aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDannyArends2017-02-09 14:03:19 +0100
committerDannyArends2017-02-09 14:03:19 +0100
commit2a95956dcb8aaef7d5f8668c5c226f139dc832c8 (patch)
tree9e39d525da64817caa4b03866002996b3f25e9a2
parentc3e000f8a36e501fdaefa997105cdf30f21eba81 (diff)
downloadgenenetwork2-2a95956dcb8aaef7d5f8668c5c226f139dc832c8.tar.gz
Initial code that allows us to run the PheWAS tool, using pre-computed data, still a lot of TODO's left
-rw-r--r--wqflask/wqflask/auwerx/phewas_analysis.py52
1 files changed, 38 insertions, 14 deletions
diff --git a/wqflask/wqflask/auwerx/phewas_analysis.py b/wqflask/wqflask/auwerx/phewas_analysis.py
index c69326ed..061d2bc8 100644
--- a/wqflask/wqflask/auwerx/phewas_analysis.py
+++ b/wqflask/wqflask/auwerx/phewas_analysis.py
@@ -23,32 +23,56 @@ from utility.tools import locate
r_library = ro.r["library"] # Map the library function
r_options = ro.r["options"] # Map the options function
+r_load = ro.r["load"] # Map the load function
+r_write_table = ro.r["write.table"] # Map the write.table function
+r_head = ro.r["head"] # Map the head function
+r_colnames = ro.r["colnames"] # Map the colnames function
+r_list = ro.r["list"] # Map the list function
+r_c = ro.r["c"] # Map the c (combine) function
+r_rep = ro.r["rep"] # Map the rep (repeat) function
class PheWAS(object):
def __init__(self):
print("Initialization of PheWAS")
- r_library("auwerx") # Load the auwerx package - Should only be done once, since it is quite expensive
- r_options(stringsAsFactors = False)
- # Create the aligners
- r_download_BXD_geno = ro.r["download.BXD.geno"] # Map the create.Pheno_aligner function
- r_create_Pheno_aligner = ro.r["create.Pheno_aligner"] # Map the create.Pheno_aligner function
- r_create_SNP_aligner = ro.r["create.SNP_aligner"] # Map the create.SNP_aligner function
- r_calculate_all_pvalue_parallel = ro.r["calculate.all.pvalue.parallel"] # Map the calculate.all.pvalue.parallel function
- r_PheWASManhattan = ro.r["PheWASManhattan"] # Map the PheWASManhattan function
+ # TODO: Loading the package should only be done once, since it is quite expensive
+ print(r_library("auwerx")) # Load the auwerx package
+ self.r_download_BXD_geno = ro.r["download.BXD.geno"] # Map the create.Pheno_aligner function
+ self.r_create_Pheno_aligner = ro.r["create.Pheno_aligner"] # Map the create.Pheno_aligner function
+ self.r_create_SNP_aligner = ro.r["create.SNP_aligner"] # Map the create.SNP_aligner function
+ self.r_calculate_all_pvalue_parallel = ro.r["calculate.all.pvalue.parallel"] # Map the calculate.all.pvalue.parallel function
+ self.r_PheWASManhattan = ro.r["PheWASManhattan"] # Map the PheWASManhattan function
print("Initialization of PheWAS done !")
def run_analysis(self, requestform):
print("Starting PheWAS analysis on dataset")
- bxdgeno = r_download_BXD_geno()
- snpaligner = r_create_SNP_aligner(bxdgeno)
- phenoaligner = r_create_Pheno_aligner()
- allpvalues = r_calculate_all_pvalue_parallel() # This needs some magic to work I think
- # trait chromosome and trait positions should come from the user input
- r_PheWASManhattan(None, allpvalues, phenoaligner, snpaligner, None, trait_chr, trait_pos, trait_pos )
+ genofilelocation = locate("BXD.geno", "genotype") # Get the location of the BXD genotypes
+ precompfilelocation = locate("PheWAS_pval_EMMA_norm.RData", "auwerx") # Get the location of the pre-computed EMMA results
+
+ parser = genofile_parser.ConvertGenoFile(genofilelocation)
+ parser.process_csv()
+ snpinfo = []
+ for marker in parser.markers:
+ snpinfo.append(marker["name"]);
+ snpinfo.append(marker["chr"]);
+ snpinfo.append(marker["Mb"]);
+
+ rnames = r_rep(1, len(parser.markers))
+ # Create the snp aligner object out of the BXD genotypes
+ snpaligner = ro.r.matrix(snpinfo, nrow=len(parser.markers), dimnames = r_list(rnames, r_c("SNP", "Chr", "Pos")), ncol = 3, byrow=True)
+ # Create the phenotype aligner object using R
+ phenoaligner = self.r_create_Pheno_aligner()
+
+ r_load(precompfilelocation) # Load the pre-computed EMMA results into R
+ allpvalues = ro.r['pval_all'] # Get a pointer to the pre-computed results
+
+ # Create the PheWAS plot (The gene/probe name, chromosome and gene/probe positions should come from the user input)
+ # TODO: generate the PDF in the temp folder, with a unique name
+ self.r_PheWASManhattan("1:25", allpvalues, phenoaligner, snpaligner, "1:25", 1, 25, 25 )
print("Initialization of PheWAS done !")
def process_results(self, results):
print("Processing PheWAS output")
+ # TODO: get the PDF in the temp folder, and display it to the user
template_vars = {}
return(dict(template_vars))