calculation")
-
-############################################################################################################################################
-
- TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee')
-
- mainfmName = webqtlUtil.genRandStr("fm_")
- form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name= mainfmName, submit=HT.Input(type='hidden'))
- hddn = {'FormID': 'showDatabase',
- 'ProbeSetID': '_',
- 'database': self.target_db_name,
- 'databaseFull': self.db.fullname,
- 'CellID': '_',
- 'RISet': fd.RISet,
- 'identification': fd.identification}
-
- if myTrait:
- hddn['fullname']=fd.formdata.getvalue('fullname')
- if mdp_choice:
- hddn['MDPChoice']=mdp_choice
-
-
- #XZ, 09/18/2008: pass the trait data to next page by hidden parameters.
- webqtlUtil.exportData(hddn, fd.allTraitData)
-
- if fd.incparentsf1:
- hddn['incparentsf1']='ON'
-
- if fd.allstrainlist:
- hddn['allstrainlist'] = string.join(fd.allstrainlist, ' ')
-
-
- for key in hddn.keys():
- form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
-
- #XZ, 11/21/2008: add two parameters to form
- form.append(HT.Input(name="X_geneSymbol", value="", type='hidden'))
- form.append(HT.Input(name="Y_geneSymbol", value="", type='hidden'))
-
- #XZ, 3/11/2010: add one parameter to record if the method is rank order.
- form.append(HT.Input(name="rankOrder", value="%s" % rankOrder, type='hidden'))
-
- form.append(HT.Input(name="TissueProbeSetFreezeId", value="%s" % self.tissue_probeset_freeze_id, type='hidden'))
-
- ####################################
- # generate the info on top of page #
- ####################################
-
- info = self.getTopInfo(myTrait=myTrait, method=self.method, db=self.db, target_db_name=self.target_db_name, returnNumber=self.returnNumber, methodDict=self.CORRELATION_METHODS, totalTraits=traitList, identification=fd.identification )
-
- ##############
- # Excel file #
- ##############
- filename= webqtlUtil.genRandStr("Corr_")
- xlsUrl = HT.Input(type='button', value = 'Download Table', onClick= "location.href='/tmp/%s.xls'" % filename, Class='button')
- # Create a new Excel workbook
- workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+filename))
- headingStyle = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white")
-
- #XZ, 3/18/2010: pay attention to the line number of header in this file. As of today, there are 7 lines.
- worksheet = self.createExcelFileWithTitleAndFooter(workbook=workbook, identification=fd.identification, db=self.db, returnNumber=self.returnNumber)
-
- newrow = 7
-
-
-#####################################################################
-
-
- #Select All, Deselect All, Invert Selection, Add to Collection
- mintmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'showIntMap');" % mainfmName)
- mintmap_img = HT.Image("/images/multiple_interval_mapping1_final.jpg", name='mintmap', alt="Multiple Interval Mapping", title="Multiple Interval Mapping", style="border:none;")
- mintmap.append(mintmap_img)
- mcorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'compCorr');" % mainfmName)
- mcorr_img = HT.Image("/images/compare_correlates2_final.jpg", alt="Compare Correlates", title="Compare Correlates", style="border:none;")
- mcorr.append(mcorr_img)
- cormatrix = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'corMatrix');" % mainfmName)
- cormatrix_img = HT.Image("/images/correlation_matrix1_final.jpg", alt="Correlation Matrix and PCA", title="Correlation Matrix and PCA", style="border:none;")
- cormatrix.append(cormatrix_img)
- networkGraph = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'networkGraph');" % mainfmName)
- networkGraph_img = HT.Image("/images/network_graph1_final.jpg", name='mintmap', alt="Network Graphs", title="Network Graphs", style="border:none;")
- networkGraph.append(networkGraph_img)
- heatmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'heatmap');" % mainfmName)
- heatmap_img = HT.Image("/images/heatmap2_final.jpg", name='mintmap', alt="QTL Heat Map and Clustering", title="QTL Heatmap and Clustering", style="border:none;")
- heatmap.append(heatmap_img)
- partialCorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'partialCorrInput');" % mainfmName)
- partialCorr_img = HT.Image("/images/partial_correlation_final.jpg", name='partialCorr', alt="Partial Correlation", title="Partial Correlation", style="border:none;")
- partialCorr.append(partialCorr_img)
- addselect = HT.Href(url="#redirect", onClick="addRmvSelection('%s', document.getElementsByName('%s')[0], 'addToSelection');" % (fd.RISet, mainfmName))
- addselect_img = HT.Image("/images/add_collection1_final.jpg", name="addselect", alt="Add To Collection", title="Add To Collection", style="border:none;")
- addselect.append(addselect_img)
- selectall = HT.Href(url="#redirect", onClick="checkAll(document.getElementsByName('%s')[0]);" % mainfmName)
- selectall_img = HT.Image("/images/select_all2_final.jpg", name="selectall", alt="Select All", title="Select All", style="border:none;")
- selectall.append(selectall_img)
- selectinvert = HT.Href(url="#redirect", onClick = "checkInvert(document.getElementsByName('%s')[0]);" % mainfmName)
- selectinvert_img = HT.Image("/images/invert_selection2_final.jpg", name="selectinvert", alt="Invert Selection", title="Invert Selection", style="border:none;")
- selectinvert.append(selectinvert_img)
- reset = HT.Href(url="#redirect", onClick="checkNone(document.getElementsByName('%s')[0]); return false;" % mainfmName)
- reset_img = HT.Image("/images/select_none2_final.jpg", alt="Select None", title="Select None", style="border:none;")
- reset.append(reset_img)
- selecttraits = HT.Input(type='button' ,name='selecttraits',value='Select Traits', onClick="checkTraits(this.form);",Class="button")
- selectgt = HT.Input(type='text' ,name='selectgt',value='-1.0', size=6,maxlength=10,onChange="checkNumeric(this,1.0,'-1.0','gthan','greater than filed')")
- selectlt = HT.Input(type='text' ,name='selectlt',value='1.0', size=6,maxlength=10,onChange="checkNumeric(this,-1.0,'1.0','lthan','less than field')")
- selectandor = HT.Select(name='selectandor')
- selectandor.append(('AND','and'))
- selectandor.append(('OR','or'))
- selectandor.selected.append('AND')
-
-
- #External analysis tools
- GCATButton = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GCAT');" % mainfmName)
- GCATButton_img = HT.Image("/images/GCAT_logo_final.jpg", name="GCAT", alt="GCAT", title="GCAT", style="border:none")
- GCATButton.append(GCATButton_img)
-
- ODE = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'ODE');" % mainfmName)
- ODE_img = HT.Image("/images/ODE_logo_final.jpg", name="ode", alt="ODE", title="ODE", style="border:none")
- ODE.append(ODE_img)
-
- '''
- #XZ, 07/07/2010: I comment out this block of code.
- WebGestaltScript = HT.Script(language="Javascript")
- WebGestaltScript.append("""
-setTimeout('openWebGestalt()', 2000);
-function openWebGestalt(){
-var thisForm = document['WebGestalt'];
-makeWebGestaltTree(thisForm, '%s', %d, 'edag_only.php');
-}
- """ % (mainfmName, len(traitList)))
- '''
-
- self.cursor.execute('SELECT GeneChip.GO_tree_value FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % self.db.name)
- result = self.cursor.fetchone()
-
- if result:
- GO_tree_value = result[0]
-
- if GO_tree_value:
-
- WebGestalt = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GOTree');" % mainfmName)
- WebGestalt_img = HT.Image("/images/webgestalt_icon_final.jpg", name="webgestalt", alt="Gene Set Analysis Toolkit", title="Gene Set Analysis Toolkit", style="border:none")
- WebGestalt.append(WebGestalt_img)
-
- hddnWebGestalt = {
- 'id_list':'',
- 'correlation':'',
- 'id_value':'',
- 'llid_list':'',
- 'id_type':GO_tree_value,
- 'idtype':'',
- 'species':'',
- 'list':'',
- 'client':''}
-
- hddnWebGestalt['ref_type'] = hddnWebGestalt['id_type']
- hddnWebGestalt['cat_type'] = 'GO'
- hddnWebGestalt['significancelevel'] = 'Top10'
-
- if self.species == 'rat':
- hddnWebGestalt['org'] = 'Rattus norvegicus'
- elif self.species == 'human':
- hddnWebGestalt['org'] = 'Homo sapiens'
- elif self.species == 'mouse':
- hddnWebGestalt['org'] = 'Mus musculus'
- else:
- hddnWebGestalt['org'] = ''
-
- for key in hddnWebGestalt.keys():
- form.append(HT.Input(name=key, value=hddnWebGestalt[key], type='hidden'))
-
-
- #Create tables with options, etc
-
- pageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%", border=0, align="Left")
-
- containerTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="90%",border=0, align="Left")
-
-
- if not GO_tree_value:
- optionsTable = HT.TableLite(cellSpacing=2, cellPadding=0,width="480", height="80", border=0, align="Left")
- optionsTable.append(HT.TR(HT.TD(selectall), HT.TD(reset), HT.TD(selectinvert), HT.TD(addselect), HT.TD(GCATButton), HT.TD(ODE), align="left"))
- optionsTable.append(HT.TR(HT.TD("&nbsp;"*1,"Select"), HT.TD("Deselect"), HT.TD("&nbsp;"*1,"Invert"), HT.TD("&nbsp;"*3,"Add"), HT.TD("Gene Set"), HT.TD("&nbsp;"*2,"GCAT")))
- else:
- optionsTable = HT.TableLite(cellSpacing=2, cellPadding=0,width="560", height="80", border=0, align="Left")
- optionsTable.append(HT.TR(HT.TD(selectall), HT.TD(reset), HT.TD(selectinvert), HT.TD(addselect), HT.TD(GCATButton), HT.TD(ODE), HT.TD(WebGestalt), align="left"))
- optionsTable.append(HT.TR(HT.TD("&nbsp;"*1,"Select"), HT.TD("Deselect"), HT.TD("&nbsp;"*1,"Invert"), HT.TD("&nbsp;"*3,"Add"), HT.TD("Gene Set"), HT.TD("&nbsp;"*2,"GCAT"), HT.TD("&nbsp;"*3, "ODE")))
- containerTable.append(HT.TR(HT.TD(optionsTable)))
-
- functionTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="480",height="80", border=0, align="Left")
- functionRow = HT.TR(HT.TD(networkGraph, width="16.7%"), HT.TD(cormatrix, width="16.7%"), HT.TD(partialCorr, width="16.7%"), HT.TD(mcorr, width="16.7%"), HT.TD(mintmap, width="16.7%"), HT.TD(heatmap), align="left")
- labelRow = HT.TR(HT.TD("&nbsp;"*1,HT.Text("Graph")), HT.TD("&nbsp;"*1,HT.Text("Matrix")), HT.TD("&nbsp;"*1,HT.Text("Partial")), HT.TD(HT.Text("Compare")), HT.TD(HT.Text("QTL Map")), HT.TD(HT.Text(text="Heat Map")))
- functionTable.append(functionRow, labelRow)
- containerTable.append(HT.TR(HT.TD(functionTable), HT.BR()))
-
- #more_options = HT.Image("/images/more_options1_final.jpg", name='more_options', alt="Expand Options", title="Expand Options", style="border:none;", Class="toggleShowHide")
-
- #containerTable.append(HT.TR(HT.TD(more_options, HT.BR(), HT.BR())))
-
- moreOptions = HT.Input(type='button',name='options',value='More Options', onClick="",Class="toggle")
- fewerOptions = HT.Input(type='button',name='options',value='Fewer Options', onClick="",Class="toggle")
-
- """
- if (fd.formdata.getvalue('showHideOptions') == 'less'):
- containerTable.append(HT.TR(HT.TD("&nbsp;"), height="10"), HT.TR(HT.TD(HT.Div(fewerOptions, Class="toggleShowHide"))))
- containerTable.append(HT.TR(HT.TD("&nbsp;")))
- else:
- containerTable.append(HT.TR(HT.TD("&nbsp;"), height="10"), HT.TR(HT.TD(HT.Div(moreOptions, Class="toggleShowHide"))))
- containerTable.append(HT.TR(HT.TD("&nbsp;")))
- """
-
- containerTable.append(HT.TR(HT.TD(HT.Span(selecttraits,' with r > ',selectgt, ' ',selectandor, ' r < ',selectlt,Class="bd1 cbddf fs11")), style="display:none;", Class="extra_options"))
-
- chrMenu = HT.Input(type='hidden',name='chromosomes',value='all')
-
- corrHeading = HT.Paragraph('Correlation Table', Class="title")
-
-
- tblobj = {}
-
- if self.db.type=="Geno":
- containerTable.append(HT.TR(HT.TD(xlsUrl, height=60)))
-
- pageTable.append(HT.TR(HT.TD(containerTable)))
-
- tblobj['header'], worksheet = self.getTableHeaderForGeno( method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
- newrow += 1
-
- sortby = self.getSortByValue( calculationMethod = self.method )
-
- corrScript = HT.Script(language="Javascript")
- corrScript.append("var corrArray = new Array();")
-
- tblobj['body'], worksheet, corrScript = self.getTableBodyForGeno(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript)
-
- workbook.close()
- objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
- cPickle.dump(tblobj, objfile)
- objfile.close()
-
- div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
-
- pageTable.append(HT.TR(HT.TD(div)))
-
- form.append(HT.Input(name='ShowStrains',type='hidden', value =1),
- HT.Input(name='ShowLine',type='hidden', value =1),
- HT.P(), HT.P(), pageTable)
- TD_LR.append(corrHeading, info, form, HT.P())
-
- self.dict['body'] = str(TD_LR)
- self.dict['js1'] = ''
- self.dict['title'] = 'Correlation'
-
- elif self.db.type=="Publish":
-
- containerTable.append(HT.TR(HT.TD(xlsUrl, height=40)))
-
- pageTable.append(HT.TR(HT.TD(containerTable)))
-
- tblobj['header'], worksheet = self.getTableHeaderForPublish(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
- newrow += 1
-
- sortby = self.getSortByValue( calculationMethod = self.method )
-
- corrScript = HT.Script(language="Javascript")
- corrScript.append("var corrArray = new Array();")
-
- tblobj['body'], worksheet, corrScript = self.getTableBodyForPublish(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript, species=self.species)
-
- workbook.close()
-
- objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
- cPickle.dump(tblobj, objfile)
- objfile.close()
- # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
- div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
-
- pageTable.append(HT.TR(HT.TD(div)))
-
- form.append(
- HT.Input(name='ShowStrains',type='hidden', value =1),
- HT.Input(name='ShowLine',type='hidden', value =1),
- HT.P(), pageTable)
- TD_LR.append(corrHeading, info, form, HT.P())
-
- self.dict['body'] = str(TD_LR)
- self.dict['js1'] = ''
- self.dict['title'] = 'Correlation'
-
-
- elif self.db.type=="ProbeSet":
- tblobj['header'], worksheet = self.getTableHeaderForProbeSet(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
- newrow += 1
-
- sortby = self.getSortByValue( calculationMethod = self.method )
-
- corrScript = HT.Script(language="Javascript")
- corrScript.append("var corrArray = new Array();")
-
- tblobj['body'], worksheet, corrScript = self.getTableBodyForProbeSet(traitList=traitList, primaryTrait=myTrait, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript, species=self.species)
-
- workbook.close()
- objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
- cPickle.dump(tblobj, objfile)
- objfile.close()
-
- #XZ: here is the table of traits
- div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1", hiddenColumns=["Gene ID","Homologene ID"]), corrScript, Id="sortable")
-
-
- #XZ, 01/12/2009: create database menu for 'Add Correlation'
- self.cursor.execute("""
- select
- ProbeSetFreeze.FullName, ProbeSetFreeze.Id, Tissue.name
- from
- ProbeSetFreeze, ProbeFreeze, ProbeSetFreeze as ps2, ProbeFreeze as p2, Tissue
- where
- ps2.Id = %d
- and ps2.ProbeFreezeId = p2.Id
- and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id
- and (ProbeFreeze.InbredSetId = p2.InbredSetId or (ProbeFreeze.InbredSetId in (1, 3) and p2.InbredSetId in (1, 3)))
- and p2.ChipId = ProbeFreeze.ChipId
- and ps2.Id != ProbeSetFreeze.Id
- and ProbeFreeze.TissueId = Tissue.Id
- and ProbeSetFreeze.public > %d
- order by
- ProbeFreeze.TissueId, ProbeSetFreeze.CreateTime desc
- """ % (self.db.id, webqtlConfig.PUBLICTHRESH))
-
- results = self.cursor.fetchall()
- dbCustomizer = HT.Select(results, name = "customizer")
- databaseMenuSub = preTissue = ""
- for item in results:
- TName, TId, TTissue = item
- if TTissue != preTissue:
- if databaseMenuSub:
- dbCustomizer.append(databaseMenuSub)
- databaseMenuSub = HT.Optgroup(label = '%s mRNA ------' % TTissue)
- preTissue = TTissue
-
- databaseMenuSub.append(item[:2])
- if databaseMenuSub:
- dbCustomizer.append(databaseMenuSub)
-
- #updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
- #variables: filename, strainIds and vals are required by getquerystring function
- strainIds=self.getStrainIds(species=self.species, strains=self.sample_names)
- var1 = HT.Input(name="filename", value=filename, type='hidden')
- var2 = HT.Input(name="strainIds", value=strainIds, type='hidden')
- var3 = HT.Input(name="vals", value=vals, type='hidden')
- customizerButton = HT.Input(type="button", Class="button", value="Add Correlation", onClick = "xmlhttpPost('%smain.py?FormID=AJAX_table', 'sortable', (getquerystring(this.form)))" % webqtlConfig.CGIDIR)
-
- containerTable.append(HT.TR(HT.TD(HT.Span(var1,var2,var3,customizerButton, "with", dbCustomizer, Class="bd1 cbddf fs11"), HT.BR(), HT.BR()), style="display:none;", Class="extra_options"))
-
- containerTable.append(HT.TR(HT.TD(xlsUrl, HT.BR(), HT.BR())))
-
- pageTable.append(HT.TR(HT.TD(containerTable)))
-
- pageTable.append(HT.TR(HT.TD(div)))
-
- if self.species == 'human':
- heatmap = ""
-
- form.append(HT.Input(name='ShowStrains',type='hidden', value =1),
- HT.Input(name='ShowLine',type='hidden', value =1),
- info, HT.BR(), pageTable, HT.BR())
-
- TD_LR.append(corrHeading, form, HT.P())
-
-
- self.dict['body'] = str(TD_LR)
- self.dict['title'] = 'Correlation'
- # updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
- self.dict['js1'] = ''
- self.dict['js2'] = 'onLoad="pageOffset()"'
- self.dict['layer'] = self.generateWarningLayer()
- else:
- self.dict['body'] = ""
-
-
-#############################
-# #
-# CorrelationPage Functions #
-# #
-#############################
-
-
- def getSortByValue(self, calculationMethod):
-
- if calculationMethod == "1":
- sortby = ("Sample p(r)", "up")
- elif calculationMethod == "2":
- sortby = ("Sample p(rho)", "up")
- elif calculationMethod == "3": #XZ: literature correlation
- sortby = ("Lit Corr","down")
- elif calculationMethod == "4": #XZ: tissue correlation
- sortby = ("Tissue r", "down")
- elif calculationMethod == "5":
- sortby = ("Tissue rho", "down")
-
- return sortby
-
-
-
- def generateWarningLayer(self):
-
- layerString = """
-<!-- BEGIN FLOATING LAYER CODE //-->
-<div id="warningLayer" style="padding:3px; border: 1px solid #222;
- background-color: #fff; position:absolute;width:250px;left:100;top:100;visibility:hidden">
-<table border="0" width="250" class="cbrb" cellspacing="0" cellpadding="5">
-<tr>
-<td width="100%">
- <table border="0" width="100%" cellspacing="0" cellpadding="0" height="36">
- <tr>
- <td class="cbrb cw ff15 fwb" align="Center" width="100%" style="padding:4px">
- Sort Table
- </td>
- </tr>
- <tr>
- <td width="100%" bgcolor="#eeeeee" align="Center" style="padding:4px">
-<!-- PLACE YOUR CONTENT HERE //-->
-Resorting this table <br>
-<!-- END OF CONTENT AREA //-->
- </td>
- </tr>
- </table>
-</td>
-</tr>
-</table>
-</div>
-<!-- END FLOATING LAYER CODE //-->
-
- """
-
- return layerString
-
-
- #XZ, 01/07/2009: In HTML code, the variable 'database' corresponds to the column 'Name' in database table.
- def getFileName(self, target_db_name): ### dcrowell August 2008
- """Returns the name of the reference database file with which correlations are calculated.
- Takes argument cursor which is a cursor object of any instance of a subclass of templatePage
- Used by correlationPage"""
-
- query = 'SELECT Id, FullName FROM ProbeSetFreeze WHERE Name = "%s"' % target_db_name
- self.cursor.execute(query)
- result = self.cursor.fetchone()
- Id = result[0]
- FullName = result[1]
- FullName = FullName.replace(' ','_')
- FullName = FullName.replace('/','_')
-
- FileName = 'ProbeSetFreezeId_' + str(Id) + '_FullName_' + FullName + '.txt'
-
- return FileName
-
-
- #XZ, 01/29/2009: I modified this function.
- #XZ: Note that the type of StrainIds must be number, not string.
- def getStrainIds(self, species=None, strains=[]):
- StrainIds = []
- for item in strains:
- self.cursor.execute('''SELECT Strain.Id FROM Strain, Species WHERE
- Strain.Name="%s" and Strain.SpeciesId=Species.Id and Species.name = "%s" ''' % (item, species))
- Id = self.cursor.fetchone()[0]
- StrainIds.append(Id)
-
- return StrainIds
-
-
- #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid
- #XZ, 12/12/2008: if the input geneid is 'None', return 0
- #XZ, 12/12/2008: if the input geneid has no corresponding mouse geneid, return 0
- def translateToMouseGeneID (self, species, geneid):
- mouse_geneid = 0
-
- #if input geneid is None, return 0.
- if not geneid:
- return mouse_geneid
-
- if species == 'mouse':
- mouse_geneid = geneid
- elif species == 'rat':
- self.cursor.execute( "SELECT mouse FROM GeneIDXRef WHERE rat=%d" % int(geneid) )
- record = self.cursor.fetchone()
- if record:
- mouse_geneid = record[0]
- elif species == 'human':
- self.cursor.execute( "SELECT mouse FROM GeneIDXRef WHERE human=%d" % int(geneid) )
- record = self.cursor.fetchone()
- if record:
- mouse_geneid = record[0]
-
- return mouse_geneid
-
-
- #XZ, 12/16/2008: the input geneid is of mouse type
- def checkForLitInfo(self,geneId):
- q = 'SELECT 1 FROM LCorrRamin3 WHERE GeneId1=%s LIMIT 1' % geneId
- self.cursor.execute(q)
- try:
- x = self.cursor.fetchone()
- if x: return True
- else: raise
- except: return False
-
-
- #XZ, 12/16/2008: the input geneid is of mouse type
- def checkSymbolForTissueCorr(self, tissueProbeSetFreezeId=0, symbol=""):
- q = "SELECT 1 FROM TissueProbeSetXRef WHERE TissueProbeSetFreezeId=%s and Symbol='%s' LIMIT 1" % (tissueProbeSetFreezeId,symbol)
- self.cursor.execute(q)
- try:
- x = self.cursor.fetchone()
- if x: return True
- else: raise
- except: return False
-
-
-
- def fetchAllDatabaseData(self, species, GeneId, GeneSymbol, strains, db, method, returnNumber, tissueProbeSetFreezeId):
-
- StrainIds = []
- for item in strains:
- self.cursor.execute('''SELECT Strain.Id FROM Strain, Species WHERE Strain.Name="%s" and Strain.SpeciesId=Species.Id and Species.name = "%s" ''' % (item, species))
- Id = self.cursor.fetchone()[0]
- StrainIds.append('%d' % Id)
-
- # break it into smaller chunks so we don't overload the MySql server
- nnn = len(StrainIds) / 25
- if len(StrainIds) % 25:
- nnn += 1
- oridata = []
-
- #XZ, 09/24/2008: build one temporary table that only contains the records associated with the input GeneId
- tempTable = None
- if GeneId and db.type == "ProbeSet":
- if method == "3":
- tempTable = self.getTempLiteratureTable(species=species, input_species_geneid=GeneId, returnNumber=returnNumber)
-
- if method == "4" or method == "5":
- tempTable = self.getTempTissueCorrTable(primaryTraitSymbol=GeneSymbol, TissueProbeSetFreezeId=TISSUE_MOUSE_DB, method=method, returnNumber=returnNumber)
-
- for step in range(nnn):
- temp = []
- StrainIdstep = StrainIds[step*25:min(len(StrainIds), (step+1)*25)]
- for item in StrainIdstep: temp.append('T%s.value' % item)
-
- if db.type == "Publish":
- query = "SELECT PublishXRef.Id, "
- dataStartPos = 1
- query += string.join(temp,', ')
- query += ' FROM (PublishXRef, PublishFreeze)'
- #XZ, 03/04/2009: Xiaodong changed Data to PublishData
- for item in StrainIdstep:
- query += 'left join PublishData as T%s on T%s.Id = PublishXRef.DataId and T%s.StrainId=%s\n' %(item,item,item,item)
- query += "WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId and PublishFreeze.Name = '%s'" % (db.name, )
- #XZ, 09/20/2008: extract literature correlation value together with gene expression values.
- #XZ, 09/20/2008: notice the difference between the code in next block.
- elif tempTable:
- # we can get a little performance out of selecting our LitCorr here
- # but also we need to do this because we are unconcerned with probes that have no geneId associated with them
- # as we would not have litCorr data.
-
- if method == "3":
- query = "SELECT %s.Name, %s.value," % (db.type,tempTable)
- dataStartPos = 2
- if method == "4" or method == "5":
- query = "SELECT %s.Name, %s.Correlation, %s.PValue," % (db.type,tempTable, tempTable)
- dataStartPos = 3
-
- query += string.join(temp,', ')
- query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type)
- if method == "3":
- query += ' LEFT JOIN %s ON %s.GeneId2=ProbeSet.GeneId ' % (tempTable,tempTable)
- if method == "4" or method == "5":
- query += ' LEFT JOIN %s ON %s.Symbol=ProbeSet.Symbol ' % (tempTable,tempTable)
- #XZ, 03/04/2009: Xiaodong changed Data to %sData and changed parameters from %(item,item, db.type,item,item) to %(db.type, item,item, db.type,item,item)
- for item in StrainIdstep:
- query += 'left join %sData as T%s on T%s.Id = %sXRef.DataId and T%s.StrainId=%s\n' %(db.type, item,item, db.type,item,item)
-
- if method == "3":
- query += "WHERE ProbeSet.GeneId IS NOT NULL AND %s.value IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable,db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
- if method == "4" or method == "5":
- query += "WHERE ProbeSet.Symbol IS NOT NULL AND %s.Correlation IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable,db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
- else:
- query = "SELECT %s.Name," % db.type
- dataStartPos = 1
- query += string.join(temp,', ')
- query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type)
- #XZ, 03/04/2009: Xiaodong changed Data to %sData and changed parameters from %(item,item, db.type,item,item) to %(db.type, item,item, db.type,item,item)
- for item in StrainIdstep:
- query += 'left join %sData as T%s on T%s.Id = %sXRef.DataId and T%s.StrainId=%s\n' %(db.type, item,item, db.type,item,item)
- query += "WHERE %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
-
- self.cursor.execute(query)
- results = self.cursor.fetchall()
- oridata.append(results)
-
- datasize = len(oridata[0])
- traits = []
- # put all of the separate data together into a huge list of lists
- for j in range(datasize):
- traitdata = list(oridata[0][j])
- for i in range(1,nnn):
- traitdata += list(oridata[i][j][dataStartPos:])
-
- trait = Trait(traitdata[0], traitdata[dataStartPos:])
-
- if method == METHOD_LIT:
- trait.lit_corr = traitdata[1]
-
- if method in TISSUE_METHODS:
- trait.tissue_corr = traitdata[1]
- trait.p_tissue = traitdata[2]
-
- traits.append(trait)
-
- if tempTable:
- self.cursor.execute( 'DROP TEMPORARY TABLE %s' % tempTable )
-
- return traits
-
-
-
-
- # XZ, 09/20/2008: This function creates TEMPORARY TABLE tmpTableName_2 and return its name.
- # XZ, 09/20/2008: It stores top literature correlation values associated with the input geneId.
- # XZ, 09/20/2008: Attention: In each row, the input geneId is always in column GeneId1.
- #XZ, 12/16/2008: the input geneid can be of mouse, rat or human type
- def getTempLiteratureTable(self, species, input_species_geneid, returnNumber):
- # according to mysql the TEMPORARY TABLE name should not have to be unique because
- # it is only available to the current connection. This program will be invoked via command line, but if it
- # were to be invoked over mod_python this could cuase problems. mod_python will keep the connection alive
- # in its executing threads ( i think) so there is a potential for the table not being dropped between users.
- #XZ, 01/29/2009: To prevent the potential risk, I generate random table names and drop the tables after use them.
-
-
- # the 'input_species_geneid' could be rat or human geneid, need to translate it to mouse geneid
- translated_mouse_geneid = self.translateToMouseGeneID (species, input_species_geneid)
-
- tmpTableName_1 = webqtlUtil.genRandStr(prefix="LITERATURE")
-
- q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName_1
- q2 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId1,GeneId2,value FROM LCorrRamin3 WHERE GeneId1=%s' % (tmpTableName_1, translated_mouse_geneid)
- q3 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId2,GeneId1,value FROM LCorrRamin3 WHERE GeneId2=%s AND GeneId1!=%s' % (tmpTableName_1, translated_mouse_geneid,translated_mouse_geneid)
- for x in [q1,q2,q3]: self.cursor.execute(x)
-
- #XZ, 09/23/2008: Just use the top records insteard of using all records
- tmpTableName_2 = webqtlUtil.genRandStr(prefix="TOPLITERATURE")
-
- q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName_2
- self.cursor.execute(q1)
- q2 = 'SELECT GeneId1, GeneId2, value FROM %s ORDER BY value DESC' % tmpTableName_1
- self.cursor.execute(q2)
- result = self.cursor.fetchall()
-
- counter = 0 #this is to count how many records being inserted into table
- for one_row in result:
- mouse_geneid1, mouse_geneid2, lit_corr_alue = one_row
-
- #mouse_geneid1 has been tested before, now should test if mouse_geneid2 has corresponding geneid in other species
- translated_species_geneid = 0
- if species == 'mouse':
- translated_species_geneid = mouse_geneid2
- elif species == 'rat':
- self.cursor.execute( "SELECT rat FROM GeneIDXRef WHERE mouse=%d" % int(mouse_geneid2) )
- record = self.cursor.fetchone()
- if record:
- translated_species_geneid = record[0]
- elif species == 'human':
- self.cursor.execute( "SELECT human FROM GeneIDXRef WHERE mouse=%d" % int(mouse_geneid2) )
- record = self.cursor.fetchone()
- if record:
- translated_species_geneid = record[0]
-
- if translated_species_geneid:
- self.cursor.execute( 'INSERT INTO %s (GeneId1, GeneId2, value) VALUES (%d,%d,%f)' % (tmpTableName_2, int(input_species_geneid),int(translated_species_geneid), float(lit_corr_alue)) )
- counter = counter + 1
-
- #pay attention to the number
- if (counter > 2*returnNumber):
- break
-
- self.cursor.execute('DROP TEMPORARY TABLE %s' % tmpTableName_1)
-
- return tmpTableName_2
-
-
-
- #XZ, 09/23/2008: In tissue correlation tables, there is no record of GeneId1 == GeneId2
- #XZ, 09/24/2008: Note that the correlation value can be negative.
- def getTempTissueCorrTable(self, primaryTraitSymbol="", TissueProbeSetFreezeId=0, method="", returnNumber=0):
-
- def cmpTissCorrAbsoluteValue(A, B):
- try:
- if abs(A[1]) < abs(B[1]): return 1
- elif abs(A[1]) == abs(B[1]):
- return 0
- else: return -1
- except:
- return 0
-
- symbolCorrDict, symbolPvalueDict = self.calculateCorrOfAllTissueTrait(primaryTraitSymbol=primaryTraitSymbol, TissueProbeSetFreezeId=TISSUE_MOUSE_DB, method=method)
-
- symbolCorrList = symbolCorrDict.items()
-
- symbolCorrList.sort(cmpTissCorrAbsoluteValue)
- symbolCorrList = symbolCorrList[0 : 2*returnNumber]
-
- tmpTableName = webqtlUtil.genRandStr(prefix="TOPTISSUE")
-
- q1 = 'CREATE TEMPORARY TABLE %s (Symbol varchar(100) PRIMARY KEY, Correlation float, PValue float)' % tmpTableName
- self.cursor.execute(q1)
-
- for one_pair in symbolCorrList:
- one_symbol = one_pair[0]
- one_corr = one_pair[1]
- one_p_value = symbolPvalueDict[one_symbol]
-
- self.cursor.execute( "INSERT INTO %s (Symbol, Correlation, PValue) VALUES ('%s',%f,%f)" % (tmpTableName, one_symbol, float(one_corr), float(one_p_value)) )
-
- return tmpTableName
-
-
- #XZ, 01/09/2009: This function was created by David Crowell. Xiaodong cleaned up and modified it.
- def fetchLitCorrelations(self, species, GeneId, db, returnNumber): ### Used to generate Lit Correlations when calculations are done from text file. dcrowell August 2008
- """Uses getTempLiteratureTable to generate table of literatire correlations. This function then gathers that data and
- pairs it with the TraitID string. Takes as its arguments a formdata instance, and a database instance.
- Returns a dictionary of 'TraitID':'LitCorr' for the requested correlation"""
-
- tempTable = self.getTempLiteratureTable(species=species, input_species_geneid=GeneId, returnNumber=returnNumber)
-
- query = "SELECT %s.Name, %s.value" % (db.type,tempTable)
- query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type)
- query += ' LEFT JOIN %s ON %s.GeneId2=ProbeSet.GeneId ' % (tempTable,tempTable)
- query += "WHERE ProbeSet.GeneId IS NOT NULL AND %s.value IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable, db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
-
- self.cursor.execute(query)
- results = self.cursor.fetchall()
-
- litCorrDict = {}
-
- for entry in results:
- traitName,litcorr = entry
- litCorrDict[traitName] = litcorr
-
- self.cursor.execute('DROP TEMPORARY TABLE %s' % tempTable)
-
- return litCorrDict
-
-
-
- #XZ, 01/09/2009: Xiaodong created this function.
- def fetchTissueCorrelations(self, db, primaryTraitSymbol="", TissueProbeSetFreezeId=0, method="", returnNumber = 0):
- """Uses getTempTissueCorrTable to generate table of tissue correlations. This function then gathers that data and
- pairs it with the TraitID string. Takes as its arguments a formdata instance, and a database instance.
- Returns a dictionary of 'TraitID':(tissueCorr, tissuePValue) for the requested correlation"""
-
-
- tempTable = self.getTempTissueCorrTable(primaryTraitSymbol=primaryTraitSymbol, TissueProbeSetFreezeId=TISSUE_MOUSE_DB, method=method, returnNumber=returnNumber)
-
- query = "SELECT ProbeSet.Name, %s.Correlation, %s.PValue" % (tempTable, tempTable)
- query += ' FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze)'
- query += ' LEFT JOIN %s ON %s.Symbol=ProbeSet.Symbol ' % (tempTable,tempTable)
- query += "WHERE ProbeSetFreeze.Name = '%s' and ProbeSetFreeze.Id=ProbeSetXRef.ProbeSetFreezeId and ProbeSet.Id = ProbeSetXRef.ProbeSetId and ProbeSet.Symbol IS NOT NULL AND %s.Correlation IS NOT NULL" % (db.name, tempTable)
-
- self.cursor.execute(query)
- results = self.cursor.fetchall()
-
- tissueCorrDict = {}
-
- for entry in results:
- traitName, tissueCorr, tissuePValue = entry
- tissueCorrDict[traitName] = (tissueCorr, tissuePValue)
-
- self.cursor.execute('DROP TEMPORARY TABLE %s' % tempTable)
-
- return tissueCorrDict
-
-
-
- #XZ, 01/13/2008
- def getLiteratureCorrelationByList(self, input_trait_mouse_geneid=None, species=None, traitList=None):
-
- tmpTableName = webqtlUtil.genRandStr(prefix="LITERATURE")
-
- q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName
- q2 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId1,GeneId2,value FROM LCorrRamin3 WHERE GeneId1=%s' % (tmpTableName, input_trait_mouse_geneid)
- q3 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId2,GeneId1,value FROM LCorrRamin3 WHERE GeneId2=%s AND GeneId1!=%s' % (tmpTableName, input_trait_mouse_geneid, input_trait_mouse_geneid)
-
- for x in [q1,q2,q3]:
- self.cursor.execute(x)
-
- for thisTrait in traitList:
- try:
- if thisTrait.geneid:
- thisTrait.mouse_geneid = self.translateToMouseGeneID(species, thisTrait.geneid)
- else:
- thisTrait.mouse_geneid = 0
- except:
- thisTrait.mouse_geneid = 0
-
- if thisTrait.mouse_geneid and str(thisTrait.mouse_geneid).find(";") == -1:
- try:
- self.cursor.execute("SELECT value FROM %s WHERE GeneId2 = %s" % (tmpTableName, thisTrait.mouse_geneid))
- result = self.cursor.fetchone()
- if result:
- thisTrait.LCorr = result[0]
- else:
- thisTrait.LCorr = None
- except:
- thisTrait.LCorr = None
- else:
- thisTrait.LCorr = None
-
- self.cursor.execute("DROP TEMPORARY TABLE %s" % tmpTableName)
-
- return traitList
-
- def get_trait(self, cached, vals):
-
- if cached:
- _log.info("Using the fast method because the file exists")
- lit_corrs = {}
- tissue_corrs = {}
- use_lit = False
- if self.method == METHOD_LIT:
- lit_corrs = self.fetchLitCorrelations(species=self.species, GeneId=self.gene_id, db=self.db, returnNumber=self.returnNumber)
- use_lit = True
-
- use_tissue_corr = False
- if self.method in TISSUE_METHODS:
- tissue_corrs = self.fetchTissueCorrelations(db=self.db, primaryTraitSymbol=self.trait_symbol, TissueProbeSetFreezeId=TISSUE_MOUSE_DB, method=self.method, returnNumber = self.returnNumber)
- use_tissue_corr = True
-
- DatabaseFileName = self.getFileName( target_db_name=self.target_db_name )
- datasetFile = open(webqtlConfig.TEXTDIR+DatabaseFileName,'r')
-
- #XZ, 01/08/2009: read the first line
- line = datasetFile.readline()
- cached_sample_names = webqtlUtil.readLineCSV(line)[1:]
-
- #XZ, 01/08/2009: This step is critical. It is necessary for this new method.
- #XZ: The original function fetchAllDatabaseData uses all strains stored in variable _strains to
- #XZ: retrieve the values of each strain from database in real time.
- #XZ: The new method uses all strains stored in variable dataset_strains to create a new variable
- #XZ: _newvals. _newvals has the same length as dataset_strains. The items in _newvals is in
- #XZ: the same order of items in dataset_strains. The value of each item in _newvals is either
- #XZ: the value of correspinding strain in _vals or 'None'.
- new_vals = []
- for name in cached_sample_names:
- if name in self.sample_names:
- new_vals.append(float(vals[self.sample_names.index(name)]))
- else:
- new_vals.append('None')
-
- nnCorr = len(new_vals)
-
- #XZ, 01/14/2009: If literature corr or tissue corr is selected,
- #XZ: there is no need to use parallel computing.
-
- traits = []
- data_start = 1
- for line in datasetFile:
- raw_trait = webqtlUtil.readLineCSV(line)
- trait = Trait.from_csv(raw_trait, data_start)
- trait.lit_corr = lit_corrs.get(trait.name)
- trait.tissue_corr, trait.p_tissue = tissue_corrs.get(trait.name, (None, None))
- traits.append(trait)
-
- return traits, new_vals
-
- else:
- _log.info("Using the slow method for correlation")
-
- _log.info("Fetching from database")
- traits = self.fetchAllDatabaseData(species=self.species, GeneId=self.gene_id, GeneSymbol=self.trait_symbol, strains=self.sample_names, db=self.db, method=self.method, returnNumber=self.returnNumber, tissueProbeSetFreezeId= self.tissue_probeset_freeze_id)
- _log.info("Done fetching from database")
- totalTraits = len(traits) #XZ, 09/18/2008: total trait number
-
- return traits, vals
-
-
- def do_parallel_correlation(self):
- _log.info("Invoking parallel computing")
- input_line_list = datasetFile.readlines()
- _log.info("Read lines from the file")
- all_line_number = len(input_line_list)
-
- step = 1000
- job_number = math.ceil( float(all_line_number)/step )
-
- job_input_lists = []
-
- _log.info("Configuring jobs")
-
- for job_index in range( int(job_number) ):
- starti = job_index*step
- endi = min((job_index+1)*step, all_line_number)
-
- one_job_input_list = []
-
- for i in range( starti, endi ):
- one_job_input_list.append( input_line_list[i] )
-
- job_input_lists.append( one_job_input_list )
-
- _log.info("Creating pp servers")
-
- ppservers = ()
- # Creates jobserver with automatically detected number of workers
- job_server = pp.Server(ppservers=ppservers)
-
- _log.info("Done creating servers")
-
- jobs = []
- results = []
-
- _log.info("Starting parallel computation, submitting jobs")
- for one_job_input_list in job_input_lists: #pay attention to modules from outside
- jobs.append( job_server.submit(func=compute_corr, args=(nnCorr, _newvals, one_job_input_list, self.method), depfuncs=(), modules=("utility.webqtlUtil",)) )
- _log.info("Done submitting jobs")
-
- for one_job in jobs:
- one_result = one_job()
- results.append( one_result )
-
- _log.info("Acquiring results")
-
- for one_result in results:
- for one_traitinfo in one_result:
- allcorrelations.append( one_traitinfo )
-
- _log.info("Appending the results")
-
- datasetFile.close()
- totalTraits = len(allcorrelations)
- _log.info("Done correlating using the fast method")
-
-
- def correlate(self, vals):
-
- correlations = []
-
- #XZ: Use the fast method only for probeset dataset, and this dataset must have been created.
- #XZ: Otherwise, use original method
- _log.info("Entering correlation")
-
- db_filename = self.getFileName( target_db_name=self.target_db_name )
-
- cache_available = db_filename in os.listdir(webqtlConfig.TEXTDIR)
-
- # If the cache file exists, do a cached correlation for probeset data
- if self.db.type == "ProbeSet":
-# if self.method in [METHOD_SAMPLE_PEARSON, METHOD_SAMPLE_RANK] and cache_available:
-# traits = do_parallel_correlation()
-#
-# else:
-
- (traits, vals) = self.get_trait(cache_available, vals)
-
- for trait in traits:
- trait.calculate_correlation(vals, self.method)
-
- self.record_count = len(traits) #ZS: This isn't a good way to get this value, so I need to change it later
-
- #XZ, 3/31/2010: Theoretically, we should create one function 'comTissueCorr'
- #to compare each trait by their tissue corr p values.
- #But because the tissue corr p values are generated by permutation test,
- #the top ones always have p value 0. So comparing p values actually does nothing.
- #In addition, for the tissue data in our database, the N is always the same.
- #So it's safe to compare with tissue corr statistic value.
- #That's the same as literature corr.
- #if self.method in [METHOD_LIT, METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK] and self.gene_id:
- # traits.sort(webqtlUtil.cmpLitCorr)
- #else:
- #if self.method in TISSUE_METHODS:
- # sort(traits, key=lambda A: math.fabs(A.tissue_corr))
- #elif self.method == METHOD_LIT:
- # traits.sort(traits, key=lambda A: math.fabs(A.lit_corr))
- #else:
- traits = sortTraitCorrelations(traits, self.method)
-
- # Strip to the top N correlations
- traits = traits[:min(self.returnNumber, len(traits))]
-
- addLiteratureCorr = False
- addTissueCorr = False
-
- trait_list = []
- for trait in traits:
- db_trait = webqtlTrait(db=self.db, name=trait.name, cursor=self.cursor)
- db_trait.retrieveInfo( QTL='Yes' )
-
- db_trait.Name = trait.name
- db_trait.corr = trait.correlation
- db_trait.nOverlap = trait.overlap
- db_trait.corrPValue = trait.p_value
-
- # NL, 07/19/2010
- # js function changed, add a new parameter rankOrder for js function 'showTissueCorrPlot'
- db_trait.RANK_ORDER = self.RANK_ORDERS[self.method]
-
- #XZ, 26/09/2008: Method is 4 or 5. Have fetched tissue corr, but no literature correlation yet.
- if self.method in TISSUE_METHODS:
- db_trait.tissueCorr = trait.tissue_corr
- db_trait.tissuePValue = trait.p_tissue
- addTissueCorr = True
-
-
- #XZ, 26/09/2008: Method is 3, Have fetched literature corr, but no tissue corr yet.
- elif self.method == METHOD_LIT:
- db_trait.LCorr = trait.lit_corr
- db_trait.mouse_geneid = self.translateToMouseGeneID(self.species, db_trait.geneid)
- addLiteratureCorr = True
-
- #XZ, 26/09/2008: Method is 1 or 2. Have NOT fetched literature corr and tissue corr yet.
- # Phenotype data will not have geneid, and neither will some probes
- # we need to handle this because we will get an attribute error
- else:
- if self.input_trait_mouse_gene_id and self.db.type=="ProbeSet":
- addLiteratureCorr = True
- if self.trait_symbol and self.db.type=="ProbeSet":
- addTissueCorr = True
-
- trait_list.append(db_trait)
-
- if addLiteratureCorr:
- trait_list = self.getLiteratureCorrelationByList(self.input_trait_mouse_gene_id,
- self.species, trait_list)
- if addTissueCorr:
- trait_list = self.getTissueCorrelationByList(
- primaryTraitSymbol = self.trait_symbol,
- traitList = trait_list,
- TissueProbeSetFreezeId = TISSUE_MOUSE_DB,
- method=self.method)
-
- return trait_list
-
-
- def calculateCorrOfAllTissueTrait(self, primaryTraitSymbol=None, TissueProbeSetFreezeId=None, method=None):
-
- symbolCorrDict = {}
- symbolPvalueDict = {}
-
- primaryTraitSymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TISSUE_MOUSE_DB)
- primaryTraitValue = primaryTraitSymbolValueDict.values()[0]
-
- SymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[], TissueProbeSetFreezeId=TISSUE_MOUSE_DB)
-
- if method in ["2","5"]:
- symbolCorrDict, symbolPvalueDict = correlationFunction.batchCalTissueCorr(primaryTraitValue,SymbolValueDict,method='spearman')
- else:
- symbolCorrDict, symbolPvalueDict = correlationFunction.batchCalTissueCorr(primaryTraitValue,SymbolValueDict)
-
-
- return (symbolCorrDict, symbolPvalueDict)
-
-
-
- #XZ, 10/13/2010
- def getTissueCorrelationByList(self, primaryTraitSymbol=None, traitList=None, TissueProbeSetFreezeId=None, method=None):
-
- primaryTraitSymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TISSUE_MOUSE_DB)
-
- if primaryTraitSymbol.lower() in primaryTraitSymbolValueDict:
- primaryTraitValue = primaryTraitSymbolValueDict[primaryTraitSymbol.lower()]
-
- geneSymbolList = []
-
- for thisTrait in traitList:
- if hasattr(thisTrait, 'symbol'):
- geneSymbolList.append(thisTrait.symbol)
-
- SymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=geneSymbolList, TissueProbeSetFreezeId=TISSUE_MOUSE_DB)
-
- for thisTrait in traitList:
- if hasattr(thisTrait, 'symbol') and thisTrait.symbol and thisTrait.symbol.lower() in SymbolValueDict:
- oneTraitValue = SymbolValueDict[thisTrait.symbol.lower()]
- if method in ["2","5"]:
- result = correlationFunction.calZeroOrderCorrForTiss( primaryTraitValue, oneTraitValue, method='spearman' )
- else:
- result = correlationFunction.calZeroOrderCorrForTiss( primaryTraitValue, oneTraitValue)
- thisTrait.tissueCorr = result[0]
- thisTrait.tissuePValue = result[2]
- else:
- thisTrait.tissueCorr = None
- thisTrait.tissuePValue = None
- else:
- for thisTrait in traitList:
- thisTrait.tissueCorr = None
- thisTrait.tissuePValue = None
-
- return traitList
-
-
- def getTopInfo(self, myTrait=None, method=None, db=None, target_db_name=None, returnNumber=None, methodDict=None, totalTraits=None, identification=None ):
-
- if myTrait:
- if method in ["1","2"]: #genetic correlation
- info = HT.Paragraph("Values of Record %s in the " % myTrait.getGivenName(), HT.Href(text=myTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % myTrait.db.name,target="_blank", Class="fwn"),
- " database were compared to all %d records in the " % self.record_count, HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank", Class="fwn"),
- ' database. The top %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]),
- ' You can resort this list using the small arrowheads in the top row.')
- else:
- #myTrait.retrieveInfo()#need to know geneid and symbol
- if method == "3":#literature correlation
- searchDBName = "Literature Correlation"
- searchDBLink = "/correlationAnnotation.html#literatureCorr"
- else: #tissue correlation
- searchDBName = "Tissue Correlation"
- searchDBLink = "/correlationAnnotation.html#tissueCorr"
- info = HT.Paragraph("Your input record %s in the " % myTrait.getGivenName(), HT.Href(text=myTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % myTrait.db.name,target="_blank", Class="fwn"),
- " database corresponds to ",
- HT.Href(text='gene Id %s, and gene symbol %s' % (myTrait.geneid, myTrait.symbol), target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % myTrait.geneid, Class="fs12 fwn"),
- '. GN ranked all genes in the ', HT.Href(text=searchDBName,url=searchDBLink,target="_blank", Class="fwn"),' database by the %s.' % methodDict[method],
- ' The top %d probes or probesets in the ' % returnNumber, HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank", Class="fwn"),
- ' database corresponding to the top genes ranked by the %s are displayed.' %( methodDict[method]),
- ' You can resort this list using the small arrowheads in the top row.' )
-
- elif identification:
- info = HT.Paragraph('Values of %s were compared to all %d traits in ' % (identification, self.record_count),
- HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank",Class="fwn"),
- ' database. The TOP %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]),
- ' You can resort this list using the small arrowheads in the top row.')
-
- else:
- info = HT.Paragraph('Trait values were compared to all values in ',
- HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank",Class="fwn"),
- ' database. The TOP %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]),
- ' You can resort this list using the small arrowheads in the top row.')
-
- if db.type=="Geno":
- info.append(HT.BR(),HT.BR(),'Clicking on the Locus will open the genotypes data for that locus. Click on the correlation to see a scatter plot of the trait data.')
- elif db.type=="Publish":
- info.append(HT.BR(),HT.BR(),'Clicking on the record ID will open the published phenotype data for that publication. Click on the correlation to see a scatter plot of the trait data. ')
- elif db.type=="ProbeSet":
- info.append(HT.BR(),'Click the correlation values to generate scatter plots. Select the Record ID to open the Trait Data and Analysis form. Select the symbol to open NCBI Entrez.')
- else:
- pass
-
-
- return info
-
-
- def createExcelFileWithTitleAndFooter(self, workbook=None, identification=None, db=None, returnNumber=None):
-
- worksheet = workbook.add_worksheet()
-
- titleStyle = workbook.add_format(align = 'left', bold = 0, size=14, border = 1, border_color="gray")
-
- ##Write title Info
- # Modified by Hongqiang Li
- worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle)
- worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle)
- worksheet.write([2, 0], "Trait : %s" % identification, titleStyle)
- worksheet.write([3, 0], "Database : %s" % db.fullname, titleStyle)
- worksheet.write([4, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle)
- worksheet.write([5, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle)
- worksheet.write([6, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle)
- #Write footer info
- worksheet.write([9 + returnNumber, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA21131), NCI MMHCC (U01CA105417), and NCRR (U01NR 105417)", titleStyle)
- worksheet.write([10 + returnNumber, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle)
-
- return worksheet
-
-
- def getTableHeaderForGeno(self, method=None, worksheet=None, newrow=None, headingStyle=None):
-
- tblobj_header = []
-
- if method in ["1","3","4"]:
- tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
- THCell(HT.TD('Record', HT.BR(), 'ID', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Record ID', idx=1),
- THCell(HT.TD('Location', HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Location (Chr and Mb)', idx=2),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=3),
- THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=4),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_p_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=5)]]
-
- for ncol, item in enumerate(['Record ID', 'Location (Chr, Mb)', 'Sample r', 'N Cases', 'Sample p(r)']):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
- else:
- tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
- THCell(HT.TD('Record', HT.BR(), 'ID', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Record ID', idx=1),
- THCell(HT.TD('Location', HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Location (Chr and Mb)', idx=2),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_rho"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=3),
- THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=4),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_p_rho"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=5)]]
-
- for ncol, item in enumerate(['Record ID', 'Location (Chr, Mb)', 'Sample rho', 'N Cases', 'Sample p(rho)']):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
-
-
- return tblobj_header, worksheet
-
-
- def getTableBodyForGeno(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None):
-
- tblobj_body = []
-
- for thisTrait in traitList:
- tr = []
-
- trId = str(thisTrait)
-
- corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr))
-
- tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
-
- tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"),align="left", Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name.upper()))
-
- #XZ: trait_location_value is used for sorting
- trait_location_repr = '--'
- trait_location_value = 1000000
-
- if thisTrait.chr and thisTrait.mb:
- try:
- trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb
- except:
- if thisTrait.chr.upper() == 'X':
- trait_location_value = 20*1000 + thisTrait.mb
- else:
- trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
-
- trait_location_repr = 'Chr%s: %.6f' % (thisTrait.chr, float(thisTrait.mb) )
-
- tr.append(TDCell(HT.TD(trait_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), trait_location_repr, trait_location_value))
-
-
- repr='%3.3f' % thisTrait.corr
- tr.append(TDCell(HT.TD(HT.Href(text=repr, url="javascript:showCorrPlot('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"), Class="fs12 fwn ffl b1 c222", nowrap='ON', align='right'),repr,abs(thisTrait.corr)))
-
- repr = '%d' % thisTrait.nOverlap
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222",align='right'),repr,thisTrait.nOverlap))
-
- repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
- tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
-
- tblobj_body.append(tr)
-
- for ncol, item in enumerate([thisTrait.name, trait_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue]):
- worksheet.write([newrow, ncol], item)
- newrow += 1
-
- return tblobj_body, worksheet, corrScript
-
-
- def getTableHeaderForPublish(self, method=None, worksheet=None, newrow=None, headingStyle=None):
-
- tblobj_header = []
-
- if method in ["1","3","4"]:
- tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0),
- THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Record ID", idx=1),
- THCell(HT.TD('Phenotype', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Phenotype", idx=2),
- THCell(HT.TD('Authors', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Authors", idx=3),
- THCell(HT.TD('Year', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Year", idx=4),
- THCell(HT.TD('Max',HT.BR(), 'LRS', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS", idx=5),
- THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS Location", idx=6),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=7),
- THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=8),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_p_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=9)]]
-
- for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "Pubmed Id", "Max LRS", "Max LRS Location (Chr: Mb)", "Sample r", "N Cases", "Sample p(r)"]):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
- else:
- tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0),
- THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Record ID", idx=1),
- THCell(HT.TD('Phenotype', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Phenotype", idx=2),
- THCell(HT.TD('Authors', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Authors", idx=3),
- THCell(HT.TD('Year', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Year", idx=4),
- THCell(HT.TD('Max',HT.BR(), 'LRS', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS", idx=5),
- THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS Location", idx=6),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_rho"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=7),
- THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=8),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_p_rho"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=9)]]
-
- for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "Pubmed Id", "Max LRS", "Max LRS Location (Chr: Mb)", "Sample rho", "N Cases", "Sample p(rho)"]):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
-
-
- return tblobj_header, worksheet
-
-
- def getTableBodyForPublish(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None, species=''):
-
- tblobj_body = []
-
- for thisTrait in traitList:
- tr = []
-
- trId = str(thisTrait)
-
- corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr))
-
- tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
-
- tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="center", Class="fs12 fwn b1 c222"),str(thisTrait.name), thisTrait.name))
-
- PhenotypeString = thisTrait.post_publication_description
- if thisTrait.confidential:
- if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
- PhenotypeString = thisTrait.pre_publication_description
-
- tr.append(TDCell(HT.TD(PhenotypeString, Class="fs12 fwn b1 c222"), PhenotypeString, PhenotypeString.upper()))
-
- tr.append(TDCell(HT.TD(thisTrait.authors, Class="fs12 fwn b1 c222 fsI"),thisTrait.authors, thisTrait.authors.strip().upper()))
-
- try:
- PubMedLinkText = myear = repr = int(thisTrait.year)
- except:
- PubMedLinkText = repr = "--"
- myear = 0
- if thisTrait.pubmed_id:
- PubMedLink = HT.Href(text= repr,url= webqtlConfig.PUBMEDLINK_URL % thisTrait.pubmed_id,target='_blank', Class="fs12 fwn")
- else:
- PubMedLink = repr
-
- tr.append(TDCell(HT.TD(PubMedLink, Class="fs12 fwn b1 c222", align='center'), repr, myear))
-
- #LRS and its location
- LRS_score_repr = '--'
- LRS_score_value = 0
- LRS_location_repr = '--'
- LRS_location_value = 1000000
- LRS_flag = 1
-
- #Max LRS and its Locus location
- if thisTrait.lrs and thisTrait.locus:
- self.cursor.execute("""
- select Geno.Chr, Geno.Mb from Geno, Species
- where Species.Name = '%s' and
- Geno.Name = '%s' and
- Geno.SpeciesId = Species.Id
- """ % (species, thisTrait.locus))
- result = self.cursor.fetchone()
-
- if result:
- if result[0] and result[1]:
- LRS_Chr = result[0]
- LRS_Mb = result[1]
-
- #XZ: LRS_location_value is used for sorting
- try:
- LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb)
- except:
- if LRS_Chr.upper() == 'X':
- LRS_location_value = 20*1000 + float(LRS_Mb)
- else:
- LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb)
-
-
- LRS_score_repr = '%3.1f' % thisTrait.lrs
- LRS_score_value = thisTrait.lrs
- LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) )
- LRS_flag = 0
-
- #tr.append(TDCell(HT.TD(HT.Href(text=LRS_score_repr,url="javascript:showIntervalMapping('%s', '%s : %s')" % (formName, thisTrait.db.shortname, thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"),LRS_score_repr, LRS_score_value))
- tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), LRS_score_repr, LRS_score_value))
- tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value))
-
- if LRS_flag:
- tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222"), LRS_score_repr, LRS_score_value))
- tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value))
-
- repr = '%3.4f' % thisTrait.corr
- tr.append(TDCell(HT.TD(HT.Href(text=repr,url="javascript:showCorrPlot('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222", align='right',nowrap="on"), repr, abs(thisTrait.corr)))
-
- repr = '%d' % thisTrait.nOverlap
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.nOverlap))
-
- repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
- tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
-
- tblobj_body.append(tr)
-
- for ncol, item in enumerate([thisTrait.name, PhenotypeString, thisTrait.authors, thisTrait.year, thisTrait.pubmed_id, LRS_score_repr, LRS_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue]):
- worksheet.write([newrow, ncol], item)
- newrow += 1
-
- return tblobj_body, worksheet, corrScript
-
-
- def getTableHeaderForProbeSet(self, method=None, worksheet=None, newrow=None, headingStyle=None):
-
- tblobj_header = []
-
- if method in ["1","3","4"]:
- tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0),
- THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Record ID", idx=1),
- THCell(HT.TD('Gene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Gene ID", idx=2),
- THCell(HT.TD('Homologene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Homologene ID", idx=3),
- THCell(HT.TD('Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Symbol", idx=4),
- THCell(HT.TD('Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Description", idx=5),
- THCell(HT.TD('Location',HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Location (Chr: Mb)", idx=6),
- THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mean Expr", idx=7),
- THCell(HT.TD('Max',HT.BR(),'LRS',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS", idx=8),
- THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS Location (Chr: Mb)", idx=9),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=10),
- THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=11),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_p_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=12),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Lit',HT.BR(), 'Corr', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#literatureCorr"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Lit Corr", idx=13),
- #XZ, 09/22/2008: tissue correlation
- THCell(HT.TD(HT.Href(
- text = HT.Span('Tissue',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#tissue_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue r", idx=14),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Tissue',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#tissue_p_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue p(r)", idx=15)]]
-
- for ncol, item in enumerate(['Record', 'Gene ID', 'Homologene ID', 'Symbol', 'Description', 'Location (Chr: Mb)', 'Mean Expr', 'Max LRS', 'Max LRS Location (Chr: Mb)', 'Sample r', 'N Cases', 'Sample p(r)', 'Lit Corr', 'Tissue r', 'Tissue p(r)']):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
- else:
- tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0),
- THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Record ID", idx=1),
- THCell(HT.TD('Gene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Gene ID", idx=2),
- THCell(HT.TD('Homologene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Homologene ID", idx=3),
- THCell(HT.TD('Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Symbol", idx=4),
- THCell(HT.TD('Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Description", idx=5),
- THCell(HT.TD('Location',HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Location (Chr: Mb)", idx=6),
- THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mean Expr", idx=7),
- THCell(HT.TD('Max',HT.BR(),'LRS',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS", idx=8),
- THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS Location (Chr: Mb)", idx=9),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_rho"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=10),
- THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=11),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_p_rho"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=12),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Lit',HT.BR(), 'Corr', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#literatureCorr"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Lit Corr", idx=13),
- #XZ, 09/22/2008: tissue correlation
- THCell(HT.TD(HT.Href(
- text = HT.Span('Tissue',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#tissue_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue rho", idx=14),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Tissue',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#tissue_p_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue p(rho)", idx=15)]]
-
- for ncol, item in enumerate(['Record ID', 'Gene ID', 'Homologene ID', 'Symbol', 'Description', 'Location (Chr: Mb)', 'Mean Expr', 'Max LRS', 'Max LRS Location (Chr: Mb)', 'Sample rho', 'N Cases', 'Sample p(rho)', 'Lit Corr', 'Tissue rho', 'Tissue p(rho)']):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
-
- return tblobj_header, worksheet
-
-
- def getTableBodyForProbeSet(self, traitList=[], primaryTrait=None, formName=None, worksheet=None, newrow=None, corrScript=None, species=''):
-
- tblobj_body = []
-
- for thisTrait in traitList:
-
- if thisTrait.symbol:
- pass
- else:
- thisTrait.symbol = "--"
-
- if thisTrait.geneid:
- symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % thisTrait.geneid, Class="fs12 fwn")
- else:
- symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % thisTrait.symbol, Class="fs12 fwn")
-
- tr = []
-
- trId = str(thisTrait)
-
- corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr))
-
- #XZ, 12/08/2008: checkbox
- tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
-
- #XZ, 12/08/2008: probeset name
- tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222"), thisTrait.name, thisTrait.name.upper()))
-
- #XZ, 12/08/2008: gene id
- if thisTrait.geneid:
- tr.append(TDCell(None, thisTrait.geneid, val=999))
- else:
- tr.append(TDCell(None, thisTrait.geneid, val=999))
-
- #XZ, 12/08/2008: homologene id
- if thisTrait.homologeneid:
- tr.append(TDCell("", thisTrait.homologeneid, val=999))
- else:
- tr.append(TDCell("", thisTrait.homologeneid, val=999))
-
- #XZ, 12/08/2008: gene symbol
- tr.append(TDCell(HT.TD(symbolurl, Class="fs12 fwn b1 c222 fsI"),thisTrait.symbol, thisTrait.symbol.upper()))
-
- #XZ, 12/08/2008: description
- #XZ, 06/05/2009: Rob asked to add probe target description
- description_string = str(thisTrait.description).strip()
- target_string = str(thisTrait.probe_target_description).strip()
-
- description_display = ''
-
- if len(description_string) > 1 and description_string != 'None':
- description_display = description_string
- else:
- description_display = thisTrait.symbol
-
- if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None':
- description_display = description_display + '; ' + target_string.strip()
-
- tr.append(TDCell(HT.TD(description_display, Class="fs12 fwn b1 c222"), description_display, description_display))
-
- #XZ: trait_location_value is used for sorting
- trait_location_repr = '--'
- trait_location_value = 1000000
-
- if thisTrait.chr and thisTrait.mb:
- try:
- trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb
- except:
- if thisTrait.chr.upper() == 'X':
- trait_location_value = 20*1000 + thisTrait.mb
- else:
- trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
-
- trait_location_repr = 'Chr%s: %.6f' % (thisTrait.chr, float(thisTrait.mb) )
-
- tr.append(TDCell(HT.TD(trait_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), trait_location_repr, trait_location_value))
-
- """
- #XZ, 12/08/2008: chromosome number
- #XZ, 12/10/2008: use Mbvalue to sort chromosome
- tr.append(TDCell( HT.TD(thisTrait.chr, Class="fs12 fwn b1 c222", align='right'), thisTrait.chr, Mbvalue) )
-
- #XZ, 12/08/2008: Rob wants 6 digit precision, and we have to deal with that the mb could be None
- if not thisTrait.mb:
- tr.append(TDCell(HT.TD(thisTrait.mb, Class="fs12 fwn b1 c222",align='right'), thisTrait.mb, Mbvalue))
- else:
- tr.append(TDCell(HT.TD('%.6f' % thisTrait.mb, Class="fs12 fwn b1 c222", align='right'), thisTrait.mb, Mbvalue))
- """
-
-
-
- #XZ, 01/12/08: This SQL query is much faster.
- self.cursor.execute("""
- select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet
- where ProbeSetXRef.ProbeSetFreezeId = %d and
- ProbeSet.Id = ProbeSetXRef.ProbeSetId and
- ProbeSet.Name = '%s'
- """ % (thisTrait.db.id, thisTrait.name))
- result = self.cursor.fetchone()
- if result:
- if result[0]:
- mean = result[0]
- else:
- mean=0
- else:
- mean = 0
-
- #XZ, 06/05/2009: It is neccessary to turn on nowrap
- repr = "%2.3f" % mean
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'),repr, mean))
-
- #LRS and its location
- LRS_score_repr = '--'
- LRS_score_value = 0
- LRS_location_repr = '--'
- LRS_location_value = 1000000
- LRS_flag = 1
-
- #Max LRS and its Locus location
- if thisTrait.lrs and thisTrait.locus:
- self.cursor.execute("""
- select Geno.Chr, Geno.Mb from Geno, Species
- where Species.Name = '%s' and
- Geno.Name = '%s' and
- Geno.SpeciesId = Species.Id
- """ % (species, thisTrait.locus))
- result = self.cursor.fetchone()
-
- if result:
- if result[0] and result[1]:
- LRS_Chr = result[0]
- LRS_Mb = result[1]
-
- #XZ: LRS_location_value is used for sorting
- try:
- LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb)
- except:
- if LRS_Chr.upper() == 'X':
- LRS_location_value = 20*1000 + float(LRS_Mb)
- else:
- LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb)
-
-
- LRS_score_repr = '%3.1f' % thisTrait.lrs
- LRS_score_value = thisTrait.lrs
- LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) )
- LRS_flag = 0
-
- #tr.append(TDCell(HT.TD(HT.Href(text=LRS_score_repr,url="javascript:showIntervalMapping('%s', '%s : %s')" % (formName, thisTrait.db.shortname, thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"),LRS_score_repr, LRS_score_value))
- tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), LRS_score_repr, LRS_score_value))
- tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), LRS_location_repr, LRS_location_value))
-
- if LRS_flag:
- tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222"), LRS_score_repr, LRS_score_value))
- tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value))
-
-
- #XZ, 12/08/2008: generic correlation
- repr='%3.3f' % thisTrait.corr
- tr.append(TDCell(HT.TD(HT.Href(text=repr, url="javascript:showCorrPlot('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"), Class="fs12 fwn ffl b1 c222", align='right'),repr,abs(thisTrait.corr)))
-
- #XZ, 12/08/2008: number of overlaped cases
- repr = '%d' % thisTrait.nOverlap
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.nOverlap))
-
- #XZ, 12/08/2008: p value of genetic correlation
- repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
- tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
-
- #XZ, 12/08/2008: literature correlation
- LCorr = 0.0
- LCorrStr = "--"
- if hasattr(thisTrait, 'LCorr') and thisTrait.LCorr:
- LCorr = thisTrait.LCorr
- LCorrStr = "%2.3f" % thisTrait.LCorr
- tr.append(TDCell(HT.TD(LCorrStr, Class="fs12 fwn b1 c222", align='right'), LCorrStr, abs(LCorr)))
-
- #XZ, 09/22/2008: tissue correlation.
- TCorr = 0.0
- TCorrStr = "--"
- #XZ, 11/20/2008: need to pass two geneids: input_trait_mouse_geneid and thisTrait.mouse_geneid
- if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissueCorr:
- TCorr = thisTrait.tissueCorr
- TCorrStr = "%2.3f" % thisTrait.tissueCorr
- # NL, 07/19/2010: add a new parameter rankOrder for js function 'showTissueCorrPlot'
- rankOrder = self.RANK_ORDERS[self.method]
- TCorrPlotURL = "javascript:showTissueCorrPlot('%s','%s','%s',%d)" %(formName, primaryTrait.symbol, thisTrait.symbol,rankOrder)
- tr.append(TDCell(HT.TD(HT.Href(text=TCorrStr, url=TCorrPlotURL, Class="fs12 fwn ff1"), Class="fs12 fwn ff1 b1 c222", align='right'), TCorrStr, abs(TCorr)))
- else:
- tr.append(TDCell(HT.TD(TCorrStr, Class="fs12 fwn b1 c222", align='right'), TCorrStr, abs(TCorr)))
-
- #XZ, 12/08/2008: p value of tissue correlation
- TPValue = 1.0
- TPValueStr = "--"
- if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissuePValue: #XZ, 09/22/2008: thisTrait.tissuePValue can't be used here because it could be 0
- TPValue = thisTrait.tissuePValue
- TPValueStr = "%2.3f" % thisTrait.tissuePValue
- tr.append(TDCell(HT.TD(TPValueStr, Class="fs12 fwn b1 c222", align='right'), TPValueStr, TPValue))
-
- tblobj_body.append(tr)
-
- for ncol, item in enumerate([thisTrait.name, thisTrait.geneid, thisTrait.homologeneid, thisTrait.symbol, thisTrait.description, trait_location_repr, mean, LRS_score_repr, LRS_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue, LCorr, TCorr, TPValue]):
- worksheet.write([newrow, ncol], item)
-
- newrow += 1
-
- return tblobj_body, worksheet, corrScript
diff --git a/web/webqtl/correlation/PartialCorrDBPage.py b/web/webqtl/correlation/PartialCorrDBPage.py
deleted file mode 100755
index ecd1e623..00000000
--- a/web/webqtl/correlation/PartialCorrDBPage.py
+++ /dev/null
@@ -1,1359 +0,0 @@
-import string
-import cPickle
-import os
-import pyXLWriter as xl
-
-from htmlgen import HTMLgen2 as HT
-
-from base import webqtlConfig
-#import webqtlData
-from utility.THCell import THCell
-from utility.TDCell import TDCell
-from base.webqtlTrait import webqtlTrait
-from base.webqtlDataset import webqtlDataset
-from base.templatePage import templatePage
-from utility import webqtlUtil
-from CorrelationPage import CorrelationPage
-import correlationFunction
-from dbFunction import webqtlDatabaseFunction
-
-
-#########################################
-# Partial Correlation Dataset Page
-#########################################
-
-
-class PartialCorrDBPage(CorrelationPage):
-
- corrMinInformative = 4
-
- def __init__(self, fd):
-
-
- templatePage.__init__(self, fd)
-
- if not self.openMysql():
- return
-
-
- primaryTraitString = fd.formdata.getvalue('primaryTrait')
- primaryTrait = (webqtlTrait(fullname=primaryTraitString, cursor=self.cursor))
-
- controlTraitsString = fd.formdata.getvalue('controlTraits')
- controlTraitsList = list(string.split(controlTraitsString,','))
- controlTraits = []
- for item in controlTraitsList:
- controlTraits.append(webqtlTrait(fullname=item, cursor=self.cursor))
-
- #XZ, 3/16/2010: variable RISet must be pass by the form
- RISet = fd.RISet
- #XZ, 12/12/2008: get species infomation
- species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=RISet)
-
- #XZ, 09/18/2008: get all information about the user selected database.
- self.target_db_name = fd.formdata.getvalue('database2')
-
- try:
- self.db = webqtlDataset(self.target_db_name, self.cursor)
- except:
- heading = "Partial Correlation Table"
- detail = ["The database you just requested has not been established yet."]
- self.error(heading=heading,detail=detail)
- return
-
- #XZ, 09/18/2008: check if user has the authority to get access to the database.
- if self.db.type == 'ProbeSet':
- self.cursor.execute('SELECT Id, Name, FullName, confidentiality, AuthorisedUsers FROM ProbeSetFreeze WHERE Name = "%s"' % self.target_db_name)
- indId, indName, indFullName, confidential, AuthorisedUsers = self.cursor.fetchall()[0]
-
- if confidential == 1:
- access_to_confidential_dataset = 0
-
- #for the dataset that confidentiality is 1
- #1. 'admin' and 'root' can see all of the dataset
- #2. 'user' can see the dataset that AuthorisedUsers contains his id(stored in the Id field of User table)
- if webqtlConfig.USERDICT[self.privilege] > webqtlConfig.USERDICT['user']:
- access_to_confidential_dataset = 1
- else:
- AuthorisedUsersList=AuthorisedUsers.split(',')
- if AuthorisedUsersList.__contains__(self.userName):
- access_to_confidential_dataset = 1
-
- if not access_to_confidential_dataset:
- #Error, Confidential Database
- heading = "Partial Correlation Table"
- detail = ["The %s database you selected is not open to the public at this time, please go back and select another database." % indFullName]
- self.error(heading=heading,detail=detail,error="Confidential Database")
- return
-
-
- primaryTrait.retrieveData()
- _primarystrains, _primaryvals, _primaryvars = primaryTrait.exportInformative()
-
- controlTraitNames = fd.formdata.getvalue('controlTraits')
- _controlstrains,_controlvals,_controlvars,_controlNs = correlationFunction.controlStrains(controlTraitNames,_primarystrains)
-
- ## If the strains for which each of the control traits and the primary trait have values are not identical,
- ## we must remove from the calculation all vlaues for strains that are not present in each. Without doing this,
- ## undesirable biases would be introduced.
-
- common_primary_control_strains = _primarystrains #keep _primarystrains
- fixed_primary_vals = _primaryvals #keep _primaryvals
- fixed_control_vals = _controlvals
-
- allsame = True
- ##allsame is boolean for whether or not primary and control trait have values for the same strains
- for i in _controlstrains:
- if _primarystrains != i:
- allsame=False
- break
-
- if not allsame:
- common_primary_control_strains, fixed_primary_vals, fixed_control_vals, _vars, _controlvars = correlationFunction.fixStrains(_primarystrains,_controlstrains,_primaryvals,_controlvals,_primaryvars,_controlvars)
-
- N = len(common_primary_control_strains)
- if N < self.corrMinInformative:
- heading = "Partial Correlation Table"
- detail = ['Fewer than %d strain data were entered for %s data set. No calculation of correlation has been attempted.' % (self.corrMinInformative, RISet)]
- self.error(heading=heading,detail=detail)
- return
-
- #XZ: We should check the value of control trait and primary trait here.
- nameOfIdenticalTraits = correlationFunction.findIdenticalTraits ( fixed_primary_vals, primaryTraitString, fixed_control_vals, controlTraitsList )
- if nameOfIdenticalTraits:
- heading = "Partial Correlation Table"
- detail = ['%s and %s have same values for the %s strains that will be used to calculate partial correlation (common for all primary and control traits). In such case, partial correlation can NOT be calculated. Please re-select your traits.' % (nameOfIdenticalTraits[0], nameOfIdenticalTraits[1], len(fixed_primary_vals))]
- self.error(heading=heading,detail=detail)
- return
-
-
- #XZ, 09/28/2008: if user select "1", then display 1, 3 and 4.
- #XZ, 09/28/2008: if user select "2", then display 2, 3 and 5.
- #XZ, 09/28/2008: if user select "3", then display 1, 3 and 4.
- #XZ, 09/28/2008: if user select "4", then display 1, 3 and 4.
- #XZ, 09/28/2008: if user select "5", then display 2, 3 and 5.
- methodDict = {"1":"Genetic Correlation (Pearson's r)","2":"Genetic Correlation (Spearman's rho)","3":"SGO Literature Correlation","4":"Tissue Correlation (Pearson's r)", "5":"Tissue Correlation (Spearman's rho)"}
- self.method = fd.formdata.getvalue('method')
- if self.method not in ("1","2","3","4","5"):
- self.method = "1"
-
- self.returnNumber = int(fd.formdata.getvalue('criteria'))
-
- myTrait = primaryTrait
- myTrait.retrieveInfo()
-
- # We will not get Literature Correlations if there is no GeneId because there is nothing to look against
- try:
- input_trait_GeneId = myTrait.geneid
- except:
- input_trait_GeneId = None
-
- # We will not get Tissue Correlations if there is no gene symbol because there is nothing to look against
- try:
- input_trait_symbol = myTrait.symbol
- except:
- input_trait_symbol = None
-
-
- #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid
- input_trait_mouse_geneid = self.translateToMouseGeneID(species, input_trait_GeneId)
-
- #XZ: As of Nov/13/2010, this dataset is 'UTHSC Illumina V6.2 RankInv B6 D2 average CNS GI average (May 08)'
- TissueProbeSetFreezeId = 1
-
-
- #XZ, 09/22/2008: If we need search by GeneId,
- #XZ, 09/22/2008: we have to check if this GeneId is in the literature or tissue correlation table.
- #XZ, 10/15/2008: We also to check if the selected database is probeset type.
- if self.method == "3" or self.method == "4" or self.method == "5":
- if self.db.type != "ProbeSet":
- self.error(heading="Wrong correlation type",detail="It is not possible to compute the %s between your trait and data in this %s database. Please try again after selecting another type of correlation." % (methodDict[self.method],self.db.name),error="Correlation Type Error")
- return
-
- """
- if not input_trait_GeneId:
- self.error(heading="No Associated GeneId",detail="This trait has no associated GeneId, so we are not able to show any literature or tissue related information.",error="No GeneId Error")
- return
- """
-
- #XZ: We have checked geneid did exist
-
- if self.method == "3":
- if not input_trait_GeneId or not self.checkForLitInfo(input_trait_mouse_geneid):
- self.error(heading="No Literature Info",detail="This gene does not have any associated Literature Information.",error="Literature Correlation Error")
- return
-
- if self.method == "4" or self.method == "5":
- if not input_trait_symbol:
- self.error(heading="No Tissue Correlation Information",detail="This gene does not have any associated Tissue Correlation Information.",error="Tissue Correlation Error")
- return
-
- if not self.checkSymbolForTissueCorr(TissueProbeSetFreezeId, myTrait.symbol):
- self.error(heading="No Tissue Correlation Information",detail="This gene does not have any associated Tissue Correlation Information.",error="Tissue Correlation Error")
- return
-
-#######################################################################################################################################
-
- nnCorr = len(fixed_primary_vals)
-
- #XZ: Use the fast method only for probeset dataset, and this dataset must have been created.
- #XZ: Otherwise, use original method
-
- useFastMethod = False
-
- if self.db.type == "ProbeSet":
- DatabaseFileName = self.getFileName( target_db_name=self.target_db_name )
- DirectoryList = os.listdir(webqtlConfig.TEXTDIR) # List of existing text files. Used to check if a text file already exists
- if DatabaseFileName in DirectoryList:
- useFastMethod = True
-
- if useFastMethod:
- totalTraits, allcorrelations = self.getPartialCorrelationsFast(common_primary_control_strains , fixed_primary_vals, fixed_control_vals, nnCorr, DatabaseFileName, species, input_trait_GeneId, input_trait_symbol, TissueProbeSetFreezeId)
-
- if totalTraits == 0:
- useFastMethod = False
-
- #XZ, 01/08/2009: use the original method to retrieve from database and compute.
- if not useFastMethod:
- totalTraits, allcorrelations = self.getPartialCorrelationsNormal(common_primary_control_strains, fixed_primary_vals, fixed_control_vals, nnCorr, species, input_trait_GeneId, input_trait_symbol,TissueProbeSetFreezeId)
-
-#############################################################
-
- if self.method == "3" and input_trait_GeneId:
- allcorrelations.sort(self.cmpLitCorr)
- elif self.method in ["4","5"] and input_trait_GeneId:
- allcorrelations.sort(self.cmpLitCorr)
- else:
- allcorrelations.sort(self.cmpPartialCorrPValue)
-
- #XZ, 09/20/2008: we only need the top ones.
- self.returnNumber = min(self.returnNumber,len(allcorrelations))
- allcorrelations = allcorrelations[:self.returnNumber]
-
- addLiteratureCorr = False
- addTissueCorr = False
-
- traitList = []
- for item in allcorrelations:
- thisTrait = webqtlTrait(db=self.db, name=item[0], cursor=self.cursor)
- thisTrait.retrieveInfo()
-
- thisTrait.Name = item[0]
- thisTrait.NOverlap = item[1]
-
- thisTrait.partial_corr = item[2]
- thisTrait.partial_corrPValue = item[3]
-
- thisTrait.corr = item[4]
- thisTrait.corrPValue = item[5]
- # NL, 07/19/2010
- # js function changed, add a new parameter rankOrder for js function 'showTissueCorrPlot'
- rankOrder = 0;
- if self.method in ["2","5"]:
- rankOrder = 1;
- thisTrait.rankOrder = rankOrder
-
- #XZ, 26/09/2008: Method is 4 or 5. Have fetched tissue corr, but no literature correlation yet.
- if len(item) == 8:
- thisTrait.tissueCorr = item[6]
- thisTrait.tissuePValue = item[7]
- addLiteratureCorr = True
-
- #XZ, 26/09/2008: Method is 3, Have fetched literature corr, but no tissue corr yet.
- elif len(item) == 7:
- thisTrait.LCorr = item[6]
- thisTrait.mouse_geneid = self.translateToMouseGeneID(species, thisTrait.geneid)
- addTissueCorr = True
-
- #XZ, 26/09/2008: Method is 1 or 2. Have NOT fetched literature corr and tissue corr yet.
- # Phenotype data will not have geneid, and neither will some probes
- # we need to handle this because we will get an attribute error
- else:
- if input_trait_mouse_geneid and self.db.type=="ProbeSet":
- addLiteratureCorr = True
- if input_trait_symbol and self.db.type=="ProbeSet":
- addTissueCorr = True
-
- traitList.append(thisTrait)
-
- if addLiteratureCorr:
- traitList = self.getLiteratureCorrelationByList(input_trait_mouse_geneid, species, traitList)
- if addTissueCorr:
- traitList = self.getTissueCorrelationByList(primaryTraitSymbol=input_trait_symbol, traitList=traitList,TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=self.method)
-
-########################################################
-
- TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee')
-
- mainfmName = webqtlUtil.genRandStr("fm_")
- form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name= mainfmName, submit=HT.Input(type='hidden'))
- hddn = {'FormID':'showDatabase', 'ProbeSetID':'_','database':self.target_db_name, 'CellID':'_', 'RISet':RISet, 'identification':fd.identification}
-
- if myTrait:
- hddn['fullname']=str(myTrait)
-
-
- for key in hddn.keys():
- form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
-
- #XZ, 11/21/2008: add two parameters to form
- form.append(HT.Input(name="X_geneSymbol", value="", type='hidden'))
- form.append(HT.Input(name="Y_geneSymbol", value="", type='hidden'))
-
- #XZ, 3/11/2010: add one parameter to record if the method is rank order.
-
- form.append(HT.Input(name="rankOrder", value="%s" % rankOrder, type='hidden'))
-
- form.append(HT.Input(name="TissueProbeSetFreezeId", value="%s" % TissueProbeSetFreezeId, type='hidden'))
-
-
- ####################################
- # generate the info on top of page #
- ####################################
-
- info_form = self.getFormForPrimaryAndControlTraits (primaryTrait, controlTraits)
- info = self.getTopInfo(myTrait=myTrait, method=self.method, db=self.db, target_db_name=self.target_db_name, returnNumber=self.returnNumber, methodDict=methodDict, totalTraits=totalTraits, identification=fd.identification )
-
- ##############
- # Excel file #
- ##############
- filename= webqtlUtil.genRandStr("Corr_")
- xlsUrl = HT.Input(type='button', value = 'Download Table', onClick= "location.href='/tmp/%s.xls'" % filename, Class='button')
- # Create a new Excel workbook
- workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+filename))
- headingStyle = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white")
-
- #XZ, 3/18/2010: pay attention to the line number of header in this file. As of today, there are 7 lines.
- worksheet = self.createExcelFileWithTitleAndFooter(workbook=workbook, identification=fd.identification, db=self.db, returnNumber=self.returnNumber)
-
- newrow = 7
-
-
-
-#####################################################################
-
- mintmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'showIntMap');" % mainfmName)
- mintmap_img = HT.Image("/images/multiple_interval_mapping1_final.jpg", name='mintmap', alt="Multiple Interval Mapping", title="Multiple Interval Mapping", style="border:none;")
- mintmap.append(mintmap_img)
- mcorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'compCorr');" % mainfmName)
- mcorr_img = HT.Image("/images/compare_correlates2_final.jpg", alt="Compare Correlates", title="Compare Correlates", style="border:none;")
- mcorr.append(mcorr_img)
- cormatrix = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'corMatrix');" % mainfmName)
- cormatrix_img = HT.Image("/images/correlation_matrix1_final.jpg", alt="Correlation Matrix and PCA", title="Correlation Matrix and PCA", style="border:none;")
- cormatrix.append(cormatrix_img)
- networkGraph = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'networkGraph');" % mainfmName)
- networkGraph_img = HT.Image("/images/network_graph1_final.jpg", name='mintmap', alt="Network Graphs", title="Network Graphs", style="border:none;")
- networkGraph.append(networkGraph_img)
- heatmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'heatmap');" % mainfmName)
- heatmap_img = HT.Image("/images/heatmap2_final.jpg", name='mintmap', alt="QTL Heat Map and Clustering", title="QTL Heatmap and Clustering", style="border:none;")
- heatmap.append(heatmap_img)
- partialCorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'partialCorrInput');" % mainfmName)
- partialCorr_img = HT.Image("/images/partial_correlation_final.jpg", name='partialCorr', alt="Partial Correlation", title="Partial Correlation", style="border:none;")
- partialCorr.append(partialCorr_img)
- addselect = HT.Href(url="#redirect", onClick="addRmvSelection('%s', document.getElementsByName('%s')[0], 'addToSelection');" % (RISet, mainfmName))
- addselect_img = HT.Image("/images/add_collection1_final.jpg", name="addselect", alt="Add To Collection", title="Add To Collection", style="border:none;")
- addselect.append(addselect_img)
- selectall = HT.Href(url="#redirect", onClick="checkAll(document.getElementsByName('%s')[0]);" % mainfmName)
- selectall_img = HT.Image("/images/select_all2_final.jpg", name="selectall", alt="Select All", title="Select All", style="border:none;")
- selectall.append(selectall_img)
- selectinvert = HT.Href(url="#redirect", onClick = "checkInvert(document.getElementsByName('%s')[0]);" % mainfmName)
- selectinvert_img = HT.Image("/images/invert_selection2_final.jpg", name="selectinvert", alt="Invert Selection", title="Invert Selection", style="border:none;")
- selectinvert.append(selectinvert_img)
- reset = HT.Href(url="#redirect", onClick="checkNone(document.getElementsByName('%s')[0]); return false;" % mainfmName)
- reset_img = HT.Image("/images/select_none2_final.jpg", alt="Select None", title="Select None", style="border:none;")
- reset.append(reset_img)
- selecttraits = HT.Input(type='button' ,name='selecttraits',value='Select Traits', onClick="checkTraits(this.form);",Class="button")
- selectgt = HT.Input(type='text' ,name='selectgt',value='-1.0', size=6,maxlength=10,onChange="checkNumeric(this,1.0,'-1.0','gthan','greater than filed')")
- selectlt = HT.Input(type='text' ,name='selectlt',value='1.0', size=6,maxlength=10,onChange="checkNumeric(this,-1.0,'1.0','lthan','less than field')")
- selectandor = HT.Select(name='selectandor')
- selectandor.append(('AND','and'))
- selectandor.append(('OR','or'))
- selectandor.selected.append('AND')
-
- chrMenu = HT.Input(type='hidden',name='chromosomes',value='all')
-
- corrHeading = HT.Paragraph('Partial Correlation Table', Class="title")
-
-
- pageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%", border=0, align="Left")
- containerTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="90%",border=0, align="Left")
-
- optionsTable = HT.TableLite(cellSpacing=2, cellPadding=0,width="320", height="80", border=0, align="Left")
- optionsTable.append(HT.TR(HT.TD(selectall), HT.TD(reset), HT.TD(selectinvert), HT.TD(addselect), align="left"))
- optionsTable.append(HT.TR(HT.TD("&nbsp;"*1,"Select"), HT.TD("Deselect"), HT.TD("&nbsp;"*1,"Invert"), HT.TD("&nbsp;"*3,"Add")))
- containerTable.append(HT.TR(HT.TD(optionsTable)))
-
- functionTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="480",height="80", border=0, align="Left")
- functionRow = HT.TR(HT.TD(networkGraph, width="16.7%"), HT.TD(cormatrix, width="16.7%"), HT.TD(partialCorr, width="16.7%"), HT.TD(mcorr, width="16.7%"), HT.TD(mintmap, width="16.7%"), HT.TD(heatmap), align="left")
- labelRow = HT.TR(HT.TD("&nbsp;"*1,HT.Text("Graph")), HT.TD("&nbsp;"*1,HT.Text("Matrix")), HT.TD("&nbsp;"*1,HT.Text("Partial")), HT.TD(HT.Text("Compare")), HT.TD(HT.Text("QTL Map")), HT.TD(HT.Text(text="Heat Map")))
- functionTable.append(functionRow, labelRow)
- containerTable.append(HT.TR(HT.TD(functionTable), HT.BR()))
-
- moreOptions = HT.Input(type='button',name='options',value='More Options', onClick="",Class="toggle")
- fewerOptions = HT.Input(type='button',name='options',value='Fewer Options', onClick="",Class="toggle")
-
- if (fd.formdata.getvalue('showHideOptions') == 'less'):
- containerTable.append(HT.TR(HT.TD("&nbsp;"), height="10"), HT.TR(HT.TD(HT.Div(fewerOptions, Class="toggleShowHide"))))
- containerTable.append(HT.TR(HT.TD("&nbsp;")))
- else:
- containerTable.append(HT.TR(HT.TD("&nbsp;"), height="10"), HT.TR(HT.TD(HT.Div(moreOptions, Class="toggleShowHide"))))
- containerTable.append(HT.TR(HT.TD("&nbsp;")))
-
- containerTable.append(HT.TR(HT.TD(HT.Span(selecttraits,' with partial r > ',selectgt, ' ',selectandor, ' r < ',selectlt,Class="bd1 cbddf fs11")), style="display:none;", Class="extra_options"))
-
-
- tblobj = {}
-
-
- if self.db.type=="Geno":
-
- containerTable.append(HT.TR(HT.TD(xlsUrl, height=40)))
- pageTable.append(HT.TR(HT.TD(containerTable)))
-
- tblobj['header'], worksheet = self.getTableHeaderForGeno( method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
- newrow += 1
-
- corrScript = HT.Script(language="Javascript")
- corrScript.append("var corrArray = new Array();")
-
- sortby = self.getSortByValue( calculationMethod = self.method )
-
- tblobj['body'], worksheet, corrScript = self.getTableBodyForGeno(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript)
-
- workbook.close()
- objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
- cPickle.dump(tblobj, objfile)
- objfile.close()
- # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
- div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
- pageTable.append(HT.TR(HT.TD(div)))
- form.append(HT.Input(name='ShowStrains',type='hidden', value =1),
- HT.Input(name='ShowLine',type='hidden', value =1),
- HT.P(),pageTable)
-
- TD_LR.append(corrHeading, info_form, HT.P(), info, form, HT.P())
-
- self.dict['body'] = str(TD_LR)
- # updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
- self.dict['js1'] = ''
- self.dict['title'] = 'Partial Correlation Result'
-
- elif self.db.type=="Publish":
-
- containerTable.append(HT.TR(HT.TD(xlsUrl, height=40)))
- pageTable.append(HT.TR(HT.TD(containerTable)))
-
- tblobj['header'], worksheet = self.getTableHeaderForPublish(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
- newrow += 1
-
- sortby = self.getSortByValue( calculationMethod = self.method )
-
- corrScript = HT.Script(language="Javascript")
- corrScript.append("var corrArray = new Array();")
-
- tblobj['body'], worksheet, corrScript = self.getTableBodyForPublish(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript)
-
- workbook.close()
-
- objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
- cPickle.dump(tblobj, objfile)
- objfile.close()
- # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
- div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
- pageTable.append(HT.TR(HT.TD(div)))
-
- form.append(
- HT.Input(name='ShowStrains',type='hidden', value =1),
- HT.Input(name='ShowLine',type='hidden', value =1),
- HT.P(),pageTable)
-
- TD_LR.append(corrHeading, info_form, HT.P(), info, form, HT.P())
-
- self.dict['body'] = str(TD_LR)
- #updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
- self.dict['js1'] = ''
- self.dict['title'] = 'Partial Correlation Result'
-
- elif self.db.type=="ProbeSet":
-
- tblobj['header'], worksheet = self.getTableHeaderForProbeSet(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
- newrow += 1
-
- sortby = self.getSortByValue( calculationMethod = self.method )
-
- corrScript = HT.Script(language="Javascript")
- corrScript.append("var corrArray = new Array();")
-
- tblobj['body'], worksheet, corrScript = self.getTableBodyForProbeSet(traitList=traitList, primaryTrait=myTrait, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript)
-
- workbook.close()
- objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
- cPickle.dump(tblobj, objfile)
- objfile.close()
-
- '''
- #XZ, 07/07/2010: I comment out this block of code.
- WebGestaltScript = HT.Script(language="Javascript")
- WebGestaltScript.append("""
-setTimeout('openWebGestalt()', 2000);
-function openWebGestalt(){
- var thisForm = document['WebGestalt'];
- makeWebGestaltTree(thisForm, '%s', %d, 'edag_only.php');
-}
- """ % (mainfmName, len(traitList)))
- '''
-
- #XZ: here is the table of traits
- # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
- div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
-
- self.cursor.execute('SELECT GeneChip.GO_tree_value FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % self.db.name)
- result = self.cursor.fetchone()
-
- if result:
- GO_tree_value = result[0]
-
- if GO_tree_value:
-
- hddnWebGestalt = {
- 'id_list':'',
- 'correlation':'',
- 'id_value':'',
- 'llid_list':'',
- 'id_type':GO_tree_value,
- 'idtype':'',
- 'species':'',
- 'list':'',
- 'client':''}
-
- hddnWebGestalt['ref_type'] = hddnWebGestalt['id_type']
- hddnWebGestalt['cat_type'] = 'GO'
- hddnWebGestalt['significancelevel'] = 'Top10'
-
- if species == 'rat':
- hddnWebGestalt['org'] = 'Rattus norvegicus'
- elif species == 'human':
- hddnWebGestalt['org'] = 'Homo sapiens'
- elif species == 'mouse':
- hddnWebGestalt['org'] = 'Mus musculus'
- else:
- hddnWebGestalt['org'] = ''
-
- for key in hddnWebGestalt.keys():
- form.append(HT.Input(name=key, value=hddnWebGestalt[key], type='hidden'))
-
- #XZ, 01/12/2009: create database menu for 'Add Correlation'
- self.cursor.execute("""
- select
- ProbeSetFreeze.FullName, ProbeSetFreeze.Id, Tissue.name
- from
- ProbeSetFreeze, ProbeFreeze, ProbeSetFreeze as ps2, ProbeFreeze as p2, Tissue
- where
- ps2.Id = %d
- and ps2.ProbeFreezeId = p2.Id
- and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id
- and (ProbeFreeze.InbredSetId = p2.InbredSetId or (ProbeFreeze.InbredSetId in (1, 3) and p2.InbredSetId in (1, 3)))
- and p2.ChipId = ProbeFreeze.ChipId
- and ps2.Id != ProbeSetFreeze.Id
- and ProbeFreeze.TissueId = Tissue.Id
- and ProbeSetFreeze.public > %d
- order by
- ProbeFreeze.TissueId, ProbeSetFreeze.CreateTime desc
- """ % (self.db.id, webqtlConfig.PUBLICTHRESH))
-
- results = self.cursor.fetchall()
- dbCustomizer = HT.Select(results, name = "customizer")
- databaseMenuSub = preTissue = ""
- for item in results:
- TName, TId, TTissue = item
- if TTissue != preTissue:
- if databaseMenuSub:
- dbCustomizer.append(databaseMenuSub)
- databaseMenuSub = HT.Optgroup(label = '%s mRNA ------' % TTissue)
- preTissue = TTissue
-
- databaseMenuSub.append(item[:2])
- if databaseMenuSub:
- dbCustomizer.append(databaseMenuSub)
- #updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
- #variables: filename, strainIds and vals are required by getquerystring function
- strainIds=self.getStrainIds(species=species, strains=_primarystrains)
- var1 = HT.Input(name="filename", value=filename, type='hidden')
- var2 = HT.Input(name="strainIds", value=strainIds, type='hidden')
- var3 = HT.Input(name="vals", value=_primaryvals, type='hidden')
- customizerButton = HT.Input(type="button", Class="button", value="Add Correlation", onClick = "xmlhttpPost('%smain.py?FormID=AJAX_table', 'sortable', (getquerystring(this.form)))" % webqtlConfig.CGIDIR)
-
- containerTable.append(HT.TR(HT.TD(HT.Span(var1,var2,var3,customizerButton, "with", dbCustomizer, Class="bd1 cbddf fs11"), HT.BR(), HT.BR()), style="display:none;", Class="extra_options"))
-
- #outside analysis part
- GCATButton = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GCAT');" % mainfmName)
- GCATButton_img = HT.Image("/images/GCAT_logo_final.jpg", name="GCAT", alt="GCAT", title="GCAT", style="border:none")
- GCATButton.append(GCATButton_img)
-
- ODE = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'ODE');" % mainfmName)
- ODE_img = HT.Image("/images/ODE_logo_final.jpg", name="ode", alt="ODE", title="ODE", style="border:none")
- ODE.append(ODE_img)
-
- WebGestalt = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GOTree');" % mainfmName)
- WebGestalt_img = HT.Image("/images/webgestalt_icon_final.jpg", name="webgestalt", alt="Gene Set Analysis Toolkit", title="Gene Set Analysis Toolkit", style="border:none")
- WebGestalt.append(WebGestalt_img)
-
- LinkOutTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="320",height="80", border=0, align="Left")
- if not GO_tree_value:
- LinkOutRow = HT.TR(HT.TD(GCATButton, width="50%"), HT.TD(ODE, width="50%"), align="left")
- LinkOutLabels = HT.TR(HT.TD("&nbsp;", HT.Text("GCAT"), width="50%"), HT.TD("&nbsp;",HT.Text("ODE"), width="50%"), align="left")
- else:
- LinkOutRow = HT.TR(HT.TD(WebGestalt, width="25%"), HT.TD(GCATButton, width="25%"), HT.TD(ODE, width="25%"), align="left")
- LinkOutLabels = HT.TR(HT.TD(HT.Text("Gene Set")), HT.TD("&nbsp;"*2, HT.Text("GCAT")), HT.TD("&nbsp;"*3, HT.Text("ODE")), style="display:none;", Class="extra_options")
- LinkOutTable.append(LinkOutRow,LinkOutLabels)
-
- containerTable.append(HT.TR(HT.TD(LinkOutTable), Class="extra_options", style="display:none;"))
-
- containerTable.append(HT.TR(HT.TD(xlsUrl, HT.BR(), HT.BR(), height=40)))
-
- pageTable.append(HT.TR(HT.TD(containerTable)))
-
- pageTable.append(HT.TR(HT.TD(div)))
-
- if species == 'human':
- heatmap = ""
-
- form.append(HT.Input(name='ShowStrains',type='hidden', value =1),
- HT.Input(name='ShowLine',type='hidden', value =1),
- info, HT.BR(), pageTable, HT.BR())
-
- TD_LR.append(corrHeading, info_form, HT.P(), form, HT.P())
-
-
- self.dict['body'] = str(TD_LR)
- self.dict['title'] = 'Partial Correlation Result'
- # updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
- self.dict['js1'] = ''
- self.dict['js2'] = 'onLoad="pageOffset()"'
- self.dict['layer'] = self.generateWarningLayer()
-
- else:
- self.dict['body'] = ""
-
-
-
-####################################
-# #
-#Partial CorrelationPage Functions #
-# #
-####################################
-
-
- def getSortByValue(self, calculationMethod):
-
- sortby = ("partial_pv", "up")
-
- if calculationMethod == "3": #XZ: literature correlation
- sortby = ("lcorr","down")
- elif calculationMethod == "4" or calculationMethod == "5": #XZ: tissue correlation
- sortby = ("tissuecorr", "down")
-
- return sortby
-
-
- #XZ, 3/31/2010:
- #A[0] holds trait name.
- #A[1] holds partial correlation coefficient number.
- #A[2] holds N.
- #A[3] holds p value of partial correlation.
- def cmpPartialCorrPValue (self, A, B):
- try:
- if A[3] < B[3]:
- return -1
- elif A[3] == B[3]:
- return 0
- else:
- return 1
- except:
- return 0
-
-
- #XZ, 4/1/2010:
- #A[0] holds trait name.
- #A[1] holds N.
- #A[2] holds partial correlation coefficient number.
- #A[3] holds p value of partial correlation.
- #A[6] holds literature corr or tissue corr value.
- #Sort by literature corr or tissue corr first, then by partial corr p value.
- def cmpLitCorr(self, A, B):
- try:
- if abs(A[6]) < abs(B[6]):
- return 1
- elif abs(A[6]) == abs(B[6]):
- if A[3] < B[3]:
- return -1
- elif A[3] == B[3]:
- return 0
- else:
- return 1
- else:
- return -1
- except:
- return 0
-
-
- def getPartialCorrelationsFast(self, _strains, _vals, _controlvals, nnCorr, DatabaseFileName, species, input_trait_GeneId,gene_symbol,TissueProbeSetFreezeId ):
- """Calculates and returns correlation coefficients using data from a csv text file."""
-
- try:
- allcorrelations = []
-
- useLit = False
- if self.method == "3":
- litCorrs = self.fetchLitCorrelations(species=species, GeneId=input_trait_GeneId, db=self.db, returnNumber=self.returnNumber)
- useLit = True
-
- useTissueCorr = False
- if self.method == "4" or self.method == "5":
- tissueCorrs = self.fetchTissueCorrelations(db=self.db,primaryTraitSymbol=gene_symbol, TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=self.method, returnNumber=self.returnNumber)
- useTissueCorr = True
-
- datasetFile = open(webqtlConfig.TEXTDIR+DatabaseFileName,'r')
-
- #XZ, 01/08/2009: read the first line
- line = datasetFile.readline()
- dataset_strains = webqtlUtil.readLineCSV(line)[1:]
-
- #XZ, 3/30/2010: This step is critical.
- good_dataset_strains_index = []
-
- for i in range(len(_strains)):
- found_in_dataset_strains = 0
- for j, one_dataset_strain in enumerate(dataset_strains):
- if one_dataset_strain == _strains[i]:
- found_in_dataset_strains = 1
- good_dataset_strains_index.append(j)
- break
-
- if not found_in_dataset_strains:
- good_dataset_strains_index.append(-99999)
-
- allTargetTraitNames = []
- allTargetTraitValues = []
-
- #XZ, 04/01/2009: If literature corr or tissue corr is selected,
- #XZ: there is no need to compute partial correlation for all traits.
- #XZ: If genetic corr is selected, compute partial correlation for all traits.
- for line in datasetFile:
- trait_line = webqtlUtil.readLineCSV(line)
- trait_name = trait_line[0]
- trait_data = trait_line[1:]
-
- if useLit:
- if not litCorrs.has_key( trait_name ):
- continue
-
- if useTissueCorr:
- if not tissueCorrs.has_key( trait_name ):
- continue
-
- #XZ, 04/01/2010: If useLit or useTissueCorr, and this trait should not be added,
- #it will not go to the next step.
-
- good_dataset_vals = []
- for i in good_dataset_strains_index:
- if i == -99999:
- good_dataset_vals.append(None)
- else:
- good_dataset_vals.append( float(trait_data[i]) )
-
- allTargetTraitNames.append(trait_name)
- allTargetTraitValues.append(good_dataset_vals)
-
- datasetFile.close()
-
- if self.method in ["2", "5"]: #Spearman
- allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames, method='s')
- else:
- allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames)
-
- totalTraits = len(allcorrelations)
-
- if useLit or useTissueCorr:
- for i, item in enumerate(allcorrelations):
- if useLit:
- allcorrelations[i].append(litCorrs[ item[0] ])
- if useTissueCorr:
- tempCorr, tempPValue = tissueCorrs[ item[0] ]
- allcorrelations[i].append(tempCorr)
- allcorrelations[i].append(tempPValue)
-
- return totalTraits, allcorrelations
- except:
- return 0, 0
-
-
- def getPartialCorrelationsNormal(self, _strains, _vals, _controlvals, nnCorr, species, input_trait_GeneId, input_trait_symbol,TissueProbeSetFreezeId):
- """Calculates and returns correlation coefficients"""
-
- traitdatabase, dataStartPos = self.fetchAllDatabaseData(species=species, GeneId=input_trait_GeneId, GeneSymbol=input_trait_symbol, strains=_strains, db=self.db, method=self.method, returnNumber=self.returnNumber, tissueProbeSetFreezeId=TissueProbeSetFreezeId)
- totalTraits = len(traitdatabase) #XZ, 09/18/2008: total trait number
-
- allcorrelations = []
-
- allTargetTraitNames = []
- allTargetTraitValues = []
-
- for traitdata in traitdatabase:
- traitdataName = traitdata[0]
- traitvals = traitdata[dataStartPos:]
- allTargetTraitNames.append (traitdataName)
- allTargetTraitValues.append (traitvals)
-
- if self.method in ["2", "5"]: #Spearman
- allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames, method='s')
- else:
- allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames)
-
- #XZ, 09/28/2008: if user select '3', then fetchAllDatabaseData would give us LitCorr in the [1] position
- #XZ, 09/28/2008: if user select '4' or '5', then fetchAllDatabaseData would give us Tissue Corr in the [1] position
- #XZ, 09/28/2008: and Tissue Corr P Value in the [2] position
- if input_trait_GeneId and self.db.type == "ProbeSet" and self.method in ["3", "4", "5"]:
- for i, item in enumerate(allcorrelations):
- if self.method == "3":
- item.append( traitdatabase[1] )
- if self.method == "4" or self.method == "5":
- item.append( traitdatabase[1] )
- item.append( traitdatabase[2] )
-
-
- return totalTraits, allcorrelations
-
-
- def getTableHeaderForPublish(self, method=None, worksheet=None, newrow=None, headingStyle=None):
-
- tblobj_header = []
-
- if method in ["1", "3", "4"]:
- tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0),
- THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="id", idx=1),
- THCell(HT.TD('Phenotype', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="pheno", idx=2),
- THCell(HT.TD('Authors', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="auth", idx=3),
- THCell(HT.TD('Year', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="year", idx=4),
- THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="nstr", idx=5),
- THCell(HT.TD('Partial r ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="partial_corr", idx=6),
- THCell(HT.TD('p(partial r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="partial_pv", idx=7),
- THCell(HT.TD('r ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="corr", idx=8),
- THCell(HT.TD('p(r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="pv", idx=9),
- THCell(HT.TD('delta r', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="delta_corr", idx=10)]]
-
- for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "PubMedID", "N", "Partial r", "p(partial r)", "r ", "p(r)", "delta r"]):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
- else:
- tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0),
- THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="id", idx=1),
- THCell(HT.TD('Phenotype', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="pheno", idx=2),
- THCell(HT.TD('Authors', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="auth", idx=3),
- THCell(HT.TD('Year', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="year", idx=4),
- THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="nstr", idx=5),
- THCell(HT.TD('Partial rho ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="partial_corr", idx=6),
- THCell(HT.TD('p(partial rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="partial_pv", idx=7),
- THCell(HT.TD('rho ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="corr", idx=8),
- THCell(HT.TD('p(rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="pv", idx=9),
- THCell(HT.TD('delta rho', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="delta_corr", idx=10)]]
-
- for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "PubMedID", "N", "Partial rho", "p(partial rho)", "rho ", "p(rho)", "delta rho"]):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
-
- return tblobj_header, worksheet
-
-
- def getTableBodyForPublish(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None):
-
- tblobj_body = []
-
- for thisTrait in traitList:
- tr = []
-
- trId = str(thisTrait)
-
- #partial corr value could be string 'NA'
- try:
- corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.partial_corr))
- except:
- corrScript.append('corrArray["%s"] = {corr:"NA"};' % (trId))
-
- tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
-
- tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="center", Class="fs12 fwn b1 c222"),str(thisTrait.name), thisTrait.name))
-
- PhenotypeString = thisTrait.post_publication_description
- if thisTrait.confidential:
- if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
- PhenotypeString = thisTrait.pre_publication_description
- tr.append(TDCell(HT.TD(PhenotypeString, Class="fs12 fwn b1 c222"), PhenotypeString, PhenotypeString.upper()))
-
- tr.append(TDCell(HT.TD(thisTrait.authors, Class="fs12 fwn b1 c222 fsI"),thisTrait.authors, thisTrait.authors.strip().upper()))
-
- try:
- PubMedLinkText = myear = repr = int(thisTrait.year)
- except:
- PubMedLinkText = repr = "N/A"
- myear = 0
- if thisTrait.pubmed_id:
- PubMedLink = HT.Href(text= repr,url= webqtlConfig.PUBMEDLINK_URL % thisTrait.pubmed_id,target='_blank', Class="fs12 fwn")
- else:
- PubMedLink = repr
-
- tr.append(TDCell(HT.TD(PubMedLink, Class="fs12 fwn b1 c222", align='center'), repr, myear))
-
- repr = '%d' % thisTrait.NOverlap
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.NOverlap))
-
- try:
- repr = '%3.3f' % thisTrait.partial_corr
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), repr, abs(thisTrait.partial_corr)))
- except:
- repr = 'NA'
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 ))
-
- repr = webqtlUtil.SciFloat(thisTrait.partial_corrPValue)
- tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.partial_corrPValue))
-
- repr = '%3.3f' % thisTrait.corr
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), repr, abs(thisTrait.corr)))
-
- repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
- tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
-
- #delta
- try:
- delta = '%3.3f' % ( float(thisTrait.partial_corr) - float(thisTrait.corr) )
- tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"), text=delta, val=abs(float(delta)) ))
- except:
- delta = 'NA'
- tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='left'), text=delta, val=0 ))
-
- tblobj_body.append(tr)
-
- for ncol, item in enumerate([thisTrait.name, PhenotypeString, thisTrait.authors, thisTrait.year, thisTrait.pubmed_id, thisTrait.NOverlap, thisTrait.partial_corr, thisTrait.partial_corrPValue, thisTrait.corr, thisTrait.corrPValue, delta]):
- worksheet.write([newrow, ncol], str(item) )
- newrow += 1
-
- return tblobj_body, worksheet, corrScript
-
-
- def getTableHeaderForGeno(self, method=None, worksheet=None, newrow=None, headingStyle=None):
- tblobj_header = []
-
- if method in ["1", "3", "4"]:
- tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
- THCell(HT.TD('Locus', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='locus', idx=1),
- THCell(HT.TD('Chr', Class="fs13 fwb ffl b1 cw cbrb"), text='chr', idx=2),
- THCell(HT.TD('Megabase', Class="fs13 fwb ffl b1 cw cbrb"), text='Mb', idx=3),
- THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='nstr', idx=4),
- THCell(HT.TD('Partial r ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_corr', idx=5),
- THCell(HT.TD('p(partial r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=6),
- THCell(HT.TD('r ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='corr', idx=7),
- THCell(HT.TD('p(r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=8),
- THCell(HT.TD('delta r', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_corr', idx=9)]]
-
- for ncol, item in enumerate(['Locus', 'Chr', ' Mb ', ' N ', 'Partial r', 'p(partial r)', 'r ', 'p(r)', 'delta r' ]):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
- else:
- tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
- THCell(HT.TD('Locus', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='locus', idx=1),
- THCell(HT.TD('Chr', Class="fs13 fwb ffl b1 cw cbrb"), text='chr', idx=2),
- THCell(HT.TD('Megabase', Class="fs13 fwb ffl b1 cw cbrb"), text='Mb', idx=3),
- THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='nstr', idx=4),
- THCell(HT.TD('Partial rho', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_corr', idx=5),
- THCell(HT.TD('p(partial rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=6),
- THCell(HT.TD('rho ', Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text='corr', idx=7),
- THCell(HT.TD('p(rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=8),
- THCell(HT.TD('delta rho', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_corr', idx=9)]]
-
- for ncol, item in enumerate(['Locus', 'Chr', ' Mb ', ' N ', 'Partial rho', 'p(partial rho)', 'rho ', 'p(rho)', 'delta rho' ]):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
-
- return tblobj_header, worksheet
-
-
-
- def getTableBodyForGeno(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None):
-
- tblobj_body = []
-
- for thisTrait in traitList:
- tr = []
-
- trId = str(thisTrait)
-
- #partial corr value could be string 'NA'
- try:
- corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.partial_corr))
- except:
- corrScript.append('corrArray["%s"] = {corr:"NA"};' % (trId))
-
- tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
-
- tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"),align="center", Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name.upper()))
-
- #tr.append(TDCell(HT.TD(thisTrait.chr, Class="fs12 fwn ffl b1 c222", align='right'), text=str(thisTrait.chr)))
-
- try:
- Mbvalue = int(thisTrait.chr)*1000 + thisTrait.mb
- except:
- if not thisTrait.chr or not thisTrait.mb:
- Mbvalue = 1000000
- elif thisTrait.chr.upper() == 'X':
- Mbvalue = 20*1000 + thisTrait.mb
- else:
- Mbvalue = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
-
- tr.append(TDCell( HT.TD(thisTrait.chr, Class="fs12 fwn b1 c222", align='right'), thisTrait.chr, Mbvalue) )
- tr.append(TDCell(HT.TD(thisTrait.mb, Class="fs12 fwn ffl b1 c222", align='right'), text=str(thisTrait.mb), val=Mbvalue))
-
- repr = '%d' % thisTrait.NOverlap
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.NOverlap))
-
- try:
- repr='%3.3f' % thisTrait.partial_corr
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right',nowrap='ON'),repr,abs(thisTrait.partial_corr)))
- except:
- repr = 'NA'
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 ))
-
- repr = webqtlUtil.SciFloat(thisTrait.partial_corrPValue)
- tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.partial_corrPValue))
-
- repr = '%3.3f' % thisTrait.corr
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right',nowrap='ON'), repr, abs(thisTrait.corr)))
-
- repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
- tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
-
- #delta
- try:
- delta = '%3.3f' % ( float(thisTrait.partial_corr) - float(thisTrait.corr) )
- tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'), text=delta, val=abs(float(delta)) ))
- except:
- delta = 'NA'
- tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='left'), text=delta, val=0 ))
-
- tblobj_body.append(tr)
-
- for ncol, item in enumerate([thisTrait.name, thisTrait.chr, thisTrait.mb, thisTrait.NOverlap, thisTrait.partial_corr, thisTrait.partial_corrPValue, thisTrait.corr, thisTrait.corrPValue, delta]):
- worksheet.write([newrow, ncol], item)
- newrow += 1
-
- return tblobj_body, worksheet, corrScript
-
-
- def getTableHeaderForProbeSet(self, method=None, worksheet=None, newrow=None, headingStyle=None):
-
- tblobj_header = []
-
- if method in ["1","3","4"]:
- tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0),
- THCell(HT.TD('Record',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="id", idx=1),
- THCell(HT.TD('','Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="symbol", idx=2),
- THCell(HT.TD('','Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="desc", idx=3),
- #XZ, 12/09/2008: sort chr
- THCell(HT.TD('','Chr',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="chr", idx=4),
- THCell(HT.TD('','Mb',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mb", idx=5),
- THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="mean", idx=6),
- THCell(HT.TD('N',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="nstr", idx=7),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'Partial r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_corr", idx=8),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'p(partial r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_p_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_pv", idx=9),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="corr", idx=10),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_p_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="pv", idx=11),
- THCell(HT.TD('delta',HT.BR(), 'r', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="delta_corr", idx=12),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Pubmed',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#literatureCorr"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="lcorr", idx=13),
- #XZ, 09/22/2008: tissue correlation
- THCell(HT.TD(HT.Href(
- text = HT.Span('Tissue',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#tissue_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuecorr", idx=14),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Tissue',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#tissue_p_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuepvalue", idx=15)]]
-
- for ncol, item in enumerate(['Record', 'Gene ID', 'Symbol', 'Description', 'Chr', 'Megabase', 'Mean Expr', 'N ', 'Sample Partial r', 'Sample p(partial r)', 'Sample r', 'Sample p(r)', 'delta r', 'Lit Corr', 'Tissue r', 'Tissue p(r)']):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
- else:
- tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0),
- THCell(HT.TD('Record',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="id", idx=1),
- THCell(HT.TD('','Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="symbol", idx=2),
- THCell(HT.TD('','Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="desc", idx=3),
- THCell(HT.TD('','Chr',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="chr", idx=4),
- THCell(HT.TD('','Mb',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mb", idx=5),
- THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="mean", idx=6),
- THCell(HT.TD('N',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="nstr", idx=7),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'Partial rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_rho"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_corr", idx=8),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'p(partial rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_p_rho"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_pv", idx=9),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="corr", idx=10),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#genetic_p_r"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="pv", idx=11),
- THCell(HT.TD('delta',HT.BR(),'rho', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="delta_corr", idx=12),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Pubmed',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#literatureCorr"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="lcorr", idx=13),
- #XZ, 09/22/2008: tissue correlation
- THCell(HT.TD(HT.Href(
- text = HT.Span('Tissue',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#tissue_rho"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuecorr", idx=14),
- THCell(HT.TD(HT.Href(
- text = HT.Span('Tissue',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
- target = '_blank',
- url = "/correlationAnnotation.html#tissue_p_rho"),
- Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuepvalue", idx=15)]]
-
- for ncol, item in enumerate(['Record', 'Gene ID', 'Symbol', 'Description', 'Chr', 'Megabase', 'Mean Expr', 'N ', 'Sample Partial rho', 'Sample p(partial rho)', 'Sample rho', 'Sample p(rho)', 'delta rho', 'Pubmed r', 'Tissue rho', 'Tissue p(rho)']):
- worksheet.write([newrow, ncol], item, headingStyle)
- worksheet.set_column([ncol, ncol], 2*len(item))
-
- return tblobj_header, worksheet
-
-
- def getTableBodyForProbeSet(self, traitList=[], primaryTrait=None, formName=None, worksheet=None, newrow=None, corrScript=None):
-
- tblobj_body = []
-
- for thisTrait in traitList:
-
- if thisTrait.symbol:
- pass
- else:
- thisTrait.symbol = "N/A"
-
- if thisTrait.geneid:
- symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % thisTrait.geneid, Class="fs12 fwn")
- else:
- symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % thisTrait.symbol, Class="fs12 fwn")
-
- tr = []
-
- trId = str(thisTrait)
-
- #partial corr value could be string 'NA'
- try:
- corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.partial_corr))
- except:
- corrScript.append('corrArray["%s"] = {corr:"NA"};' % (trId))
-
- #XZ, 12/08/2008: checkbox
- tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
-
- #XZ, 12/08/2008: probeset name
- tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222"), thisTrait.name, thisTrait.name.upper()))
-
- #XZ, 12/08/2008: gene symbol
- tr.append(TDCell(HT.TD(symbolurl, Class="fs12 fwn b1 c222 fsI"),thisTrait.symbol, thisTrait.symbol.upper()))
-
- #XZ, 12/08/2008: description
- #XZ, 06/05/2009: Rob asked to add probe target description
- description_string = str(thisTrait.description).strip()
- target_string = str(thisTrait.probe_target_description).strip()
-
- description_display = ''
-
- if len(description_string) > 1 and description_string != 'None':
- description_display = description_string
- else:
- description_display = thisTrait.symbol
-
- if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None':
- description_display = description_display + '; ' + target_string.strip()
-
- tr.append(TDCell(HT.TD(description_display, Class="fs12 fwn b1 c222"), description_display, description_display))
-
- #XZ, 12/08/2008: Mbvalue is used for sorting
- try:
- Mbvalue = int(thisTrait.chr)*1000 + thisTrait.mb
- except:
- if not thisTrait.chr or not thisTrait.mb:
- Mbvalue = 1000000
- elif thisTrait.chr.upper() == 'X':
- Mbvalue = 20*1000 + thisTrait.mb
- else:
- Mbvalue = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
-
- #XZ, 12/08/2008: chromosome number
- #XZ, 12/10/2008: use Mbvalue to sort chromosome
- tr.append(TDCell( HT.TD(thisTrait.chr, Class="fs12 fwn b1 c222", align='right'), thisTrait.chr, Mbvalue) )
-
- #XZ, 12/08/2008: Rob wants 6 digit precision, and we have to deal with that the mb could be None
- if not thisTrait.mb:
- tr.append(TDCell(HT.TD(thisTrait.mb, Class="fs12 fwn b1 c222",align='right'), thisTrait.mb, Mbvalue))
- else:
- tr.append(TDCell(HT.TD('%.6f' % thisTrait.mb, Class="fs12 fwn b1 c222", align='right'), thisTrait.mb, Mbvalue))
-
- #XZ, 01/12/08: This SQL query is much faster.
- self.cursor.execute("""
- select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet
- where ProbeSetXRef.ProbeSetFreezeId = %d and
- ProbeSet.Id = ProbeSetXRef.ProbeSetId and
- ProbeSet.Name = '%s'
- """ % (thisTrait.db.id, thisTrait.name))
- result = self.cursor.fetchone()
- if result:
- if result[0]:
- mean = result[0]
- else:
- mean=0
- else:
- mean = 0
-
- #XZ, 06/05/2009: It is neccessary to turn on nowrap
- repr = "%2.3f" % mean
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'),repr, mean))
-
- #XZ: number of overlaped cases for partial corr
- repr = '%d' % thisTrait.NOverlap
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.NOverlap))
-
- #XZ: sample partial correlation
- try:
- repr='%3.3f' % thisTrait.partial_corr
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'),repr,abs(thisTrait.partial_corr)))
- except:
- repr = 'NA'
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 ))
-
- #XZ: p value of genetic partial correlation
- repr = webqtlUtil.SciFloat(thisTrait.partial_corrPValue)
- tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.partial_corrPValue))
-
- repr = '%3.3f' % thisTrait.corr
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right',nowrap='ON'), repr, abs(thisTrait.corr)))
-
- repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
- tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
-
- #delta
- try:
- delta = '%3.3f' % ( float(thisTrait.partial_corr) - float(thisTrait.corr) )
- tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'), text=delta, val=abs(float(delta)) ))
- except:
- delta = 'NA'
- tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='left'), text=delta, val=0 ))
-
- #XZ, 12/08/2008: literature correlation
- LCorr = 0.0
- LCorrStr = "N/A"
- if hasattr(thisTrait, 'LCorr') and thisTrait.LCorr:
- LCorr = thisTrait.LCorr
- LCorrStr = "%2.3f" % thisTrait.LCorr
- tr.append(TDCell(HT.TD(LCorrStr, Class="fs12 fwn b1 c222", align='right'), LCorrStr, abs(LCorr)))
-
- #XZ, 09/22/2008: tissue correlation.
- TCorr = 0.0
- TCorrStr = "N/A"
- #XZ, 11/18/2010: need to pass two gene symbols
- if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissueCorr:
- TCorr = thisTrait.tissueCorr
- TCorrStr = "%2.3f" % thisTrait.tissueCorr
- #NL, 07/19/2010: add a new parameter rankOrder for js function 'showTissueCorrPlot'
- rankOrder =thisTrait.rankOrder
- TCorrPlotURL = "javascript:showTissueCorrPlot('%s','%s','%s',%d)" %(formName, primaryTrait.symbol, thisTrait.symbol,rankOrder)
- tr.append(TDCell(HT.TD(HT.Href(text=TCorrStr, url=TCorrPlotURL, Class="fs12 fwn ff1"), Class="fs12 fwn ff1 b1 c222", align='right'), TCorrStr, abs(TCorr) ))
- else:
- tr.append(TDCell(HT.TD(TCorrStr, Class="fs12 fwn b1 c222", align='right'), TCorrStr, abs(TCorr)))
-
- #XZ, 12/08/2008: p value of tissue correlation
- TPValue = 1.0
- TPValueStr = "N/A"
- if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissueCorr: #XZ, 09/22/2008: thisTrait.tissuePValue can't be used here because it could be 0
- TPValue = thisTrait.tissuePValue
- TPValueStr = "%2.3f" % thisTrait.tissuePValue
- tr.append(TDCell(HT.TD(TPValueStr, Class="fs12 fwn b1 c222", align='right'), TPValueStr, abs(TPValue) ))
-
- tblobj_body.append(tr)
-
- for ncol, item in enumerate([thisTrait.name, thisTrait.geneid, thisTrait.symbol, thisTrait.description, thisTrait.chr, thisTrait.mb, mean, thisTrait.NOverlap, thisTrait.partial_corr, thisTrait.partial_corrPValue, thisTrait.corr, thisTrait.corrPValue, delta, LCorrStr, TCorrStr, TPValueStr]):
- worksheet.write([newrow, ncol], item)
-
- newrow += 1
-
- return tblobj_body, worksheet, corrScript
-
-
- def getFormForPrimaryAndControlTraits (self, primaryTrait, controlTraits):
-
- info_form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden'))
-
- hddn = {'FormID':'showDatabase', 'database':'_', 'ProbeSetID':'_', 'CellID':'_' }#XZ: These four parameters are required by javascript function showDatabase2.
-
- for key in hddn.keys():
- info_form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
-
- info_form.append(HT.Paragraph("Primary Trait", Class="subtitle"), '\n')
-
- primaryTraitTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0)
- descriptionString = primaryTrait.genHTML(dispFromDatabase=1)
- if primaryTrait.db.type == 'Publish' and primaryTrait.confidential:
- descriptionString = primaryTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=primaryTrait.authorized_users)
- primaryTraitTable.append(HT.TR(HT.TD(HT.Href(text='%s' % descriptionString, url="javascript:showDatabase2('%s','%s','%s')" % (primaryTrait.db.name,primaryTrait.name,primaryTrait.cellid), Class="fs12 fwn") )))
-
- info_form.append(primaryTraitTable)
-
- info_form.append(HT.Paragraph("Control Traits", Class="subtitle"), '\n')
-
- controlTraitsTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0)
-
- seq = 1
-
- ## Generate the listing table for control traits
- for thisTrait in controlTraits:
- descriptionString = thisTrait.genHTML(dispFromDatabase=1)
- if thisTrait.db.type == 'Publish' and thisTrait.confidential:
- descriptionString = thisTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users)
- controlTraitsTable.append(HT.TR(HT.TD("%d."%seq,align="right",width=10),
- HT.TD(HT.Href(text='%s' % descriptionString,url="javascript:showDatabase2('%s','%s','%s')" % (thisTrait.db.name,thisTrait.name,thisTrait.cellid), Class="fs12 fwn") )))
- seq += 1
-
- info_form.append(controlTraitsTable)
-
- return info_form
diff --git a/web/webqtl/correlation/PartialCorrInputPage.py b/web/webqtl/correlation/PartialCorrInputPage.py
deleted file mode 100755
index 7d32da6d..00000000
--- a/web/webqtl/correlation/PartialCorrInputPage.py
+++ /dev/null
@@ -1,484 +0,0 @@
-# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
-#
-# This program is free software: you can redistribute it and/or modify it
-# under the terms of the GNU Affero General Public License
-# as published by the Free Software Foundation, either version 3 of the
-# License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-# See the GNU Affero General Public License for more details.
-#
-# This program is available from Source Forge: at GeneNetwork Project
-# (sourceforge.net/projects/genenetwork/).
-#
-# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
-# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
-#
-#
-#
-# This module is used by GeneNetwork project (www.genenetwork.org)
-#
-# Created by GeneNetwork Core Team 2010/08/10
-#
-# Last updated by GeneNetwork Core Team 2010/10/20
-
-import os
-import string
-import cPickle
-
-from htmlgen import HTMLgen2 as HT
-
-from base import webqtlConfig
-from utility.THCell import THCell
-from utility.TDCell import TDCell
-from base.webqtlTrait import webqtlTrait
-from base.templatePage import templatePage
-from dbFunction import webqtlDatabaseFunction
-from utility import webqtlUtil
-
-
-
-class PartialCorrInputPage(templatePage):
-
- def __init__(self,fd):
-
- templatePage.__init__(self, fd)
-
- if not self.openMysql():
- return
-
- searchResult = fd.formdata.getvalue('searchResult')
-
- if not searchResult:
- heading = 'Partial Correlation'
- detail = ['You need to select at least three traits in order to calculate partial correlation.']
- self.error(heading=heading,detail=detail)
- return
-
-
- ## Adds the Trait instance for each trait name from the collection
- traits = []
-
- for item in searchResult:
- traits.append(webqtlTrait(fullname=item, cursor=self.cursor))
-
- RISet = fd.formdata.getvalue('RISet')
- species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=RISet)
-
- #XZ: HTML part
- TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee')
- TD_LR.append("Please select one primary trait, one to three control traits, and at least one target trait.", HT.P() )
-
- mainFormName = 'showDatabase'
- mainForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name=mainFormName,submit=HT.Input(type='hidden'))
-
- #XZ: Add hidden form values
- hddn = {'FormID':'calPartialCorrTrait', 'database':'', 'ProbeSetID':'', 'CellID':'', #XZ: These four parameters are required by javascript function showDatabase2.
- 'controlTraits':'',
- 'primaryTrait':'',
- 'targetTraits':'',
- 'pcMethod':'',
- 'RISet':RISet
- }
-
-
- for key in hddn.keys():
- mainForm.append(HT.Input(type='hidden', name=key, value=hddn[key]))
-
- radioNames = []
-
- for thisTrait in traits:
- oneRadioName = thisTrait.getName()
- radioNames.append(oneRadioName)
-
- radioNamesString = ','.join(radioNames)
-
- # Creates the image href that runs the javascript setting all traits as target or ignored
- setAllTarget = HT.Href(url="#redirect", onClick="setAllAsTarget(document.getElementsByName('showDatabase')[0], '%s');" % radioNamesString)
- setAllTargetImg = HT.Image("/images/select_all.gif", alt="Select All", title="Select All", style="border:none;")
- setAllTarget.append(setAllTargetImg)
- setAllIgnore = HT.Href(url="#redirect", onClick="setAllAsIgnore(document.getElementsByName('showDatabase')[0], '%s');" % radioNamesString)
- setAllIgnoreImg = HT.Image("/images/select_all.gif", alt="Select All", title="Select All", style="border:none;")
- setAllIgnore.append(setAllIgnoreImg)
-
-
- tblobj = {}
- tblobj['header'] = self.getCollectionTableHeader()
-
- sortby = self.getSortByValue()
-
- tblobj['body'] = self.getCollectionTableBody(traitList=traits, formName=mainFormName, species=species)
-
- filename= webqtlUtil.genRandStr("Search_")
-
- objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
- cPickle.dump(tblobj, objfile)
- objfile.close()
-
- div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), Id="sortable")
-
- mainForm.append(div)
-
- #XZ: Add button
- radioNamesString = ','.join(radioNames)
- jsCommand_1 = "validateTrait(this.form, \'" + radioNamesString + "\', 0, 1);"
- jsCommand_2 = "validateTrait(this.form, \'" + radioNamesString + "\', 0, 2);"
- partialCorrTraitButton_1 = HT.Input(type='button', name='submitPartialCorrTrait_1', value='Pearson\'s r', onClick='%s' % jsCommand_1, Class="button")
- partialCorrTraitButton_2 = HT.Input(type='button', name='submitPartialCorrTrait_2', value='Spearman\'s rho', onClick='%s' % jsCommand_2, Class="button")
- mainForm.append(HT.BR(), "Compute partial correlation for target selected above:", HT.BR(), partialCorrTraitButton_1, partialCorrTraitButton_2, HT.BR(), HT.BR(), HT.HR(color="gray",size=3) )
-
- jsCommand = "validateTrait(this.form, \'" + radioNamesString + "\', 1);"
- partialCorrDBButton = HT.Input(type='button', name='submitPartialCorrDB', value='Calculate', onClick='%s' % jsCommand,Class="button")
-
- methodText = HT.Span("Calculate:", Class="ffl fwb fs12")
-
- methodMenu = HT.Select(name='method')
- methodMenu.append(('Genetic Correlation, Pearson\'s r','1'))
- methodMenu.append(('Genetic Correlation, Spearman\'s rho','2'))
- methodMenu.append(('SGO Literature Correlation','3'))
- methodMenu.append(('Tissue Correlation, Pearson\'s r','4'))
- methodMenu.append(('Tissue Correlation, Spearman\'s rho','5'))
-
- databaseText = HT.Span("Choose Database:", Class="ffl fwb fs12")
- databaseMenu = HT.Select(name='database2')
-
- nmenu = 0
-
- self.cursor.execute('SELECT PublishFreeze.FullName,PublishFreeze.Name FROM \
- PublishFreeze,InbredSet WHERE PublishFreeze.InbredSetId = InbredSet.Id \
- and InbredSet.Name = "%s" and PublishFreeze.public > %d' % \
- (RISet,webqtlConfig.PUBLICTHRESH))
- for item in self.cursor.fetchall():
- databaseMenu.append(item)
- nmenu += 1
-
- self.cursor.execute('SELECT GenoFreeze.FullName,GenoFreeze.Name FROM GenoFreeze,\
- InbredSet WHERE GenoFreeze.InbredSetId = InbredSet.Id and InbredSet.Name = \
- "%s" and GenoFreeze.public > %d' % (RISet,webqtlConfig.PUBLICTHRESH))
- for item in self.cursor.fetchall():
- databaseMenu.append(item)
- nmenu += 1
-
- #03/09/2009: Xiaodong changed the SQL query to order by Name as requested by Rob.
- self.cursor.execute('SELECT Id, Name FROM Tissue order by Name')
- for item in self.cursor.fetchall():
- TId, TName = item
- databaseMenuSub = HT.Optgroup(label = '%s ------' % TName)
- self.cursor.execute('SELECT ProbeSetFreeze.FullName,ProbeSetFreeze.Name FROM ProbeSetFreeze, ProbeFreeze, \
- InbredSet WHERE ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeFreeze.TissueId = %d and \
- ProbeSetFreeze.public > %d and ProbeFreeze.InbredSetId = InbredSet.Id and InbredSet.Name like "%s%%" \
- order by ProbeSetFreeze.CreateTime desc, ProbeSetFreeze.AvgId ' % (TId,webqtlConfig.PUBLICTHRESH, RISet))
- for item2 in self.cursor.fetchall():
- databaseMenuSub.append(item2)
- nmenu += 1
- databaseMenu.append(databaseMenuSub)
-
- if nmenu:
- criteriaText = HT.Span("Return:", Class="ffl fwb fs12")
- criteriaMenu = HT.Select(name='criteria', selected='500')
- criteriaMenu.append(('top 100','100'))
- criteriaMenu.append(('top 200','200'))
- criteriaMenu.append(('top 500','500'))
- criteriaMenu.append(('top 1000','1000'))
- criteriaMenu.append(('top 2000','2000'))
- criteriaMenu.append(('top 5000','5000'))
- criteriaMenu.append(('top 10000','10000'))
- criteriaMenu.append(('top 15000','15000'))
- criteriaMenu.append(('top 20000','20000'))
-
- self.MPDCell = HT.TD()
- correlationMenus = HT.TableLite(
- HT.TR(
- HT.TD(databaseText,HT.BR(),databaseMenu, colspan=4)
- ),
- HT.TR(
- HT.TD(methodText,HT.BR(),methodMenu),
- self.MPDCell,
- HT.TD(criteriaText,HT.BR(),criteriaMenu)),
- border=0, cellspacing=4, cellpadding=0)
- else:
- correlationMenus = ""
-
- mainForm.append(HT.Font('or',color='red', size=4), HT.BR(), HT.BR(), "Compute partial correlation for each trait in the database selected below:", HT.BR() )
- mainForm.append( partialCorrDBButton, HT.BR(), HT.BR(), correlationMenus)
-
- TD_LR.append(mainForm)
-
- self.dict['body'] = str(TD_LR)
- self.dict['js1'] =''
- self.dict['title'] = 'Partial Correlation Input'
-
-
- def getCollectionTableHeader(self):
-
- tblobj_header = []
-
- className = "fs13 fwb ffl b1 cw cbrb"
-
- tblobj_header = [[THCell(HT.TD('Index', Class=className, nowrap="on"), sort=0),
- THCell(HT.TD("Primary (X)",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="primary", sort=0),
- THCell(HT.TD("Control (Z)",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="control", sort=0),
- THCell(HT.TD("Target (Y)",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="target", sort=0),
- THCell(HT.TD("Ignored",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="target", sort=0),
- THCell(HT.TD('Dataset', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="dataset", idx=1),
- THCell(HT.TD('Trait', HT.BR(), 'ID', HT.BR(), valign="top", Class=className, nowrap="on"), text="name", idx=2),
- THCell(HT.TD('Description', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="desc", idx=3),
- THCell(HT.TD('Location', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="location", idx=4),
- THCell(HT.TD('Mean', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="mean", idx=5),
- THCell(HT.TD('N', HT.BR(), 'Cases', HT.BR(), valign="top", Class=className, nowrap="on"), text="samples", idx=6),
- THCell(HT.TD('Max LRS', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="lrs", idx=7),
- THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb', HT.BR(), valign="top", Class=className, nowrap="on"), text="lrs_location", idx=8)]]
-
- return tblobj_header
-
-
-
- def getCollectionTableBody(self, traitList=None, formName=None, species=''):
-
- tblobj_body = []
-
- className = "fs12 fwn b1 c222"
-
- for thisTrait in traitList:
- tr = []
-
- if not thisTrait.haveinfo:
- thisTrait.retrieveInfo(QTL=1)
-
- trId = str(thisTrait)
-
- oneRadioName = thisTrait.getName()
-
- tr.append(TDCell( HT.TD(' ',align="center",valign="center",Class=className) ))
- tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="primary"),align="center",valign="center",Class=className) ))
- tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="control"),align="center",valign="center",Class=className) ))
- tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="target", checked="true"),align="center",valign="center",Class=className) ))
- tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="ignored"),align="center",valign="center",Class=className) ))
-
- tr.append(TDCell(HT.TD(thisTrait.db.name, Class="fs12 fwn b1 c222"), thisTrait.db.name, thisTrait.db.name.upper()))
-
- tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showDatabase3('%s','%s','%s','')" % (formName, thisTrait.db.name, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="left", Class=className
-),str(thisTrait.name), thisTrait.name))
-
- #description column
- if (thisTrait.db.type == "Publish"):
- PhenotypeString = thisTrait.post_publication_description
- if thisTrait.confidential:
- if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
- PhenotypeString = thisTrait.pre_publication_description
- tr.append(TDCell(HT.TD(PhenotypeString, Class=className), PhenotypeString, PhenotypeString.upper()))
- elif (thisTrait.db.type == "ProbeSet" or thisTrait.db.type == "Temp"):
- description_string = str(thisTrait.description).strip()
- if (thisTrait.db.type == "ProbeSet"):
- target_string = str(thisTrait.probe_target_description).strip()
-
- description_display = ''
-
- if len(description_string) > 1 and description_string != 'None':
- description_display = description_string
- else:
- description_display = thisTrait.symbol
-
- if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None':
- description_display = description_display + '; ' + target_string.strip()
-
- description_string = description_display
-
- tr.append(TDCell(HT.TD(description_string, Class=className), description_string, description_string))
- else:
- tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz"))
-
- #location column
- if (thisTrait.db.type == "Publish"):
- tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz"))
- else:
- #ZS: trait_location_value is used for sorting
- trait_location_repr = "N/A"
- trait_location_value = 1000000
-
- if hasattr(thisTrait, 'chr') and hasattr(thisTrait, 'mb') and thisTrait.chr and thisTrait.mb:
- try:
- trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb
- except:
- if thisTrait.chr.upper() == "X":
- trait_location_value = 20*1000 + thisTrait.mb
- else:
- trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
-
- trait_location_repr = "Chr%s: %.6f" % (thisTrait.chr, float(thisTrait.mb) )
-
- tr.append( TDCell(HT.TD(trait_location_repr, nowrap="yes", Class=className), trait_location_repr, trait_location_value) )
-
- if (thisTrait.db.type == "ProbeSet"):
- self.cursor.execute("""
- select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet
- where ProbeSetXRef.ProbeSetFreezeId = %d and
- ProbeSet.Id = ProbeSetXRef.ProbeSetId and
- ProbeSet.Name = '%s'
- """ % (thisTrait.db.id, thisTrait.name))
- result = self.cursor.fetchone()
- if result:
- if result[0]:
- mean = result[0]
- else:
- mean=0
- else:
- mean = 0
-
- #XZ, 06/05/2009: It is neccessary to turn on nowrap
- repr = "%2.3f" % mean
- tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean))
-
- elif (thisTrait.db.type == "Publish"):
- self.cursor.execute("""
- select count(PublishData.value), sum(PublishData.value) from PublishData, PublishXRef, PublishFreeze
- where PublishData.Id = PublishXRef.DataId and
- PublishXRef.Id = %s and
- PublishXRef.InbredSetId = PublishFreeze.InbredSetId and
- PublishFreeze.Id = %d
- """ % (thisTrait.name, thisTrait.db.id))
- result = self.cursor.fetchone()
-
- if result:
- if result[0] and result[1]:
- mean = result[1]/result[0]
- else:
- mean = 0
- else:
- mean = 0
-
- repr = "%2.3f" % mean
- tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean))
- else:
- tr.append(TDCell(HT.TD("--", Class=className, align='left', nowrap='ON'),"--", 0))
-
- #Number of cases
- n_cases_value = 0
- n_cases_repr = "--"
- if (thisTrait.db.type == "Publish"):
- self.cursor.execute("""
- select count(PublishData.value) from PublishData, PublishXRef, PublishFreeze
- where PublishData.Id = PublishXRef.DataId and
- PublishXRef.Id = %s and
- PublishXRef.InbredSetId = PublishFreeze.InbredSetId and
- PublishFreeze.Id = %d
- """ % (thisTrait.name, thisTrait.db.id))
- result = self.cursor.fetchone()
-
- if result:
- if result[0]:
- n_cases_value = result[0]
- n_cases_repr = result[0]
-
- if (n_cases_value == "--"):
- tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value))
- else:
- tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value))
-
- elif (thisTrait.db.type == "ProbeSet"):
- self.cursor.execute("""
- select count(ProbeSetData.value) from ProbeSet, ProbeSetXRef, ProbeSetData, ProbeSetFreeze
- where ProbeSet.Name='%s' and
- ProbeSetXRef.ProbeSetId = ProbeSet.Id and
- ProbeSetXRef.DataId = ProbeSetData.Id and
- ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id and
- ProbeSetFreeze.Name = '%s'
- """ % (thisTrait.name, thisTrait.db.name))
- result = self.cursor.fetchone()
-
- if result:
- if result[0]:
- n_cases_value = result[0]
- n_cases_repr = result[0]
- if (n_cases_value == "--"):
- tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value))
- else:
- tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value))
-
- elif (thisTrait.db.type == "Geno"):
- self.cursor.execute("""
- select count(GenoData.value) from GenoData, GenoXRef, GenoFreeze, Geno, Strain
- where Geno.SpeciesId = %s and Geno.Name='%s' and
- GenoXRef.GenoId = Geno.Id and
- GenoXRef.DataId = GenoData.Id and
- GenoXRef.GenoFreezeId = GenoFreeze.Id and
- GenoData.StrainId = Strain.Id and
- GenoFreeze.Name = '%s'
- """ % (webqtlDatabaseFunction.retrieveSpeciesId(self.cursor, thisTrait.db.riset), thisTrait.name, thisTrait.db.name))
- result = self.cursor.fetchone()
-
- if result:
- if result[0]:
- n_cases_value = result[0]
- n_cases_repr = result[0]
- if (n_cases_value == "--"):
- tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value))
- else:
- tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value))
-
- else:
- tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value))
-
-
- if (thisTrait.db.type != "Geno"):
- #LRS and its location
- LRS_score_repr = '--'
- LRS_score_value = 0
- LRS_location_repr = '--'
- LRS_location_value = 1000000
- LRS_flag = 1
-
- #Max LRS and its Locus location
- if hasattr(thisTrait, 'lrs') and hasattr(thisTrait, 'locus') and thisTrait.lrs and thisTrait.locus:
- self.cursor.execute("""
- select Geno.Chr, Geno.Mb from Geno, Species
- where Species.Name = '%s' and
- Geno.Name = '%s' and
- Geno.SpeciesId = Species.Id
- """ % (species, thisTrait.locus))
- result = self.cursor.fetchone()
-
- if result:
- if result[0] and result[1]:
- LRS_Chr = result[0]
- LRS_Mb = result[1]
-
- #XZ: LRS_location_value is used for sorting
- try:
- LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb)
- except:
- if LRS_Chr.upper() == 'X':
- LRS_location_value = 20*1000 + float(LRS_Mb)
- else:
- LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb)
-
-
- LRS_score_repr = '%3.1f' % thisTrait.lrs
- LRS_score_value = thisTrait.lrs
- LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) )
- LRS_flag = 0
-
- tr.append(TDCell(HT.TD(LRS_score_repr, Class=className, align='right', nowrap="on"), LRS_score_repr, LRS_score_value))
- tr.append(TDCell(HT.TD(LRS_location_repr, Class=className), LRS_location_repr, LRS_location_value))
-
- if LRS_flag:
- tr.append(TDCell(HT.TD(LRS_score_repr, Class=className), LRS_score_repr, LRS_score_value))
- tr.append(TDCell(HT.TD(LRS_location_repr, Class=className), LRS_location_repr, LRS_location_value))
- else:
- tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", 0))
- tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", 1000000))
-
- tblobj_body.append(tr)
-
- return tblobj_body
-
-
-
- def getSortByValue(self):
-
- sortby = ("pv", "up")
-
- return sortby
-
diff --git a/web/webqtl/correlation/PartialCorrTraitPage.py b/web/webqtl/correlation/PartialCorrTraitPage.py
deleted file mode 100755
index 1c79e250..00000000
--- a/web/webqtl/correlation/PartialCorrTraitPage.py
+++ /dev/null
@@ -1,310 +0,0 @@
-# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
-#
-# This program is free software: you can redistribute it and/or modify it
-# under the terms of the GNU Affero General Public License
-# as published by the Free Software Foundation, either version 3 of the
-# License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-# See the GNU Affero General Public License for more details.
-#
-# This program is available from Source Forge: at GeneNetwork Project
-# (sourceforge.net/projects/genenetwork/).
-#
-# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
-# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
-#
-#
-#
-# This module is used by GeneNetwork project (www.genenetwork.org)
-#
-# Created by GeneNetwork Core Team 2010/08/10
-#
-# Last updated by GeneNetwork Core Team 2010/10/20
-
-import string
-import cPickle
-import os
-
-from htmlgen import HTMLgen2 as HT
-
-from base import webqtlConfig
-from utility.THCell import THCell
-from utility.TDCell import TDCell
-from base.webqtlTrait import webqtlTrait
-from base.templatePage import templatePage
-from utility import webqtlUtil
-from CorrelationPage import CorrelationPage
-import correlationFunction
-
-
-
-class PartialCorrTraitPage(CorrelationPage):
-
- corrMinInformative = 4
-
-
- def __init__(self,fd):
-
- templatePage.__init__(self, fd)
-
- if not self.openMysql():
- return
-
- TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee')
-
- TD_LR.append(HT.Paragraph("Partial Correlation Table", Class="title"), '\n')
-
- pc_method = fd.formdata.getvalue('pcMethod')
-
- primaryTraitString = fd.formdata.getvalue('primaryTrait')
- primaryTrait = (webqtlTrait(fullname=primaryTraitString, cursor=self.cursor))
-
- controlTraitsString = fd.formdata.getvalue('controlTraits')
- controlTraitsList = list(string.split(controlTraitsString,','))
- controlTraits = []
- for item in controlTraitsList:
- controlTraits.append(webqtlTrait(fullname=item, cursor=self.cursor))
-
- targetTraitsString = fd.formdata.getvalue('targetTraits')
- targetTraitsList = list(string.split(targetTraitsString,','))
- targetTraits = []
- _targetnames = []
- for item in targetTraitsList:
- oneTargetTrait = webqtlTrait(fullname=item, cursor=self.cursor)
- oneTargetTrait.retrieveInfo()
- targetTraits.append( oneTargetTrait )
- _targetnames.append( oneTargetTrait.name )
-
- #XZ: filter out the strains that have no value.
- primaryTrait.retrieveData()
- _strains, _vals, _vars = primaryTrait.exportInformative()
-
- #XZ: _controlstrains, _controlvals and _controlvars are list of list [ [], [], ...]. _controlNs is number
- _controlstrains,_controlvals,_controlvars,_controlNs = correlationFunction.controlStrains(controlTraitsString,_strains)
-
- N = len(_strains)
-
- allsame = True
- ##allsame is boolean for whether or not primary and control trait have values for the same strains
- for i in _controlstrains:
- if _strains != i:
- allsame=False
- break
-
- ## If the strains for which each of the control traits and the primary trait have values are not identical,
- ## we must remove from the calculation all vlaues for strains that are not present in each. Without doing this,
- ## undesirable biases would be introduced.
- # XZ, 01/11/2010: After execution of function fixStrains, variables _vals,_controlvals,_vars,_controlvars have the same number and same order of strains as strains in variable _strains. The _controlstrains remains intact.
- if not allsame:
- _strains,_vals,_controlvals,_vars,_controlvars = correlationFunction.fixStrains(_strains,_controlstrains,_vals,_controlvals,_vars,_controlvars)
- N = len(_strains)
-
- #XZ: We should check the value of control trait and primary trait here.
- nameOfIdenticalTraits = correlationFunction.findIdenticalTraits ( _vals, primaryTraitString, _controlvals, controlTraitsList )
- if nameOfIdenticalTraits:
- heading = "Partial Correlation Table"
- detail = ['%s and %s have same values for the %s strains that will be used to calculate partial correlation (common for all primary and control traits). In such case, partial correlation can NOT be calculated. Please re-select your traits.' % (nameOfIdenticalTraits[0], nameOfIdenticalTraits[1], len(_vals))]
- self.error(heading=heading,detail=detail)
- return
-
-
- if N < self.corrMinInformative:
- heading = "Partial Correlation Table"
- detail = ['Fewer than %d strain data were entered for %s data set. No calculation of correlation has been attempted.' % (self.corrMinInformative, fd.RISet)]
- self.error(heading=heading,detail=detail)
- return
-
- #XZ, 01/11/2010: Pay attention to the target trait strain number and order!
- #XZ 03/29/2010: need to input target trait values to this function.
-
- _targetvals = []
- for oneTargetTrait in targetTraits:
- oneTargetTrait.retrieveData()
- oneTraitVals = oneTargetTrait.exportData( _strains )
- _targetvals.append(oneTraitVals)
-
-
- if pc_method == 'spearman':
- allcorrelations = correlationFunction.determinePartialsByR(primaryVal = _vals, controlVals = _controlvals, targetVals = _targetvals, targetNames = _targetnames, method='s')
- else:
- allcorrelations = correlationFunction.determinePartialsByR(primaryVal = _vals, controlVals = _controlvals, targetVals = _targetvals, targetNames = _targetnames)
-
- totalTraits = len(allcorrelations)
-
-
- info_form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden'))
-
- hddn = {'FormID':'showDatabase', 'database':'_', 'ProbeSetID':'_', 'CellID':'_' }#XZ: These four parameters are required by javascript function showDatabase2.
-
- for key in hddn.keys():
- info_form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
-
- info_form.append(HT.Paragraph("Primary Trait", Class="subtitle"), '\n')
-
- primaryTraitTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0)
-
- descriptionString = primaryTrait.genHTML(dispFromDatabase=1)
- if primaryTrait.db.type == 'Publish' and primaryTrait.confidential:
- descriptionString = primaryTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=primaryTrait.authorized_users)
- primaryTraitTable.append(HT.TR(HT.TD(HT.Href(text='%s' % descriptionString, url="javascript:showDatabase2('%s','%s','%s')" % (primaryTrait.db.name,primaryTrait.name,primaryTrait.cellid), Class="fs12 fwn") )))
-
- info_form.append(primaryTraitTable)
-
- info_form.append(HT.Paragraph("Control Traits", Class="subtitle"), '\n')
-
- controlTraitsTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0)
-
- seq = 1
-
- ## Generate the listing table for control traits
- for thisTrait in controlTraits:
- descriptionString = thisTrait.genHTML(dispFromDatabase=1)
- if thisTrait.db.type == 'Publish' and thisTrait.confidential:
- descriptionString = thisTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users)
- controlTraitsTable.append(HT.TR(HT.TD("%d."%seq,align="left", width=10),
- HT.TD(HT.Href(text='%s' % descriptionString,url="javascript:showDatabase2('%s','%s','%s')" % (thisTrait.db.name,thisTrait.name,thisTrait.cellid), Class="fs12 fwn") )))
- seq += 1
-
- info_form.append(controlTraitsTable)
-
-
- TD_LR.append(info_form)
-
-
- mainfmName = webqtlUtil.genRandStr("fm_")
- form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name= mainfmName, submit=HT.Input(type='hidden'))
-
- hddn = {'FormID':'showDatabase', 'database':'_', 'ProbeSetID':'_', 'CellID':'_' }#XZ: These four parameters are required by javascript function showDatabase2.
-
- for key in hddn.keys():
- form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
-
-
- filename= webqtlUtil.genRandStr("Corr_")
-
- tblobj = {}
-
- if pc_method == 'spearman':
- tblobj['header'] = \
- [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
- THCell(HT.TD('Database', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='db', idx=1),
- THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='id', idx=2),
- THCell(HT.TD('Symbol', Class="fs13 fwb ffl b1 cw cbrb"), text='symbol', idx=3),
- THCell(HT.TD('Description', Class="fs13 fwb ffl b1 cw cbrb", align='center'), text='desc', idx=4),
- THCell(HT.TD('N ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='nstr', idx=5),
- THCell(HT.TD('Partial rho ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='partial_corr', idx=6),
- THCell(HT.TD('p(partial rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=7),
- THCell(HT.TD('rho ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='corr', idx=8),
- THCell(HT.TD('p(rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=9),
- THCell(HT.TD('delta rho', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_rho', idx=10)]]
- else:
- tblobj['header'] = \
- [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
- THCell(HT.TD('Database', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='db', idx=1),
- THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='id', idx=2),
- THCell(HT.TD('Symbol', Class="fs13 fwb ffl b1 cw cbrb"), text='symbol', idx=3),
- THCell(HT.TD('Description', Class="fs13 fwb ffl b1 cw cbrb", align='center'), text='desc', idx=4),
- THCell(HT.TD('N ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='nstr', idx=5),
- THCell(HT.TD('Partial r ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='partial_corr', idx=6),
- THCell(HT.TD('p(partial r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=7),
- THCell(HT.TD('r ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='corr', idx=8),
- THCell(HT.TD('p(r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=9),
- THCell(HT.TD('delta r', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_r', idx=10)]]
-
- sortby = ("partial_pv", "up")
-
- tblobj['body'] = []
- for i, thisTrait in enumerate(targetTraits):
- tr = []
-
- trId = str(thisTrait)
- tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
- tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % thisTrait.db.name,target="_blank", Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222"), text=thisTrait.db.name, val=thisTrait
-.db.name.upper()))
- tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showDatabase3('%s', '%s', '%s', '%s')" % (mainfmName,thisTrait.db.name,thisTrait.name,thisTrait.cellid), Class="fs12 fwn"), Class="fs12 fwn b1 c222"), text=thisTrait.name, val=thisTrait.name))
-
- #XZ: Symbol column
- if thisTrait.db.type =="ProbeSet":
- if thisTrait.symbol:
- tr.append(TDCell(HT.TD(thisTrait.symbol, Class="fs12 fwn ffl b1 c222"), text=thisTrait.symbol, val=thisTrait.symbol.upper()))
- else:
- tr.append(TDCell(HT.TD('NA', Class="fs12 fwn ffl b1 c222"), text='NA', val='NA'))
- elif thisTrait.db.type =="Publish":
- AbbreviationString = "--"
- if (thisTrait.post_publication_abbreviation != None):
- AbbreviationString = thisTrait.post_publication_abbreviation
-
- if thisTrait.confidential:
- if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
- if thisTrait.pre_publication_abbreviation:
- AbbreviationString = thisTrait.pre_publication_abbreviation
- else:
- AbbreviationString = "--"
-
- if AbbreviationString == "--":
- tr.append(TDCell(HT.TD('NA', Class="fs12 fwn ffl b1 c222"), text='NA', val='NA'))
- else:
- tr.append(TDCell(HT.TD(AbbreviationString, Class="fs12 fwn ffl b1 c222"), text=AbbreviationString, val=AbbreviationString.upper()))
- else:
- tr.append(TDCell(HT.TD(thisTrait.name, Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name))
-
- #XZ: Description column
- if thisTrait.db.type =="ProbeSet" or thisTrait.db.type == "Temp":
- tr.append(TDCell(HT.TD(thisTrait.description, Class="fs12 fwn ffl b1 c222"), text=thisTrait.description, val=thisTrait.description.upper()))
- elif thisTrait.db.type =="Publish":
- PhenotypeString = thisTrait.post_publication_description
- if thisTrait.confidential:
- if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
- PhenotypeString = thisTrait.pre_publication_description
- tr.append(TDCell(HT.TD(PhenotypeString, Class="fs12 fwn ffl b1 c222"), text=PhenotypeString, val=PhenotypeString.upper()))
- else:
- tr.append(TDCell(HT.TD(thisTrait.name, Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name))
-
- tr.append(TDCell(HT.TD(allcorrelations[i][1], Class="fs12 fwn ffl b1 c222", align='right'), text=allcorrelations[i][1], val=allcorrelations[i][1]))
-
- #partial correlation result
- try:
- repr = '%3.3f' % float(allcorrelations[i][2])
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'), text=repr, val=abs(allcorrelations[i][2])))
- except:
- repr = 'NA'
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 ))
-
- repr = webqtlUtil.SciFloat(allcorrelations[i][3])
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", nowrap='ON', align='right'), text=repr, val=allcorrelations[i][3]))
-
- #zero order correlation result
- repr = '%3.3f' % float(allcorrelations[i][4])
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'), text=repr, val=abs(allcorrelations[i][4])))
-
- repr = webqtlUtil.SciFloat(allcorrelations[i][5])
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", nowrap='ON', align='right'), text=repr, val=allcorrelations[i][5]))
-
- #delta
- try:
- repr = '%3.3f' % ( float(allcorrelations[i][2]) - float(allcorrelations[i][4]) )
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'), text=repr, val=repr ))
- except:
- repr = 'NA'
- tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 ))
-
- tblobj['body'].append(tr)
-
- objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
- cPickle.dump(tblobj, objfile)
- objfile.close()
- # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
- div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), Id="sortable")
- form.append(div)
-
-
- TD_LR.append(HT.Center(form),HT.P())
-
- self.dict['body'] = str(TD_LR)
- # updated by NL, moved js function xmlhttpPost() and updatepage() to dhtml.js
- self.dict['js1'] = ''
- self.dict['title'] = 'Partial Correlation Result'
-
diff --git a/web/webqtl/correlation/PlotCorrelationPage.py b/web/webqtl/correlation/PlotCorrelationPage.py
deleted file mode 100755
index 23d2ccde..00000000
--- a/web/webqtl/correlation/PlotCorrelationPage.py
+++ /dev/null
@@ -1,683 +0,0 @@
-# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
-#
-# This program is free software: you can redistribute it and/or modify it
-# under the terms of the GNU Affero General Public License
-# as published by the Free Software Foundation, either version 3 of the
-# License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-# See the GNU Affero General Public License for more details.
-#
-# This program is available from Source Forge: at GeneNetwork Project
-# (sourceforge.net/projects/genenetwork/).
-#
-# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
-# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
-#
-#
-#
-# This module is used by GeneNetwork project (www.genenetwork.org)
-#
-# Created by GeneNetwork Core Team 2010/08/10
-#
-# Last updated by Ning Liu 2011/01/11
-
-import string
-import piddle as pid
-import os
-
-from htmlgen import HTMLgen2 as HT
-
-from utility import svg #Code using this module currently commented out
-from utility import Plot
-from base.webqtlTrait import webqtlTrait
-from base.templatePage import templatePage
-from utility import webqtlUtil
-from base import webqtlConfig
-from dbFunction import webqtlDatabaseFunction
-from correlation import correlationFunction
-
-#########################################
-# PlotCorrelationPage
-#########################################
-class PlotCorrelationPage(templatePage):
- corrMinInformative = 4
-
- def __init__(self, fd):
-
- templatePage.__init__(self, fd)
-
- self.initializeDisplayParameters(fd)
-
- if not fd.genotype:
- fd.readGenotype()
-
- if fd.allstrainlist:
- mdpchoice = fd.formdata.getvalue('MDPChoice')
- if mdpchoice == "1":
- strainlist = fd.f1list + fd.strainlist
- elif mdpchoice == "2":
- strainlist = []
- strainlist2 = fd.f1list + fd.strainlist
- for strain in fd.allstrainlist:
- if strain not in strainlist2:
- strainlist.append(strain)
- #So called MDP Panel
- if strainlist:
- strainlist = fd.f1list+fd.parlist+strainlist
- else:
- strainlist = fd.allstrainlist
- fd.readData(fd.allstrainlist)
- else:
- mdpchoice = None
- strainlist = fd.strainlist
- fd.readData()
-
- #if fd.allstrainlist:
- # fd.readData(fd.allstrainlist)
- # strainlist = fd.allstrainlist
- #else:
- # fd.readData()
- # strainlist = fd.strainlist
-
-
- if not self.openMysql():
- return
-
- isSampleCorr = 0 #XZ: initial value is false
- isTissueCorr = 0 #XZ: initial value is false
-
- #Javascript functions (showCorrelationPlot2, showTissueCorrPlot) have made sure the correlation type is either sample correlation or tissue correlation.
- if (self.database and (self.ProbeSetID != 'none')):
- isSampleCorr = 1
- elif (self.X_geneSymbol and self.Y_geneSymbol):
- isTissueCorr = 1
- else:
- heading = "Correlation Type Error"
- detail = ["For the input parameters, GN can not recognize the correlation type is sample correlation or tissue correlation."]
- self.error(heading=heading,detail=detail)
- return
-
-
- TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee', align="left", wrap="off")
-
-
- dataX=[]
- dataY=[]
- dataZ=[] # shortname
- fullTissueName=[]
- xlabel = ''
- ylabel = ''
-
- if isTissueCorr:
- dataX, dataY, xlabel, ylabel, dataZ, fullTissueName = self.getTissueLabelsValues(X_geneSymbol=self.X_geneSymbol, Y_geneSymbol=self.Y_geneSymbol, TissueProbeSetFreezeId=self.TissueProbeSetFreezeId)
- plotHeading = HT.Paragraph('Tissue Correlation Scatterplot')
- plotHeading.__setattr__("class","title")
-
- if isSampleCorr:
- plotHeading = HT.Paragraph('Sample Correlation Scatterplot')
- plotHeading.__setattr__("class","title")
-
- #XZ: retrieve trait 1 info, Y axis
- trait1_data = [] #trait 1 data
- trait1Url = ''
-
- try:
- Trait1 = webqtlTrait(db=self.database, name=self.ProbeSetID, cellid=self.CellID, cursor=self.cursor)
- Trait1.retrieveInfo()
- Trait1.retrieveData()
- except:
- heading = "Retrieve Data"
- detail = ["The database you just requested has not been established yet."]
- self.error(heading=heading,detail=detail)
- return
-
- trait1_data = Trait1.exportData(strainlist)
- if Trait1.db.type == 'Publish' and Trait1.confidential:
- trait1Url = Trait1.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=Trait1.authorized_users)
- else:
- trait1Url = Trait1.genHTML(dispFromDatabase=1)
- ylabel = '%s : %s' % (Trait1.db.shortname, Trait1.name)
- if Trait1.cellid:
- ylabel += ' : ' + Trait1.cellid
-
-
- #XZ, retrieve trait 2 info, X axis
- traitdata2 = [] #trait 2 data
- _vals = [] #trait 2 data
- trait2Url = ''
-
- if ( self.database2 and (self.ProbeSetID2 != 'none') ):
- try:
- Trait2 = webqtlTrait(db=self.database2, name=self.ProbeSetID2, cellid=self.CellID2, cursor=self.cursor)
- Trait2.retrieveInfo()
- Trait2.retrieveData()
- except:
- heading = "Retrieve Data"
- detail = ["The database you just requested has not been established yet."]
- self.error(heading=heading,detail=detail)
- return
-
- if Trait2.db.type == 'Publish' and Trait2.confidential:
- trait2Url = Trait2.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=Trait2.authorized_users)
- else:
- trait2Url = Trait2.genHTML(dispFromDatabase=1)
- traitdata2 = Trait2.exportData(strainlist)
- _vals = traitdata2[:]
- xlabel = '%s : %s' % (Trait2.db.shortname, Trait2.name)
- if Trait2.cellid:
- xlabel += ' : ' + Trait2.cellid
- else:
- for item in strainlist:
- if fd.allTraitData.has_key(item):
- _vals.append(fd.allTraitData[item].val)
- else:
- _vals.append(None)
-
- if fd.identification:
- xlabel = fd.identification
- else:
- xlabel = "User Input Data"
-
- try:
- Trait2 = webqtlTrait(fullname=fd.formdata.getvalue('fullname'), cursor=self.cursor)
- trait2Url = Trait2.genHTML(dispFromDatabase=1)
- except:
- trait2Url = xlabel
-
- if (_vals and trait1_data):
- if len(_vals) != len(trait1_data):
- errors = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('The number of traits are inconsistent, Program quit',color='black'))
- errors.__setattr__("class","subtitle")
- TD_LR.append(errors)
- self.dict['body'] = str(TD_LR)
- return
-
- for i in range(len(_vals)):
- if _vals[i]!= None and trait1_data[i]!= None:
- dataX.append(_vals[i])
- dataY.append(trait1_data[i])
- strainName = strainlist[i]
- if self.showstrains:
- dataZ.append(webqtlUtil.genShortStrainName(RISet=fd.RISet, input_strainName=strainName))
- else:
- heading = "Correlation Plot"
- detail = ['Empty Dataset for sample correlation, please check your data.']
- self.error(heading=heading,detail=detail)
- return
-
-
- #XZ: We have gotten all data for both traits.
- if len(dataX) >= self.corrMinInformative:
-
- if self.rankOrder == 0:
- rankPrimary = 0
- rankSecondary = 1
- else:
- rankPrimary = 1
- rankSecondary = 0
-
- lineColor = self.setLineColor();
- symbolColor = self.setSymbolColor();
- idColor = self.setIdColor();
-
- c = pid.PILCanvas(size=(self.plotSize, self.plotSize*0.90))
- data_coordinate = Plot.plotXY(canvas=c, dataX=dataX, dataY=dataY, rank=rankPrimary, dataLabel = dataZ, labelColor=pid.black, lineSize=self.lineSize, lineColor=lineColor, idColor=idColor, idFont=self.idFont, idSize=self.idSize, symbolColor=symbolColor, symbolType=self.symbol, filled=self.filled, symbolSize=self.symbolSize, XLabel=xlabel, connectdot=0, YLabel=ylabel, title='', fitcurve=self.showline, displayR =1, offset= (90, self.plotSize/20, self.plotSize/10, 90), showLabel = self.showIdentifiers)
-
- if rankPrimary == 1:
- dataXlabel, dataYlabel = webqtlUtil.calRank(xVals=dataX, yVals=dataY, N=len(dataX))
- else:
- dataXlabel, dataYlabel = dataX, dataY
-
- gifmap1 = HT.Map(name='CorrelationPlotImageMap1')
-
- for i, item in enumerate(data_coordinate):
- one_rect_coordinate = "%d, %d, %d, %d" % (item[0] - 5, item[1] - 5, item[0] + 5, item[1] + 5)
- if isTissueCorr:
- one_rect_title = "%s (%s, %s)" % (fullTissueName[i], dataXlabel[i], dataYlabel[i])
- else:
- one_rect_title = "%s (%s, %s)" % (dataZ[i], dataXlabel[i], dataYlabel[i])
- gifmap1.areas.append(HT.Area(shape='rect',coords=one_rect_coordinate, title=one_rect_title) )
-
- filename= webqtlUtil.genRandStr("XY_")
- c.save(webqtlConfig.IMGDIR+filename, format='gif')
- img1=HT.Image('/image/'+filename+'.gif',border=0, usemap='#CorrelationPlotImageMap1')
-
- mainForm_1 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden'))
- hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet, 'ProbeSetID2':'_', 'database2':'_', 'CellID2':'_', 'allstrainlist':string.join(fd.strainlist, " "), 'traitList': fd.formdata.getvalue("traitList")}
- if fd.incparentsf1:
- hddn['incparentsf1'] = 'ON'
- for key in hddn.keys():
- mainForm_1.append(HT.Input(name=key, value=hddn[key], type='hidden'))
-
- if isSampleCorr:
- mainForm_1.append(HT.P(), HT.Blockquote(HT.Strong('X axis:'),HT.Blockquote(trait2Url),HT.Strong('Y axis:'),HT.Blockquote(trait1Url), style='width: %spx;' % self.plotSize, wrap="hard"))
-
- graphForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='MDP_Form',submit=HT.Input(type='hidden'))
- graph_hddn = self.setHiddenParameters(fd, rankPrimary)
- webqtlUtil.exportData(graph_hddn, fd.allTraitData) #XZ: This is necessary to replot with different groups of strains
-
- for key in graph_hddn.keys():
- graphForm.append(HT.Input(name=key, value=graph_hddn[key], type='hidden'))
-
- options = self.createOptionsMenu(fd, mdpchoice)
-
- if (self.showOptions == '0'):
- showOptionsButton = HT.Input(type='button' ,name='optionsButton',value='Hide Options', onClick="showHideOptions();", Class="button")
- else:
- showOptionsButton = HT.Input(type='button' ,name='optionsButton',value='Show Options', onClick="showHideOptions();", Class="button")
-
- # updated by NL: 12-07-2011 add variables for tissue abbreviation page
- if isTissueCorr:
- graphForm.append(HT.Input(name='shortTissueName', value='', type='hidden'))
- graphForm.append(HT.Input(name='fullTissueName', value='', type='hidden'))
- shortTissueNameStr=string.join(dataZ, ",")
- fullTissueNameStr=string.join(fullTissueName, ",")
-
- tissueAbbrButton=HT.Input(type='button' ,name='tissueAbbrButton',value='Show Abbreviations', onClick="showTissueAbbr('MDP_Form','%s','%s')" % (shortTissueNameStr,fullTissueNameStr), Class="button")
- graphForm.append(showOptionsButton,'&nbsp;&nbsp;&nbsp;&nbsp;',tissueAbbrButton, HT.BR(), HT.BR())
- else:
- graphForm.append(showOptionsButton, HT.BR(), HT.BR())
-
- graphForm.append(options, HT.BR())
- graphForm.append(HT.HR(), HT.BR(), HT.P())
-
- TD_LR.append(plotHeading, HT.BR(),graphForm, HT.BR(), gifmap1, HT.P(), img1, HT.P(), mainForm_1)
- TD_LR.append(HT.BR(), HT.HR(color="grey", size=5, width="100%"))
-
-
-
- c = pid.PILCanvas(size=(self.plotSize, self.plotSize*0.90))
- data_coordinate = Plot.plotXY(canvas=c, dataX=dataX, dataY=dataY, rank=rankSecondary, dataLabel = dataZ, labelColor=pid.black,lineColor=lineColor, lineSize=self.lineSize, idColor=idColor, idFont=self.idFont, idSize=self.idSize, symbolColor=symbolColor, symbolType=self.symbol, filled=self.filled, symbolSize=self.symbolSize, XLabel=xlabel, connectdot=0, YLabel=ylabel,title='', fitcurve=self.showline, displayR =1, offset= (90, self.plotSize/20, self.plotSize/10, 90), showLabel = self.showIdentifiers)
-
- if rankSecondary == 1:
- dataXlabel, dataYlabel = webqtlUtil.calRank(xVals=dataX, yVals=dataY, N=len(dataX))
- else:
- dataXlabel, dataYlabel = dataX, dataY
-
- gifmap2 = HT.Map(name='CorrelationPlotImageMap2')
-
- for i, item in enumerate(data_coordinate):
- one_rect_coordinate = "%d, %d, %d, %d" % (item[0] - 6, item[1] - 6, item[0] + 6, item[1] + 6)
- if isTissueCorr:
- one_rect_title = "%s (%s, %s)" % (fullTissueName[i], dataXlabel[i], dataYlabel[i])
- else:
- one_rect_title = "%s (%s, %s)" % (dataZ[i], dataXlabel[i], dataYlabel[i])
-
- gifmap2.areas.append(HT.Area(shape='rect',coords=one_rect_coordinate, title=one_rect_title) )
-
- filename= webqtlUtil.genRandStr("XY_")
- c.save(webqtlConfig.IMGDIR+filename, format='gif')
- img2=HT.Image('/image/'+filename+'.gif',border=0, usemap='#CorrelationPlotImageMap2')
-
- mainForm_2 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase2', submit=HT.Input(type='hidden'))
- hddn = {'FormID':'showDatabase2','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet, 'ProbeSetID2':'_', 'database2':'_', 'CellID2':'_', 'allstrainlist':string.join(fd.strainlist, " "), 'traitList': fd.formdata.getvalue("traitList")}
- if fd.incparentsf1:
- hddn['incparentsf1'] = 'ON'
- for key in hddn.keys():
- mainForm_2.append(HT.Input(name=key, value=hddn[key], type='hidden'))
-
- if isSampleCorr:
- mainForm_2.append(HT.P(), HT.Blockquote(HT.Strong('X axis:'),HT.Blockquote(trait2Url),HT.Strong('Y axis:'),HT.Blockquote(trait1Url), style='width:%spx;' % self.plotSize))
-
-
- TD_LR.append(HT.BR(), HT.P())
- TD_LR.append('\n', gifmap2, HT.P(), HT.P(), img2, HT.P(), mainForm_2)
-
- self.dict['body'] = str(TD_LR)
- else:
- heading = "Correlation Plot"
- detail = ['Fewer than %d strain data were entered for %s data set. No statitical analysis has been attempted.' % (self.corrMinInformative, fd.RISet)]
- self.error(heading=heading,detail=detail)
- return
-
-
-
- def initializeDisplayParameters(self, fd):
- """
- Initializes all of the PlotCorrelationPage class parameters,
- acquiring most values from the formdata (fd)
- """
-
- rankOrderString = fd.formdata.getvalue('rankOrder')
- if rankOrderString == "1":
- self.rankOrder = 1
- else:
- self.rankOrder = 0
-
- self.dict['title'] = 'Correlation X-Y Scatterplot'
- focusScript = "onLoad=\"document.getElementsByName('plotSize')[0].focus();\";"
- self.dict['js2'] = focusScript
-
- self.showstrains = fd.formdata.getvalue('ShowStrains')
- self.showline = fd.formdata.getvalue('ShowLine')
- self.X_geneSymbol = fd.formdata.getvalue('X_geneSymbol','')
- self.Y_geneSymbol = fd.formdata.getvalue('Y_geneSymbol','')
- self.TissueProbeSetFreezeId = fd.formdata.getvalue('TissueProbeSetFreezeId', '1')
-
- self.symbolColor = fd.formdata.getvalue('symbolColor', 'black')
- self.symbol = fd.formdata.getvalue('symbol', 'circle')
- self.filled = fd.formdata.getvalue('filled', 'yes')
- self.symbolSize = fd.formdata.getvalue('symbolSize', 'tiny')
- self.idColor = fd.formdata.getvalue('idColor', 'blue')
- self.idFont = fd.formdata.getvalue('idFont', 'arial')
- self.idSize = fd.formdata.getvalue('idSize', '14')
- self.lineColor = fd.formdata.getvalue('lineColor', 'grey')
- self.lineSize = fd.formdata.getvalue('lineSize', 'medium')
- self.showOptions = fd.formdata.getvalue('showOptions', '0')
-
- try:
- self.plotSize = int(fd.formdata.getvalue('plotSize', 900))
- except:
- self.plotSize = 900
- try:
- self.showIdentifiers = int(fd.formdata.getvalue('showIdentifiers', 1))
- except:
- self.showIdentifiers = 1
-
- self.database = fd.formdata.getvalue('database')
- self.ProbeSetID = fd.formdata.getvalue('ProbeSetID', 'none')
- self.CellID = fd.formdata.getvalue('CellID')
-
- self.database2 = fd.formdata.getvalue('database2')
- self.ProbeSetID2 = fd.formdata.getvalue('ProbeSetID2', 'none')
- self.CellID2 = fd.formdata.getvalue('CellID2')
-
- def createOptionsMenu(self, fd, mdpchoice):
- """
- Create all the HTML for the options menu; the first if/else statements
- determine whether the Div container holding all the other html is visible
- or not.
- """
-
- if (self.showOptions == '0'):
- options = HT.Div(name="options", id="options", style="display: none")
- self.showOptions = '1'
- else:
- options = HT.Div(name="options", id="options", style="display: ''")
- self.showOptions = '0'
-
- if self.showIdentifiers:
- containerTable = HT.TableLite(cellspacing=1, width=730, height=150, border=1)
- else:
- containerTable = HT.TableLite(cellspacing=1, width=730, height=130, border=1)
-
- if self.showIdentifiers:
- containerTable = HT.TableLite(cellspacing=1, width=730, height=150, border=1)
- else:
- containerTable = HT.TableLite(cellspacing=1, width=730, height=130, border=1)
-
- containerRow = HT.TR()
- containerCell = HT.TD(valign="middle", align="center")
-
- optionsTable = HT.TableLite(Class="collap", cellspacing=2, width=700)
-
- sizeOptions = HT.TR(align="right")
- tagOptions = HT.TR(align="right")
- markerOptions = HT.TR(align="right")
- lineOptions = HT.TR(align="right")
- replot_mdpOptions = HT.TR(align="right")
-
- sizeOptions.append(HT.TD(HT.Bold("Size: "), "&nbsp;"*1, HT.Input(type='text' ,name='plotSize', value=self.plotSize, style="background-color: #FFFFFF; width: 50px;", onChange="checkWidth();"), align="left"))
-
- idColorSel = HT.Select(name="idColorSel", onChange="changeIdColor(); submit();", selected=self.idColor)
- idColorSel.append(("blue", "blue"))
- idColorSel.append(("green", "green"))
- idColorSel.append(("red", "red"))
- idColorSel.append(("yellow", "yellow"))
- idColorSel.append(("white", "white"))
- idColorSel.append(("purple", "purple"))
- idColorSel.append(("brown", "brown"))
- idColorSel.append(("grey", "grey"))
- idColorSel.append(("black","black"))
-
- idFontSel = HT.Select(name="idFontSel", onChange="changeIdFont(); submit();", selected=self.idFont)
- idFontSel.append(("Arial", "arial"))
- idFontSel.append(("Trebuchet", "trebuc"))
- idFontSel.append(("Verdana", "verdana"))
- idFontSel.append(("Georgia", "Georgia"))
- idFontSel.append(("Courier", "cour"))
-
- idSizeSel = HT.Select(name="idSizeSel", onChange="changeIdSize(); submit();", selected=self.idSize)
- idSizeSel.append(("10", "10"))
- idSizeSel.append(("12", "12"))
- idSizeSel.append(("14", "14"))
- idSizeSel.append(("16", "16"))
- idSizeSel.append(("18", "18"))
-
- if self.showIdentifiers:
- tagButton = HT.TD(HT.Input(type='button' ,name='',value=' Hide Tags ',onClick="this.form.showIdentifiers.value=0;submit();", Class="button"), align="right")
- else:
- tagButton = HT.TD(HT.Input(type='button' ,name='',value=' Show Tags ',onClick="this.form.showIdentifiers.value=1;submit();", Class="button"), align="right")
-
- tagOptions.append(HT.TD(HT.Text(HT.Bold("Tag Settings: ")), align="left"))
- tagOptions.append(HT.TD(HT.Text(text="Font: "), idFontSel))
- tagOptions.append(HT.TD(HT.Text(text="Color: "), idColorSel))
- tagOptions.append(HT.TD(HT.Text(text="Point: "), idSizeSel))
- tagOptions.append(tagButton)
- optionsTable.append(sizeOptions, tagOptions)
-
- if fd.allstrainlist and mdpchoice:
- allStrainList = HT.Input(name='allstrainlist', value=string.join(fd.allstrainlist, " "), type='hidden')
- mdpChoice = HT.Input(name='MDPChoice', value=mdpchoice, type='hidden')
- btn0 = HT.Input(type='button' ,name='',value='All Cases',onClick="this.form.MDPChoice.value=0;submit();", Class="button")
- btn1 = HT.Input(type='button' ,name='',value='%s Only' % fd.RISet,onClick="this.form.MDPChoice.value=1;submit();", Class="button")
- btn2 = HT.Input(type='button' ,name='',value='MDP Only', onClick="this.form.MDPChoice.value=2;submit();", Class="button")
-
-
- colorSel = HT.Select(name="colorSel", onChange="changeSymbolColor(); submit();", selected=self.symbolColor)
- colorSel.append(("red", "red"))
- colorSel.append(("green", "green"))
- colorSel.append(("blue", "blue"))
- colorSel.append(("yellow", "yellow"))
- colorSel.append(("purple", "purple"))
- colorSel.append(("brown", "brown"))
- colorSel.append(("grey", "grey"))
- colorSel.append(("black","black"))
-
- symbolSel = HT.Select(name="symbolSel", onChange="changeSymbol(); submit();", selected=self.symbol)
- symbolSel.append(("4-star","4-star"))
- symbolSel.append(("3-star","3-star"))
- symbolSel.append(("cross", "cross"))
- symbolSel.append(("circle","circle"))
- symbolSel.append(("diamond", "diamond"))
- symbolSel.append(("square", "square"))
- symbolSel.append(("vert rect", "vertRect"))
- symbolSel.append(("hori rect", "horiRect"))
-
- sizeSel = HT.Select(name="sizeSel", onChange="changeSize(); submit();", selected=self.symbolSize)
- sizeSel.append(("tiny","tiny"))
- sizeSel.append(("small","small"))
- sizeSel.append(("medium","medium"))
- sizeSel.append(("large","large"))
-
- fillSel = HT.Select(name="fillSel", onChange="changeFilled(); submit();", selected=self.filled)
- fillSel.append(("no","no"))
- fillSel.append(("yes","yes"))
-
- lineColorSel = HT.Select(name="lineColorSel", onChange="changeLineColor(); submit();", selected=self.lineColor)
- lineColorSel.append(("red", "red"))
- lineColorSel.append(("green", "green"))
- lineColorSel.append(("blue", "blue"))
- lineColorSel.append(("yellow", "yellow"))
- lineColorSel.append(("purple", "purple"))
- lineColorSel.append(("brown", "brown"))
- lineColorSel.append(("grey", "grey"))
- lineColorSel.append(("black","black"))
-
- lineSizeSel = HT.Select(name="lineSizeSel", onChange="changeLineSize(); submit();", selected=self.lineSize)
- lineSizeSel.append(("thin", "thin"))
- lineSizeSel.append(("medium", "medium"))
- lineSizeSel.append(("thick", "thick"))
-
-
- markerOptions.append(HT.TD(HT.Text(HT.Bold("Marker Settings: ")), align="left"))
- markerOptions.append(HT.TD(HT.Text(text="Marker: "), symbolSel))
- markerOptions.append(HT.TD(HT.Text(text="Color: "), colorSel))
- markerOptions.append(HT.TD(HT.Text(text="Fill: "), fillSel))
- markerOptions.append(HT.TD(HT.Text(text="Size: "), sizeSel))
-
- lineOptions.append(HT.TD(HT.Text(HT.Bold("Line Settings: ")), align="left"))
- lineOptions.append(HT.TD(HT.Text(text="Width: "), lineSizeSel))
- lineOptions.append(HT.TD(HT.Text(text="Color: "), lineColorSel))
-
- replotButton = HT.Input(type='button', name='', value=' Replot ',onClick="checkWidth(); submit();", Class="button")
-
- if fd.allstrainlist and mdpchoice:
- replot_mdpOptions.append(HT.TD(replotButton, align="left"), HT.TD(allStrainList, mdpChoice, btn0, btn1, btn2, align="center", colspan=3))
- optionsTable.append(markerOptions, lineOptions, HT.TR(HT.TD(HT.BR())), replot_mdpOptions )
- else:
- replot_mdpOptions.append(HT.TD(replotButton, align="left"))
- optionsTable.append(markerOptions, lineOptions, HT.TR(HT.TD(HT.BR())), replot_mdpOptions)
-
- containerCell.append(optionsTable)
- containerRow.append(containerCell)
- containerTable.append(containerRow)
-
- options.append(containerTable)
-
- return options
-
- def setHiddenParameters(self, fd, rankPrimary):
- """
- Create the dictionary of hidden form parameters from PlotCorrelationPage's class parameters
- """
-
- graph_hddn = {'FormID':'showCorrelationPlot','RISet':fd.RISet, 'identification':fd.identification, "incparentsf1":1, "showIdentifiers":self.showIdentifiers}
-
- if self.database: graph_hddn['database']=self.database
- if self.ProbeSetID: graph_hddn['ProbeSetID']=self.ProbeSetID
- if self.CellID: graph_hddn['CellID']=self.CellID
- if self.database2: graph_hddn['database2']=self.database2
- if self.ProbeSetID2: graph_hddn['ProbeSetID2']=self.ProbeSetID2
- if self.CellID2: graph_hddn['CellID2']=self.CellID2
- if self.showstrains: graph_hddn['ShowStrains']=self.showstrains
- if self.showline: graph_hddn['ShowLine']=self.showline
- if self.X_geneSymbol: graph_hddn['X_geneSymbol']=self.X_geneSymbol
- if self.Y_geneSymbol: graph_hddn['Y_geneSymbol']=self.Y_geneSymbol
- if self.TissueProbeSetFreezeId: graph_hddn['TissueProbeSetFreezeId']=self.TissueProbeSetFreezeId
- if self.rankOrder: graph_hddn['rankOrder'] = rankPrimary
- if fd.formdata.getvalue('fullname'): graph_hddn['fullname']=fd.formdata.getvalue('fullname')
- if self.lineColor: graph_hddn['lineColor'] = self.lineColor
- if self.lineSize: graph_hddn['lineSize'] = self.lineSize
- if self.idColor: graph_hddn['idColor'] = self.idColor
- if self.idFont: graph_hddn['idFont'] = self.idFont
- if self.idSize: graph_hddn['idSize'] = self.idSize
- if self.symbolColor: graph_hddn['symbolColor'] = self.symbolColor
- if self.symbol: graph_hddn['symbol'] = self.symbol
- if self.filled: graph_hddn['filled'] = self.filled
- if self.symbolSize: graph_hddn['symbolSize'] = self.symbolSize
- if self.showOptions: graph_hddn['showOptions'] = self.showOptions
-
- return graph_hddn
-
- def setIdColor(self):
- """
- Set the plot tag/ID color based upon the value of the idColor class parameter
- """
-
- if self.idColor == 'black':
- idColor = pid.black
- elif self.idColor == 'white':
- idColor = pid.white
- elif self.idColor == 'yellow':
- idColor = pid.yellow
- elif self.idColor == 'grey':
- idColor = pid.grey
- elif self.idColor == 'blue':
- idColor = pid.blue
- elif self.idColor == 'purple':
- idColor = pid.purple
- elif self.idColor == 'brown':
- idColor = pid.brown
- elif self.idColor == 'green':
- idColor = pid.green
- else:
- idColor = pid.red
-
- return idColor
-
- def setSymbolColor(self):
- """
- Set the plot symbol color based upon the value of the symbolColor class parameter
- """
-
- if self.symbolColor == 'black':
- symbolColor = pid.black
- elif self.symbolColor == 'grey':
- symbolColor = pid.grey
- elif self.symbolColor == 'yellow':
- symbolColor = pid.yellow
- elif self.symbolColor == 'blue':
- symbolColor = pid.blue
- elif self.symbolColor == 'purple':
- symbolColor = pid.purple
- elif self.symbolColor == 'brown':
- symbolColor = pid.brown
- elif self.symbolColor== 'green':
- symbolColor = pid.green
- else:
- symbolColor = pid.red
-
- return symbolColor
-
- def setLineColor(self):
- """
- Set the plot line color based upon the lineColor class parameter
- """
-
- if self.lineColor == 'black':
- lineColor = pid.black
- elif self.lineColor == 'grey':
- lineColor = pid.grey
- elif self.lineColor == 'yellow':
- lineColor = pid.yellow
- elif self.lineColor == 'blue':
- lineColor = pid.blue
- elif self.lineColor == 'purple':
- lineColor = pid.purple
- elif self.lineColor == 'brown':
- lineColor = pid.brown
- elif self.lineColor== 'green':
- lineColor = pid.green
- else:
- lineColor = pid.red
-
- return lineColor
-
-
- def getTissueLabelsValues(self, X_geneSymbol=None, Y_geneSymbol=None, TissueProbeSetFreezeId=None ):
-
- dataX = []
- dataY = []
- data_fullLabel = []
- data_shortLabel = []
- # updated by NL, 2011-01-11 using new function getTissueProbeSetXRefInfo to get dataId value
- X_symbolList,X_geneIdDict,X_dataIdDict,X_ChrDict,X_MbDict,X_descDict,X_pTargetDescDict = correlationFunction.getTissueProbeSetXRefInfo(cursor=self.cursor,GeneNameLst=[X_geneSymbol],TissueProbeSetFreezeId=TissueProbeSetFreezeId)
- Y_symbolList,Y_geneIdDict,Y_dataIdDict,Y_ChrDict,Y_MbDict,Y_descDict,Y_pTargetDescDict = correlationFunction.getTissueProbeSetXRefInfo(cursor=self.cursor,GeneNameLst=[Y_geneSymbol],TissueProbeSetFreezeId=TissueProbeSetFreezeId)
- # in dataIdDict, key is the lower cased geneSymbol
- X_DataId = X_dataIdDict[X_geneSymbol.lower()]
- Y_DataId = Y_dataIdDict[Y_geneSymbol.lower()]
-
- self.cursor.execute("SELECT TissueID,value FROM TissueProbeSetData WHERE Id = %d ORDER BY TissueID" % int(X_DataId) )
- results = self.cursor.fetchall()
- for item in results:
- TissueID, Value = item
- dataX.append(Value)
- self.cursor.execute("SELECT Tissue.Name, Tissue.Short_Name FROM Tissue WHERE Id = %d" % int(TissueID) )
- temp = self.cursor.fetchone()
- data_fullLabel.append( temp[0] )
- data_shortLabel.append( temp[1] )
-
- self.cursor.execute("SELECT TissueID,value FROM TissueProbeSetData WHERE Id = %d ORDER BY TissueID" % int(Y_DataId) )
- results = self.cursor.fetchall()
- for item in results:
- TissueID, Value = item
- dataY.append(Value)
-
- X_label = "%s" % X_geneSymbol
- Y_label = "%s" % Y_geneSymbol
-
- return dataX, dataY, X_label, Y_label, data_shortLabel, data_fullLabel
diff --git a/web/webqtl/correlation/__init__.py b/web/webqtl/correlation/__init__.py
deleted file mode 100755
index e69de29b..00000000
--- a/web/webqtl/correlation/__init__.py
+++ /dev/null
diff --git a/web/webqtl/correlation/correlationFunction.py b/web/webqtl/correlation/correlationFunction.py
deleted file mode 100755
index cc19f54e..00000000
--- a/web/webqtl/correlation/correlationFunction.py
+++ /dev/null
@@ -1,923 +0,0 @@
-# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
-#
-# This program is free software: you can redistribute it and/or modify it
-# under the terms of the GNU Affero General Public License
-# as published by the Free Software Foundation, either version 3 of the
-# License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-# See the GNU Affero General Public License for more details.
-#
-# This program is available from Source Forge: at GeneNetwork Project
-# (sourceforge.net/projects/genenetwork/).
-#
-# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
-# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
-#
-#
-#
-# This module is used by GeneNetwork project (www.genenetwork.org)
-#
-# Created by GeneNetwork Core Team 2010/08/10
-#
-# Last updated by NL 2011/03/23
-
-
-import math
-import rpy2.robjects
-import pp
-import string
-
-from utility import webqtlUtil
-from base.webqtlTrait import webqtlTrait
-from dbFunction import webqtlDatabaseFunction
-
-
-
-#XZ: The input 'controls' is String. It contains the full name of control traits.
-#XZ: The input variable 'strainlst' is List. It contains the strain names of primary trait.
-#XZ: The returned tcstrains is the list of list [[],[]...]. So are tcvals and tcvars. The last returned parameter is list of numbers.
-#XZ, 03/29/2010: For each returned control trait, there is no None value in it.
-def controlStrains(controls, strainlst):
-
- controls = controls.split(',')
-
- cvals = {}
- for oneTraitName in controls:
- oneTrait = webqtlTrait(fullname=oneTraitName, cursor=webqtlDatabaseFunction.getCursor() )
- oneTrait.retrieveData()
- cvals[oneTraitName] = oneTrait.data
-
- tcstrains = []
- tcvals = []
- tcvars = []
-
- for oneTraitName in controls:
- strains = []
- vals = []
- vars = []
-
- for _strain in strainlst:
- if cvals[oneTraitName].has_key(_strain):
- _val = cvals[oneTraitName][_strain].val
- if _val != None:
- strains.append(_strain)
- vals.append(_val)
- vars.append(None)
-
- tcstrains.append(strains)
- tcvals.append(vals)
- tcvars.append(vars)
-
- return tcstrains, tcvals, tcvars, [len(x) for x in tcstrains]
-
-
-
-#XZ, 03/29/2010: After execution of functon "controlStrains" and "fixStrains", primary trait and control traits have the same strains and in the same order. There is no 'None' value in them.
-def fixStrains(_strains,_controlstrains,_vals,_controlvals,_vars,_controlvars):
- """Corrects strains, vals, and vars so that all contrain only those strains common
- to the reference trait and all control traits."""
-
- def dictify(strains,vals,vars):
- subdict = {}
- for i in xrange(len(strains)):
- subdict[strains[i]] = (vals[i],vars[i])
- return subdict
-
- #XZ: The 'dicts' is a list of dictionary. The first element is the dictionary of reference trait. The rest elements are for control traits.
- dicts = []
- dicts.append(dictify(_strains,_vals,_vars))
-
- nCstrains = len(_controlstrains)
- for i in xrange(nCstrains):
- dicts.append(dictify(_controlstrains[i],_controlvals[i],_controlvars[i]))
-
- _newstrains = []
- _vals = []
- _vars = []
- _controlvals = [[] for x in xrange(nCstrains)]
- _controlvars = [[] for x in xrange(nCstrains)]
-
- for strain in _strains:
- inall = True
- for d in dicts:
- if strain not in d:
- inall = False
- break
- if inall:
- _newstrains.append(strain)
- _vals.append(dicts[0][strain][0])
- _vars.append(dicts[0][strain][1])
- for i in xrange(nCstrains):
- _controlvals[i].append(dicts[i+1][strain][0])
- _controlvars[i].append(dicts[i+1][strain][1])
-
- return _newstrains, _vals, _controlvals, _vars, _controlvars
-
-
-#XZ, 6/15/2010: If there is no identical control traits, the returned list is empty.
-#else, the returned list has two elements of control trait name.
-def findIdenticalControlTraits ( controlVals, controlNames ):
- nameOfIdenticalTraits = []
-
- controlTraitNumber = len(controlVals)
-
- if controlTraitNumber > 1:
-
- #XZ: reset the precision of values and convert to string type
- for oneTraitVal in controlVals:
- for oneStrainVal in oneTraitVal:
- oneStrainVal = '%.3f' % oneStrainVal
-
- for i, oneTraitVal in enumerate( controlVals ):
- for j in range(i+1, controlTraitNumber):
- if oneTraitVal == controlVals[j]:
- nameOfIdenticalTraits.append(controlNames[i])
- nameOfIdenticalTraits.append(controlNames[j])
-
- return nameOfIdenticalTraits
-
-#XZ, 6/15/2010: If there is no identical control traits, the returned list is empty.
-#else, the returned list has two elements of control trait name.
-#primaryVal is of list type. It contains value of primary trait.
-#primaryName is of string type.
-#controlVals is of list type. Each element is list too. Each element contain value of one control trait.
-#controlNames is of list type.
-def findIdenticalTraits (primaryVal, primaryName, controlVals, controlNames ):
- nameOfIdenticalTraits = []
-
- #XZ: reset the precision of values and convert to string type
- for oneStrainVal in primaryVal:
- oneStrainVal = '%.3f' % oneStrainVal
-
- for oneTraitVal in controlVals:
- for oneStrainVal in oneTraitVal:
- oneStrainVal = '%.3f' % oneStrainVal
-
- controlTraitNumber = len(controlVals)
-
- if controlTraitNumber > 1:
- for i, oneTraitVal in enumerate( controlVals ):
- for j in range(i+1, controlTraitNumber):
- if oneTraitVal == controlVals[j]:
- nameOfIdenticalTraits.append(controlNames[i])
- nameOfIdenticalTraits.append(controlNames[j])
- break
-
- if len(nameOfIdenticalTraits) == 0:
- for i, oneTraitVal in enumerate( controlVals ):
- if primaryVal == oneTraitVal:
- nameOfIdenticalTraits.append(primaryName)
- nameOfIdenticalTraits.append(controlNames[i])
- break
-
- return nameOfIdenticalTraits
-
-
-
-#XZ, 03/29/2010: The strains in primaryVal, controlVals, targetVals must be of the same number and in same order.
-#XZ: No value in primaryVal and controlVals could be None.
-
-def determinePartialsByR (primaryVal, controlVals, targetVals, targetNames, method='p'):
-
- def compute_partial ( primaryVal, controlVals, targetVals, targetNames, method ):
-
- rpy2.robjects.r("""
-pcor.test <- function(x,y,z,use="mat",method="p",na.rm=T){
- # The partial correlation coefficient between x and y given z
- #
- # pcor.test is free and comes with ABSOLUTELY NO WARRANTY.
- #
- # x and y should be vectors
- #
- # z can be either a vector or a matrix
- #
- # use: There are two methods to calculate the partial correlation coefficient.
- # One is by using variance-covariance matrix ("mat") and the other is by using recursive formula ("rec").
- # Default is "mat".
- #
- # method: There are three ways to calculate the correlation coefficient,
- # which are Pearson's ("p"), Spearman's ("s"), and Kendall's ("k") methods.
- # The last two methods which are Spearman's and Kendall's coefficient are based on the non-parametric analysis.
- # Default is "p".
- #
- # na.rm: If na.rm is T, then all the missing samples are deleted from the whole dataset, which is (x,y,z).
- # If not, the missing samples will be removed just when the correlation coefficient is calculated.
- # However, the number of samples for the p-value is the number of samples after removing
- # all the missing samples from the whole dataset.
- # Default is "T".
-
- x <- c(x)
- y <- c(y)
- z <- as.data.frame(z)
-
- if(use == "mat"){
- p.use <- "Var-Cov matrix"
- pcor = pcor.mat(x,y,z,method=method,na.rm=na.rm)
- }else if(use == "rec"){
- p.use <- "Recursive formula"
- pcor = pcor.rec(x,y,z,method=method,na.rm=na.rm)
- }else{
- stop("use should be either rec or mat!\n")
- }
-
- # print the method
- if(gregexpr("p",method)[[1]][1] == 1){
- p.method <- "Pearson"
- }else if(gregexpr("s",method)[[1]][1] == 1){
- p.method <- "Spearman"
- }else if(gregexpr("k",method)[[1]][1] == 1){
- p.method <- "Kendall"
- }else{
- stop("method should be pearson or spearman or kendall!\n")
- }
-
- # sample number
- n <- dim(na.omit(data.frame(x,y,z)))[1]
-
- # given variables' number
- gn <- dim(z)[2]
-
- # p-value
- if(p.method == "Kendall"){
- statistic <- pcor/sqrt(2*(2*(n-gn)+5)/(9*(n-gn)*(n-1-gn)))
- p.value <- 2*pnorm(-abs(statistic))
-
- }else{
- statistic <- pcor*sqrt((n-2-gn)/(1-pcor^2))
- p.value <- 2*pnorm(-abs(statistic))
- }
-
- data.frame(estimate=pcor,p.value=p.value,statistic=statistic,n=n,gn=gn,Method=p.method,Use=p.use)
-}
-
-# By using var-cov matrix
-pcor.mat <- function(x,y,z,method="p",na.rm=T){
-
- x <- c(x)
- y <- c(y)
- z <- as.data.frame(z)
-
- if(dim(z)[2] == 0){
- stop("There should be given data\n")
- }
-
- data <- data.frame(x,y,z)
-
- if(na.rm == T){
- data = na.omit(data)
- }
-
- xdata <- na.omit(data.frame(data[,c(1,2)]))
- Sxx <- cov(xdata,xdata,m=method)
-
- xzdata <- na.omit(data)
- xdata <- data.frame(xzdata[,c(1,2)])
- zdata <- data.frame(xzdata[,-c(1,2)])
- Sxz <- cov(xdata,zdata,m=method)
-
- zdata <- na.omit(data.frame(data[,-c(1,2)]))
- Szz <- cov(zdata,zdata,m=method)
-
- # is Szz positive definite?
- zz.ev <- eigen(Szz)$values
- if(min(zz.ev)[1]<0){
- stop("\'Szz\' is not positive definite!\n")
- }
-
- # partial correlation
- Sxx.z <- Sxx - Sxz %*% solve(Szz) %*% t(Sxz)
-
- rxx.z <- cov2cor(Sxx.z)[1,2]
-
- rxx.z
-}
-
-# By using recursive formula
-pcor.rec <- function(x,y,z,method="p",na.rm=T){
- #
-
- x <- c(x)
- y <- c(y)
- z <- as.data.frame(z)
-
- if(dim(z)[2] == 0){
- stop("There should be given data\n")
- }
-
- data <- data.frame(x,y,z)
-
- if(na.rm == T){
- data = na.omit(data)
- }
-
- # recursive formula
- if(dim(z)[2] == 1){
- tdata <- na.omit(data.frame(data[,1],data[,2]))
- rxy <- cor(tdata[,1],tdata[,2],m=method)
-
- tdata <- na.omit(data.frame(data[,1],data[,-c(1,2)]))
- rxz <- cor(tdata[,1],tdata[,2],m=method)
-
- tdata <- na.omit(data.frame(data[,2],data[,-c(1,2)]))
- ryz <- cor(tdata[,1],tdata[,2],m=method)
-
- rxy.z <- (rxy - rxz*ryz)/( sqrt(1-rxz^2)*sqrt(1-ryz^2) )
-
- return(rxy.z)
- }else{
- x <- c(data[,1])
- y <- c(data[,2])
- z0 <- c(data[,3])
- zc <- as.data.frame(data[,-c(1,2,3)])
-
- rxy.zc <- pcor.rec(x,y,zc,method=method,na.rm=na.rm)
- rxz0.zc <- pcor.rec(x,z0,zc,method=method,na.rm=na.rm)
- ryz0.zc <- pcor.rec(y,z0,zc,method=method,na.rm=na.rm)
-
- rxy.z <- (rxy.zc - rxz0.zc*ryz0.zc)/( sqrt(1-rxz0.zc^2)*sqrt(1-ryz0.zc^2) )
- return(rxy.z)
- }
-}
-""")
-
- R_pcorr_function = rpy2.robjects.r['pcor.test']
- R_corr_test = rpy2.robjects.r['cor.test']
-
- primary = rpy2.robjects.FloatVector(range(len(primaryVal)))
- for i in range(len(primaryVal)):
- primary[i] = primaryVal[i]
-
- control = rpy2.robjects.r.matrix(rpy2.robjects.FloatVector( range(len(controlVals)*len(controlVals[0])) ), ncol=len(controlVals))
- for i in range(len(controlVals)):
- for j in range(len(controlVals[0])):
- control[i*len(controlVals[0]) + j] = controlVals[i][j]
-
- allcorrelations = []
-
- for targetIndex, oneTargetVals in enumerate(targetVals):
-
- this_primary = None
- this_control = None
- this_target = None
-
- if None in oneTargetVals:
-
- goodIndex = []
- for i in range(len(oneTargetVals)):
- if oneTargetVals[i] != None:
- goodIndex.append(i)
-
- this_primary = rpy2.robjects.FloatVector(range(len(goodIndex)))
- for i in range(len(goodIndex)):
- this_primary[i] = primaryVal[goodIndex[i]]
-
- this_control = rpy2.robjects.r.matrix(rpy2.robjects.FloatVector( range(len(controlVals)*len(goodIndex)) ), ncol=len(controlVals))
- for i in range(len(controlVals)):
- for j in range(len(goodIndex)):
- this_control[i*len(goodIndex) + j] = controlVals[i][goodIndex[j]]
-
- this_target = rpy2.robjects.FloatVector(range(len(goodIndex)))
- for i in range(len(goodIndex)):
- this_target[i] = oneTargetVals[goodIndex[i]]
-
- else:
- this_primary = primary
- this_control = control
- this_target = rpy2.robjects.FloatVector(range(len(oneTargetVals)))
- for i in range(len(oneTargetVals)):
- this_target[i] = oneTargetVals[i]
-
- one_name = targetNames[targetIndex]
- one_N = len(this_primary)
-
- #calculate partial correlation
- one_pc_coefficient = 'NA'
- one_pc_p = 1
-
- try:
- if method == 's':
- result = R_pcorr_function(this_primary, this_target, this_control, method='s')
- else:
- result = R_pcorr_function(this_primary, this_target, this_control)
-
- #XZ: In very few cases, the returned coefficient is nan.
- #XZ: One way to detect nan is to compare the number to itself. NaN is always != NaN
- if result[0][0] == result[0][0]:
- one_pc_coefficient = result[0][0]
- #XZ: when the coefficient value is 1 (primary trait and target trait are the same),
- #XZ: occationally, the returned p value is nan instead of 0.
- if result[1][0] == result[1][0]:
- one_pc_p = result[1][0]
- elif abs(one_pc_coefficient - 1) < 0.0000001:
- one_pc_p = 0
- except:
- pass
-
- #calculate zero order correlation
- one_corr_coefficient = 0
- one_corr_p = 1
-
- try:
- if method == 's':
- R_result = R_corr_test(this_primary, this_target, method='spearman')
- else:
- R_result = R_corr_test(this_primary, this_target)
-
- one_corr_coefficient = R_result[3][0]
- one_corr_p = R_result[2][0]
- except:
- pass
-
- traitinfo = [ one_name, one_N, one_pc_coefficient, one_pc_p, one_corr_coefficient, one_corr_p ]
-
- allcorrelations.append(traitinfo)
-
- return allcorrelations
- #End of function compute_partial
-
-
- allcorrelations = []
-
- target_trait_number = len(targetVals)
-
- if target_trait_number < 1000:
- allcorrelations = compute_partial ( primaryVal, controlVals, targetVals, targetNames, method )
- else:
- step = 1000
- job_number = math.ceil( float(target_trait_number)/step )
-
- job_targetVals_lists = []
- job_targetNames_lists = []
-
- for job_index in range( int(job_number) ):
- starti = job_index*step
- endi = min((job_index+1)*step, target_trait_number)
-
- one_job_targetVals_list = []
- one_job_targetNames_list = []
-
- for i in range( starti, endi ):
- one_job_targetVals_list.append( targetVals[i] )
- one_job_targetNames_list.append( targetNames[i] )
-
- job_targetVals_lists.append( one_job_targetVals_list )
- job_targetNames_lists.append( one_job_targetNames_list )
-
- ppservers = ()
- # Creates jobserver with automatically detected number of workers
- job_server = pp.Server(ppservers=ppservers)
-
- jobs = []
- results = []
-
- for i, one_job_targetVals_list in enumerate( job_targetVals_lists ):
- one_job_targetNames_list = job_targetNames_lists[i]
- #pay attention to modules from outside
- jobs.append( job_server.submit(func=compute_partial, args=( primaryVal, controlVals, one_job_targetVals_list, one_job_targetNames_list, method), depfuncs=(), modules=("rpy2.robjects",)) )
-
- for one_job in jobs:
- one_result = one_job()
- results.append( one_result )
-
- for one_result in results:
- for one_traitinfo in one_result:
- allcorrelations.append( one_traitinfo )
-
- return allcorrelations
-
-
-
-#XZ, April 30, 2010: The input primaryTrait and targetTrait are instance of webqtlTrait
-#XZ: The primaryTrait and targetTrait should have executed retrieveData function
-def calZeroOrderCorr (primaryTrait, targetTrait, method='pearson'):
-
- #primaryTrait.retrieveData()
-
- #there is no None value in primary_val
- primary_strain, primary_val, primary_var = primaryTrait.exportInformative()
-
- #targetTrait.retrieveData()
-
- #there might be None value in target_val
- target_val = targetTrait.exportData(primary_strain, type="val")
-
- R_primary = rpy2.robjects.FloatVector(range(len(primary_val)))
- for i in range(len(primary_val)):
- R_primary[i] = primary_val[i]
-
- N = len(target_val)
-
- if None in target_val:
- goodIndex = []
- for i in range(len(target_val)):
- if target_val[i] != None:
- goodIndex.append(i)
-
- N = len(goodIndex)
-
- R_primary = rpy2.robjects.FloatVector(range(len(goodIndex)))
- for i in range(len(goodIndex)):
- R_primary[i] = primary_val[goodIndex[i]]
-
- R_target = rpy2.robjects.FloatVector(range(len(goodIndex)))
- for i in range(len(goodIndex)):
- R_target[i] = target_val[goodIndex[i]]
-
- else:
- R_target = rpy2.robjects.FloatVector(range(len(target_val)))
- for i in range(len(target_val)):
- R_target[i] = target_val[i]
-
- R_corr_test = rpy2.robjects.r['cor.test']
-
- if method == 'spearman':
- R_result = R_corr_test(R_primary, R_target, method='spearman')
- else:
- R_result = R_corr_test(R_primary, R_target)
-
- corr_result = []
- corr_result.append( R_result[3][0] )
- corr_result.append( N )
- corr_result.append( R_result[2][0] )
-
- return corr_result
-
-#####################################################################################
-#Input: primaryValue(list): one list of expression values of one probeSet,
-# targetValue(list): one list of expression values of one probeSet,
-# method(string): indicate correlation method ('pearson' or 'spearman')
-#Output: corr_result(list): first item is Correlation Value, second item is tissue number,
-# third item is PValue
-#Function: get correlation value,Tissue quantity ,p value result by using R;
-#Note : This function is special case since both primaryValue and targetValue are from
-#the same dataset. So the length of these two parameters is the same. They are pairs.
-#Also, in the datatable TissueProbeSetData, all Tissue values are loaded based on
-#the same tissue order
-#####################################################################################
-
-def calZeroOrderCorrForTiss (primaryValue=[], targetValue=[], method='pearson'):
-
- R_primary = rpy2.robjects.FloatVector(range(len(primaryValue)))
- N = len(primaryValue)
- for i in range(len(primaryValue)):
- R_primary[i] = primaryValue[i]
-
- R_target = rpy2.robjects.FloatVector(range(len(targetValue)))
- for i in range(len(targetValue)):
- R_target[i]=targetValue[i]
-
- R_corr_test = rpy2.robjects.r['cor.test']
- if method =='spearman':
- R_result = R_corr_test(R_primary, R_target, method='spearman')
- else:
- R_result = R_corr_test(R_primary, R_target)
-
- corr_result =[]
- corr_result.append( R_result[3][0])
- corr_result.append( N )
- corr_result.append( R_result[2][0])
-
- return corr_result
-
-
-
-
-def batchCalTissueCorr(primaryTraitValue=[], SymbolValueDict={}, method='pearson'):
-
- def cal_tissue_corr(primaryTraitValue, oneSymbolValueDict, method ):
-
- oneSymbolCorrDict = {}
- oneSymbolPvalueDict = {}
-
- R_corr_test = rpy2.robjects.r['cor.test']
-
- R_primary = rpy2.robjects.FloatVector(range(len(primaryTraitValue)))
-
- for i in range(len(primaryTraitValue)):
- R_primary[i] = primaryTraitValue[i]
-
- for (oneTraitSymbol, oneTraitValue) in oneSymbolValueDict.iteritems():
- R_target = rpy2.robjects.FloatVector(range(len(oneTraitValue)))
- for i in range(len(oneTraitValue)):
- R_target[i] = oneTraitValue[i]
-
- if method =='spearman':
- R_result = R_corr_test(R_primary, R_target, method='spearman')
- else:
- R_result = R_corr_test(R_primary, R_target)
-
- oneSymbolCorrDict[oneTraitSymbol] = R_result[3][0]
- oneSymbolPvalueDict[oneTraitSymbol] = R_result[2][0]
-
- return(oneSymbolCorrDict, oneSymbolPvalueDict)
-
-
-
- symbolCorrDict = {}
- symbolPvalueDict = {}
-
- items_number = len(SymbolValueDict)
-
- if items_number <= 1000:
- symbolCorrDict, symbolPvalueDict = cal_tissue_corr(primaryTraitValue, SymbolValueDict, method)
- else:
- items_list = SymbolValueDict.items()
-
- step = 1000
- job_number = math.ceil( float(items_number)/step )
-
- job_oneSymbolValueDict_list = []
-
- for job_index in range( int(job_number) ):
- starti = job_index*step
- endi = min((job_index+1)*step, items_number)
-
- oneSymbolValueDict = {}
-
- for i in range( starti, endi ):
- one_item = items_list[i]
- one_symbol = one_item[0]
- one_value = one_item[1]
- oneSymbolValueDict[one_symbol] = one_value
-
- job_oneSymbolValueDict_list.append( oneSymbolValueDict )
-
-
- ppservers = ()
- # Creates jobserver with automatically detected number of workers
- job_server = pp.Server(ppservers=ppservers)
-
- jobs = []
- results = []
-
- for i, oneSymbolValueDict in enumerate( job_oneSymbolValueDict_list ):
-
- #pay attention to modules from outside
- jobs.append( job_server.submit(func=cal_tissue_corr, args=(primaryTraitValue, oneSymbolValueDict, method), depfuncs=(), modules=("rpy2.robjects",)) )
-
- for one_job in jobs:
- one_result = one_job()
- results.append( one_result )
-
- for one_result in results:
- oneSymbolCorrDict, oneSymbolPvalueDict = one_result
- symbolCorrDict.update( oneSymbolCorrDict )
- symbolPvalueDict.update( oneSymbolPvalueDict )
-
- return (symbolCorrDict, symbolPvalueDict)
-
-###########################################################################
-#Input: cursor, GeneNameLst (list), TissueProbeSetFreezeId
-#output: geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict (Dict)
-#function: get multi dicts for short and long label functions, and for getSymbolValuePairDict and
-# getGeneSymbolTissueValueDict to build dict to get CorrPvArray
-#Note: If there are multiple probesets for one gene, select the one with highest mean.
-###########################################################################
-def getTissueProbeSetXRefInfo(cursor=None,GeneNameLst=[],TissueProbeSetFreezeId=0):
- Symbols =""
- symbolList =[]
- geneIdDict ={}
- dataIdDict = {}
- ChrDict = {}
- MbDict = {}
- descDict = {}
- pTargetDescDict = {}
-
- count = len(GeneNameLst)
-
- # Added by NL 01/06/2011
- # Note that:inner join is necessary in this query to get distinct record in one symbol group with highest mean value
- # Duo to the limit size of TissueProbeSetFreezeId table in DB, performance of inner join is acceptable.
- if count==0:
- query='''
- select t.Symbol,t.GeneId, t.DataId,t.Chr, t.Mb,t.description,t.Probe_Target_Description
- from (
- select Symbol, max(Mean) as maxmean
- from TissueProbeSetXRef
- where TissueProbeSetFreezeId=%s and Symbol!='' and Symbol Is Not Null group by Symbol)
- as x inner join TissueProbeSetXRef as t on t.Symbol = x.Symbol and t.Mean = x.maxmean;
- '''%TissueProbeSetFreezeId
-
- else:
- for i, item in enumerate(GeneNameLst):
-
- if i == count-1:
- Symbols += "'%s'" %item
- else:
- Symbols += "'%s'," %item
-
- Symbols = "("+ Symbols+")"
- query='''
- select t.Symbol,t.GeneId, t.DataId,t.Chr, t.Mb,t.description,t.Probe_Target_Description
- from (
- select Symbol, max(Mean) as maxmean
- from TissueProbeSetXRef
- where TissueProbeSetFreezeId=%s and Symbol in %s group by Symbol)
- as x inner join TissueProbeSetXRef as t on t.Symbol = x.Symbol and t.Mean = x.maxmean;
- '''% (TissueProbeSetFreezeId,Symbols)
-
- try:
-
- cursor.execute(query)
- results =cursor.fetchall()
- resultCount = len(results)
- # Key in all dicts is the lower-cased symbol
- for i, item in enumerate(results):
- symbol = item[0]
- symbolList.append(symbol)
-
- key =symbol.lower()
- geneIdDict[key]=item[1]
- dataIdDict[key]=item[2]
- ChrDict[key]=item[3]
- MbDict[key]=item[4]
- descDict[key]=item[5]
- pTargetDescDict[key]=item[6]
-
- except:
- symbolList = None
- geneIdDict=None
- dataIdDict=None
- ChrDict=None
- MbDict=None
- descDict=None
- pTargetDescDict=None
-
- return symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict
-
-###########################################################################
-#Input: cursor, symbolList (list), dataIdDict(Dict)
-#output: symbolValuepairDict (dictionary):one dictionary of Symbol and Value Pair,
-# key is symbol, value is one list of expression values of one probeSet;
-#function: get one dictionary whose key is gene symbol and value is tissue expression data (list type).
-#Attention! All keys are lower case!
-###########################################################################
-def getSymbolValuePairDict(cursor=None,symbolList=None,dataIdDict={}):
- symbolList = map(string.lower, symbolList)
- symbolValuepairDict={}
- valueList=[]
-
- for key in symbolList:
- if dataIdDict.has_key(key):
- DataId = dataIdDict[key]
-
- valueQuery = "select value from TissueProbeSetData where Id=%s" % DataId
- try :
- cursor.execute(valueQuery)
- valueResults = cursor.fetchall()
- for item in valueResults:
- item =item[0]
- valueList.append(item)
- symbolValuepairDict[key] = valueList
- valueList=[]
- except:
- symbolValuepairDict[key] = None
-
- return symbolValuepairDict
-
-
-########################################################################################################
-#input: cursor, symbolList (list), dataIdDict(Dict): key is symbol
-#output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair.
-# key is symbol, value is one list of expression values of one probeSet.
-#function: wrapper function for getSymbolValuePairDict function
-# build gene symbol list if necessary, cut it into small lists if necessary,
-# then call getSymbolValuePairDict function and merge the results.
-########################################################################################################
-
-def getGeneSymbolTissueValueDict(cursor=None,symbolList=None,dataIdDict={}):
- limitNum=1000
- count = len(symbolList)
-
- SymbolValuePairDict = {}
-
- if count !=0 and count <=limitNum:
- SymbolValuePairDict = getSymbolValuePairDict(cursor=cursor,symbolList=symbolList,dataIdDict=dataIdDict)
-
- elif count >limitNum:
- SymbolValuePairDict={}
- n = count/limitNum
- start =0
- stop =0
-
- for i in range(n):
- stop =limitNum*(i+1)
- gList1 = symbolList[start:stop]
- PairDict1 = getSymbolValuePairDict(cursor=cursor,symbolList=gList1,dataIdDict=dataIdDict)
- start =limitNum*(i+1)
-
- SymbolValuePairDict.update(PairDict1)
-
- if stop < count:
- stop = count
- gList2 = symbolList[start:stop]
- PairDict2 = getSymbolValuePairDict(cursor=cursor,symbolList=gList2,dataIdDict=dataIdDict)
- SymbolValuePairDict.update(PairDict2)
-
- return SymbolValuePairDict
-
-########################################################################################################
-#input: cursor, GeneNameLst (list), TissueProbeSetFreezeId(int)
-#output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair.
-# key is symbol, value is one list of expression values of one probeSet.
-#function: wrapper function of getGeneSymbolTissueValueDict function
-# for CorrelationPage.py
-########################################################################################################
-
-def getGeneSymbolTissueValueDictForTrait(cursor=None,GeneNameLst=[],TissueProbeSetFreezeId=0):
- SymbolValuePairDict={}
- symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict = getTissueProbeSetXRefInfo(cursor=cursor,GeneNameLst=GeneNameLst,TissueProbeSetFreezeId=TissueProbeSetFreezeId)
- if symbolList:
- SymbolValuePairDict = getGeneSymbolTissueValueDict(cursor=cursor,symbolList=symbolList,dataIdDict=dataIdDict)
- return SymbolValuePairDict
-
-########################################################################################################
-#Input: cursor(cursor): MySQL connnection cursor;
-# priGeneSymbolList(list): one list of gene symbol;
-# symbolValuepairDict(dictionary): one dictionary of Symbol and Value Pair,
-# key is symbol, value is one list of expression values of one probeSet;
-#Output: corrArray(array): array of Correlation Value,
-# pvArray(array): array of PValue;
-#Function: build corrArray, pvArray for display by calling calculation function:calZeroOrderCorrForTiss
-########################################################################################################
-
-def getCorrPvArray(cursor=None,priGeneSymbolList=[],symbolValuepairDict={}):
- # setting initial value for corrArray, pvArray equal to 0
- Num = len(priGeneSymbolList)
-
- corrArray = [([0] * (Num))[:] for i in range(Num)]
- pvArray = [([0] * (Num))[:] for i in range(Num)]
- i = 0
- for pkey in priGeneSymbolList:
- j = 0
- pkey = pkey.strip().lower()# key in symbolValuepairDict is low case
- if symbolValuepairDict.has_key(pkey):
- priValue = symbolValuepairDict[pkey]
- for tkey in priGeneSymbolList:
- tkey = tkey.strip().lower()# key in symbolValuepairDict is low case
- if priValue and symbolValuepairDict.has_key(tkey):
- tarValue = symbolValuepairDict[tkey]
-
- if tarValue:
- if i>j:
- # corrArray stores Pearson Correlation values
- # pvArray stores Pearson P-Values
- pcorr_result =calZeroOrderCorrForTiss(primaryValue=priValue,targetValue=tarValue)
- corrArray[i][j] =pcorr_result[0]
- pvArray[i][j] =pcorr_result[2]
- elif i<j:
- # corrArray stores Spearman Correlation values
- # pvArray stores Spearman P-Values
- scorr_result =calZeroOrderCorrForTiss(primaryValue=priValue,targetValue=tarValue,method='spearman')
- corrArray[i][j] =scorr_result[0]
- pvArray[i][j] =scorr_result[2]
- else:
- # on the diagonal line, correlation value is 1, P-Values is 0
- corrArray[i][j] =1
- pvArray[i][j] =0
- j+=1
- else:
- corrArray[i][j] = None
- pvArray[i][j] = None
- j+=1
- else:
- corrArray[i][j] = None
- pvArray[i][j] = None
- j+=1
- else:
- corrArray[i][j] = None
- pvArray[i][j] = None
-
- i+=1
-
- return corrArray, pvArray
-
-########################################################################################################
-#Input: cursor(cursor): MySQL connnection cursor;
-# primaryTraitSymbol(string): one gene symbol;
-# TissueProbeSetFreezeId (int): Id of related TissueProbeSetFreeze
-# method: '0' default value, Pearson Correlation; '1', Spearman Correlation
-#Output: symbolCorrDict(Dict): Dict of Correlation Value, key is symbol
-# symbolPvalueDict(Dict): Dict of PValue,key is symbol ;
-#Function: build symbolCorrDict, symbolPvalueDict for display by calling calculation function:calZeroOrderCorrForTiss
-########################################################################################################
-def calculateCorrOfAllTissueTrait(cursor=None, primaryTraitSymbol=None, TissueProbeSetFreezeId=None,method='0'):
-
- symbolCorrDict = {}
- symbolPvalueDict = {}
-
- primaryTraitSymbolValueDict = getGeneSymbolTissueValueDictForTrait(cursor=cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TissueProbeSetFreezeId)
- primaryTraitValue = primaryTraitSymbolValueDict.values()[0]
-
- SymbolValueDict = getGeneSymbolTissueValueDictForTrait(cursor=cursor, GeneNameLst=[], TissueProbeSetFreezeId=TissueProbeSetFreezeId)
-
- if method =='1':
- symbolCorrDict, symbolPvalueDict = batchCalTissueCorr(primaryTraitValue,SymbolValueDict,method='spearman')
- else:
- symbolCorrDict, symbolPvalueDict = batchCalTissueCorr(primaryTraitValue,SymbolValueDict)
-
-
- return (symbolCorrDict, symbolPvalueDict)