about summary refs log tree commit diff
diff options
context:
space:
mode:
authorAlexander Kabui2021-03-24 12:59:49 +0300
committerAlexander Kabui2021-03-24 12:59:49 +0300
commitd913848572dd284ae7656e72dad199e99907871a (patch)
tree7a1757eb1ca6289c44a549f72ba1f431debe7f79
parentbe9c4a39500d7978b4cae7536a5f96c3818d211e (diff)
downloadgenenetwork2-d913848572dd284ae7656e72dad199e99907871a.tar.gz
initial commit for integrating to gn3 api
-rw-r--r--wqflask/wqflask/correlation/show_corr_results.py428
1 files changed, 242 insertions, 186 deletions
diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py
index fb4dc4f4..a817a4a4 100644
--- a/wqflask/wqflask/correlation/show_corr_results.py
+++ b/wqflask/wqflask/correlation/show_corr_results.py
@@ -1,4 +1,4 @@
-## Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
 #
 # This program is free software: you can redistribute it and/or modify it
 # under the terms of the GNU Affero General Public License
@@ -58,6 +58,31 @@ TISSUE_METHODS = [METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK]
 TISSUE_MOUSE_DB = 1
 
 
+def compute_sample_r(start_vars,target_dataset, trait_data, target_samplelist, method="pearson"):
+    import requests
+    from wqflask.correlation.correlation_gn3_api import compute_correlation
+
+    # cor_results = compute_correlation(start_vars)
+
+    data = {
+        "target_dataset": target_dataset,
+        "target_samplelist": target_samplelist,
+        "trait_data": {
+            "trait_sample_data": trait_data,
+            "trait_id": "HC_Q"
+        }
+    }
+    requests_url = f"http://127.0.0.1:8080/api/correlation/sample_x/{method}"
+
+    results = requests.post(requests_url, json=data)
+
+    data = results.json()
+
+    print(data)
+
+    return data
+
+
 class CorrelationResults(object):
     def __init__(self, start_vars):
         # get trait list from db (database name)
@@ -78,11 +103,12 @@ class CorrelationResults(object):
 
         with Bench("Doing correlations"):
             if start_vars['dataset'] == "Temp":
-                self.dataset = data_set.create_dataset(dataset_name = "Temp", dataset_type = "Temp", group_name = start_vars['group'])
+                self.dataset = data_set.create_dataset(
+                    dataset_name="Temp", dataset_type="Temp", group_name=start_vars['group'])
                 self.trait_id = start_vars['trait_id']
                 self.this_trait = create_trait(dataset=self.dataset,
-                                           name=self.trait_id,
-                                           cellid=None)
+                                               name=self.trait_id,
+                                               cellid=None)
             else:
                 helper_functions.get_species_dataset_trait(self, start_vars)
 
@@ -97,7 +123,7 @@ class CorrelationResults(object):
 
             if ('loc_chr' in start_vars and
                 'min_loc_mb' in start_vars and
-                'max_loc_mb' in start_vars):
+                    'max_loc_mb' in start_vars):
 
                 self.location_type = get_string(start_vars, 'location_type')
                 self.location_chr = get_string(start_vars, 'loc_chr')
@@ -109,8 +135,8 @@ class CorrelationResults(object):
             self.get_formatted_corr_type()
             self.return_number = int(start_vars['corr_return_results'])
 
-            #The two if statements below append samples to the sample list based upon whether the user
-            #rselected Primary Samples Only, Other Samples Only, or All Samples
+            # The two if statements below append samples to the sample list based upon whether the user
+            # rselected Primary Samples Only, Other Samples Only, or All Samples
 
             primary_samples = self.dataset.group.samplelist
             if self.dataset.group.parlist != None:
@@ -118,23 +144,26 @@ class CorrelationResults(object):
             if self.dataset.group.f1list != None:
                 primary_samples += self.dataset.group.f1list
 
-            #If either BXD/whatever Only or All Samples, append all of that group's samplelist
+            # If either BXD/whatever Only or All Samples, append all of that group's samplelist
             if corr_samples_group != 'samples_other':
                 self.process_samples(start_vars, primary_samples)
 
-            #If either Non-BXD/whatever or All Samples, get all samples from this_trait.data and
-            #exclude the primary samples (because they would have been added in the previous
-            #if statement if the user selected All Samples)
+            # If either Non-BXD/whatever or All Samples, get all samples from this_trait.data and
+            # exclude the primary samples (because they would have been added in the previous
+            # if statement if the user selected All Samples)
             if corr_samples_group != 'samples_primary':
                 if corr_samples_group == 'samples_other':
                     primary_samples = [x for x in primary_samples if x not in (
-                                    self.dataset.group.parlist + self.dataset.group.f1list)]
-                self.process_samples(start_vars, list(self.this_trait.data.keys()), primary_samples)
+                        self.dataset.group.parlist + self.dataset.group.f1list)]
+                self.process_samples(start_vars, list(
+                    self.this_trait.data.keys()), primary_samples)
 
-            self.target_dataset = data_set.create_dataset(start_vars['corr_dataset'])
+            self.target_dataset = data_set.create_dataset(
+                start_vars['corr_dataset'])
             self.target_dataset.get_trait_data(list(self.sample_data.keys()))
 
-            self.header_fields = get_header_fields(self.target_dataset.type, self.corr_method)
+            self.header_fields = get_header_fields(
+                self.target_dataset.type, self.corr_method)
 
             if self.target_dataset.type == "ProbeSet":
                 self.filter_cols = [7, 6]
@@ -153,7 +182,8 @@ class CorrelationResults(object):
                 tissue_corr_data = self.do_tissue_correlation_for_all_traits()
                 if tissue_corr_data != None:
                     for trait in list(tissue_corr_data.keys())[:self.return_number]:
-                        self.get_sample_r_and_p_values(trait, self.target_dataset.trait_data[trait])
+                        self.get_sample_r_and_p_values(
+                            trait, self.target_dataset.trait_data[trait])
                 else:
                     for trait, values in list(self.target_dataset.trait_data.items()):
                         self.get_sample_r_and_p_values(trait, values)
@@ -163,80 +193,85 @@ class CorrelationResults(object):
                 lit_corr_data = self.do_lit_correlation_for_all_traits()
 
                 for trait in list(lit_corr_data.keys())[:self.return_number]:
-                    self.get_sample_r_and_p_values(trait, self.target_dataset.trait_data[trait])
+                    self.get_sample_r_and_p_values(
+                        trait, self.target_dataset.trait_data[trait])
 
             elif self.corr_type == "sample":
-                for trait, values in list(self.target_dataset.trait_data.items()):
-                    self.get_sample_r_and_p_values(trait, values)
-
-            self.correlation_data = collections.OrderedDict(sorted(list(self.correlation_data.items()),
-                                                                   key=lambda t: -abs(t[1][0])))
-
-
-            #ZS: Convert min/max chromosome to an int for the location range option
-            range_chr_as_int = None
-            for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
-                if 'loc_chr' in start_vars:
-                    if chr_info.name == self.location_chr:
-                        range_chr_as_int = order_id
-
-            for _trait_counter, trait in enumerate(list(self.correlation_data.keys())[:self.return_number]):
-                trait_object = create_trait(dataset=self.target_dataset, name=trait, get_qtl_info=True, get_sample_info=False)
-                if not trait_object:
-                    continue
-
-                chr_as_int = 0
-                for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
-                    if self.location_type == "highest_lod":
-                        if chr_info.name == trait_object.locus_chr:
-                            chr_as_int = order_id
-                    else:
-                        if chr_info.name == trait_object.chr:
-                            chr_as_int = order_id
-
-                if (float(self.correlation_data[trait][0]) >= self.p_range_lower and
-                    float(self.correlation_data[trait][0]) <= self.p_range_upper):
-
-                    if (self.target_dataset.type == "ProbeSet" or self.target_dataset.type == "Publish") and bool(trait_object.mean):
-                        if (self.min_expr != None) and (float(trait_object.mean) < self.min_expr):
-                            continue
-
-                    if range_chr_as_int != None and (chr_as_int != range_chr_as_int):
-                        continue
-                    if self.location_type == "highest_lod":
-                        if (self.min_location_mb != None) and (float(trait_object.locus_mb) < float(self.min_location_mb)):
-                            continue
-                        if (self.max_location_mb != None) and (float(trait_object.locus_mb) > float(self.max_location_mb)):
-                            continue
-                    else:
-                        if (self.min_location_mb != None) and (float(trait_object.mb) < float(self.min_location_mb)):
-                            continue
-                        if (self.max_location_mb != None) and (float(trait_object.mb) > float(self.max_location_mb)):
-                            continue
-
-                    (trait_object.sample_r,
-                    trait_object.sample_p,
-                    trait_object.num_overlap) = self.correlation_data[trait]
-
-                    # Set some sane defaults
-                    trait_object.tissue_corr = 0
-                    trait_object.tissue_pvalue = 0
-                    trait_object.lit_corr = 0
-                    if self.corr_type == "tissue" and tissue_corr_data != None:
-                        trait_object.tissue_corr = tissue_corr_data[trait][1]
-                        trait_object.tissue_pvalue = tissue_corr_data[trait][2]
-                    elif self.corr_type == "lit":
-                        trait_object.lit_corr = lit_corr_data[trait][1]
-
-                    self.correlation_results.append(trait_object)
-
-            if self.corr_type != "lit" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
-                self.do_lit_correlation_for_trait_list()
-
-            if self.corr_type != "tissue" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
-                self.do_tissue_correlation_for_trait_list()
-
-        self.json_results = generate_corr_json(self.correlation_results, self.this_trait, self.dataset, self.target_dataset)
+
+                compute_sample_r(start_vars,
+                    self.target_dataset.trait_data, self.sample_data, self.target_dataset.samplelist)
+                # for trait, values in list(self.target_dataset.trait_data.items()):
+                #     self.get_sample_r_and_p_values(trait, values)
+
+        #     self.correlation_data = collections.OrderedDict(sorted(list(self.correlation_data.items()),
+        #                                                            key=lambda t: -abs(t[1][0])))
+
+        #     # ZS: Convert min/max chromosome to an int for the location range option
+        #     range_chr_as_int = None
+        #     for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
+        #         if 'loc_chr' in start_vars:
+        #             if chr_info.name == self.location_chr:
+        #                 range_chr_as_int = order_id
+
+        #     for _trait_counter, trait in enumerate(list(self.correlation_data.keys())[:self.return_number]):
+        #         trait_object = create_trait(
+        #             dataset=self.target_dataset, name=trait, get_qtl_info=True, get_sample_info=False)
+        #         if not trait_object:
+        #             continue
+
+        #         chr_as_int = 0
+        #         for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
+        #             if self.location_type == "highest_lod":
+        #                 if chr_info.name == trait_object.locus_chr:
+        #                     chr_as_int = order_id
+        #             else:
+        #                 if chr_info.name == trait_object.chr:
+        #                     chr_as_int = order_id
+
+        #         if (float(self.correlation_data[trait][0]) >= self.p_range_lower and
+        #                 float(self.correlation_data[trait][0]) <= self.p_range_upper):
+
+        #             if (self.target_dataset.type == "ProbeSet" or self.target_dataset.type == "Publish") and bool(trait_object.mean):
+        #                 if (self.min_expr != None) and (float(trait_object.mean) < self.min_expr):
+        #                     continue
+
+        #             if range_chr_as_int != None and (chr_as_int != range_chr_as_int):
+        #                 continue
+        #             if self.location_type == "highest_lod":
+        #                 if (self.min_location_mb != None) and (float(trait_object.locus_mb) < float(self.min_location_mb)):
+        #                     continue
+        #                 if (self.max_location_mb != None) and (float(trait_object.locus_mb) > float(self.max_location_mb)):
+        #                     continue
+        #             else:
+        #                 if (self.min_location_mb != None) and (float(trait_object.mb) < float(self.min_location_mb)):
+        #                     continue
+        #                 if (self.max_location_mb != None) and (float(trait_object.mb) > float(self.max_location_mb)):
+        #                     continue
+
+        #             (trait_object.sample_r,
+        #              trait_object.sample_p,
+        #              trait_object.num_overlap) = self.correlation_data[trait]
+
+        #             # Set some sane defaults
+        #             trait_object.tissue_corr = 0
+        #             trait_object.tissue_pvalue = 0
+        #             trait_object.lit_corr = 0
+        #             if self.corr_type == "tissue" and tissue_corr_data != None:
+        #                 trait_object.tissue_corr = tissue_corr_data[trait][1]
+        #                 trait_object.tissue_pvalue = tissue_corr_data[trait][2]
+        #             elif self.corr_type == "lit":
+        #                 trait_object.lit_corr = lit_corr_data[trait][1]
+
+        #             self.correlation_results.append(trait_object)
+
+        #     if self.corr_type != "lit" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
+        #         self.do_lit_correlation_for_trait_list()
+
+        #     if self.corr_type != "tissue" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
+        #         self.do_tissue_correlation_for_trait_list()
+
+        # self.json_results = generate_corr_json(
+        #     self.correlation_results, self.this_trait, self.dataset, self.target_dataset)
 
 ############################################################################################################################################
 
@@ -259,39 +294,43 @@ class CorrelationResults(object):
     def do_tissue_correlation_for_trait_list(self, tissue_dataset_id=1):
         """Given a list of correlation results (self.correlation_results), gets the tissue correlation value for each"""
 
-        #Gets tissue expression values for the primary trait
+        # Gets tissue expression values for the primary trait
         primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
-            symbol_list = [self.this_trait.symbol])
+            symbol_list=[self.this_trait.symbol])
 
         if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
-            primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower()]
-            gene_symbol_list = [trait.symbol for trait in self.correlation_results if trait.symbol]
+            primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower(
+            )]
+            gene_symbol_list = [
+                trait.symbol for trait in self.correlation_results if trait.symbol]
 
-            corr_result_tissue_vals_dict= correlation_functions.get_trait_symbol_and_tissue_values(
-                                                    symbol_list=gene_symbol_list)
+            corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
+                symbol_list=gene_symbol_list)
 
             for trait in self.correlation_results:
                 if trait.symbol and trait.symbol.lower() in corr_result_tissue_vals_dict:
-                    this_trait_tissue_values = corr_result_tissue_vals_dict[trait.symbol.lower()]
+                    this_trait_tissue_values = corr_result_tissue_vals_dict[trait.symbol.lower(
+                    )]
 
                     result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values,
-                                                                          this_trait_tissue_values,
-                                                                          self.corr_method)
+                                                                                this_trait_tissue_values,
+                                                                                self.corr_method)
 
                     trait.tissue_corr = result[0]
                     trait.tissue_pvalue = result[2]
 
     def do_tissue_correlation_for_all_traits(self, tissue_dataset_id=1):
-        #Gets tissue expression values for the primary trait
+        # Gets tissue expression values for the primary trait
         primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
-            symbol_list = [self.this_trait.symbol])
+            symbol_list=[self.this_trait.symbol])
 
         if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
-            primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower()]
+            primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower(
+            )]
 
             #print("trait_gene_symbols: ", pf(trait_gene_symbols.values()))
-            corr_result_tissue_vals_dict= correlation_functions.get_trait_symbol_and_tissue_values(
-                                                    symbol_list=list(self.trait_symbol_dict.values()))
+            corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
+                symbol_list=list(self.trait_symbol_dict.values()))
 
             #print("corr_result_tissue_vals: ", pf(corr_result_tissue_vals_dict))
 
@@ -300,27 +339,30 @@ class CorrelationResults(object):
             tissue_corr_data = {}
             for trait, symbol in list(self.trait_symbol_dict.items()):
                 if symbol and symbol.lower() in corr_result_tissue_vals_dict:
-                    this_trait_tissue_values = corr_result_tissue_vals_dict[symbol.lower()]
+                    this_trait_tissue_values = corr_result_tissue_vals_dict[symbol.lower(
+                    )]
 
                     result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values,
-                                                                          this_trait_tissue_values,
-                                                                          self.corr_method)
+                                                                                this_trait_tissue_values,
+                                                                                self.corr_method)
 
                     tissue_corr_data[trait] = [symbol, result[0], result[2]]
 
             tissue_corr_data = collections.OrderedDict(sorted(list(tissue_corr_data.items()),
-                                                           key=lambda t: -abs(t[1][1])))
+                                                              key=lambda t: -abs(t[1][1])))
 
             return tissue_corr_data
 
     def do_lit_correlation_for_trait_list(self):
 
-        input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(self.dataset.group.species.lower(), self.this_trait.geneid)
+        input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(
+            self.dataset.group.species.lower(), self.this_trait.geneid)
 
         for trait in self.correlation_results:
 
             if trait.geneid:
-                trait.mouse_gene_id = self.convert_to_mouse_gene_id(self.dataset.group.species.lower(), trait.geneid)
+                trait.mouse_gene_id = self.convert_to_mouse_gene_id(
+                    self.dataset.group.species.lower(), trait.geneid)
             else:
                 trait.mouse_gene_id = None
 
@@ -348,13 +390,14 @@ class CorrelationResults(object):
             else:
                 trait.lit_corr = 0
 
-
     def do_lit_correlation_for_all_traits(self):
-        input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(self.dataset.group.species.lower(), self.this_trait.geneid)
+        input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(
+            self.dataset.group.species.lower(), self.this_trait.geneid)
 
         lit_corr_data = {}
         for trait, gene_id in list(self.trait_geneid_dict.items()):
-            mouse_gene_id = self.convert_to_mouse_gene_id(self.dataset.group.species.lower(), gene_id)
+            mouse_gene_id = self.convert_to_mouse_gene_id(
+                self.dataset.group.species.lower(), gene_id)
 
             if mouse_gene_id and str(mouse_gene_id).find(";") == -1:
                 #print("gene_symbols:", input_trait_mouse_gene_id + " / " + mouse_gene_id)
@@ -382,7 +425,7 @@ class CorrelationResults(object):
                 lit_corr_data[trait] = [gene_id, 0]
 
         lit_corr_data = collections.OrderedDict(sorted(list(lit_corr_data.items()),
-                                                           key=lambda t: -abs(t[1][1])))
+                                                       key=lambda t: -abs(t[1][1])))
 
         return lit_corr_data
 
@@ -422,6 +465,7 @@ class CorrelationResults(object):
 
         return mouse_gene_id
 
+
     def get_sample_r_and_p_values(self, trait, target_samples):
         """Calculates the sample r (or rho) and p-value
 
@@ -431,6 +475,9 @@ class CorrelationResults(object):
 
         """
 
+        print("below here>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
+        print(self.target_dataset.trait_data)
+
         self.this_trait_vals = []
         target_vals = []
         for index, sample in enumerate(self.target_dataset.samplelist):
@@ -440,21 +487,26 @@ class CorrelationResults(object):
                 self.this_trait_vals.append(sample_value)
                 target_vals.append(target_sample_value)
 
-        self.this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(self.this_trait_vals, target_vals)
+        self.this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(
+            self.this_trait_vals, target_vals)
 
         if num_overlap > 5:
-            #ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/
+            # ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/
             if self.corr_method == 'bicor':
-                sample_r, sample_p = do_bicor(self.this_trait_vals, target_vals)
+                sample_r, sample_p = do_bicor(
+                    self.this_trait_vals, target_vals)
             elif self.corr_method == 'pearson':
-                sample_r, sample_p = scipy.stats.pearsonr(self.this_trait_vals, target_vals)
+                sample_r, sample_p = scipy.stats.pearsonr(
+                    self.this_trait_vals, target_vals)
             else:
-                sample_r, sample_p = scipy.stats.spearmanr(self.this_trait_vals, target_vals)
+                sample_r, sample_p = scipy.stats.spearmanr(
+                    self.this_trait_vals, target_vals)
 
             if numpy.isnan(sample_r):
                 pass
             else:
-                self.correlation_data[trait] = [sample_r, sample_p, num_overlap]
+                self.correlation_data[trait] = [
+                    sample_r, sample_p, num_overlap]
 
     def process_samples(self, start_vars, sample_names, excluded_samples=None):
         if not excluded_samples:
@@ -475,16 +527,18 @@ def do_bicor(this_trait_vals, target_trait_vals):
     r_library("WGCNA")
     r_bicor = ro.r["bicorAndPvalue"]        # Map the bicorAndPvalue function
 
-    r_options(stringsAsFactors = False)
+    r_options(stringsAsFactors=False)
 
     this_vals = ro.Vector(this_trait_vals)
     target_vals = ro.Vector(target_trait_vals)
 
-    the_r, the_p, _fisher_transform, _the_t, _n_obs = [numpy.asarray(x) for x in r_bicor(x = this_vals, y = target_vals)]
+    the_r, the_p, _fisher_transform, _the_t, _n_obs = [
+        numpy.asarray(x) for x in r_bicor(x=this_vals, y=target_vals)]
 
     return the_r, the_p
 
-def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api = False):
+
+def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api=False):
     results_list = []
     for i, trait in enumerate(corr_results):
         if trait.view == False:
@@ -493,7 +547,8 @@ def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_ap
         results_dict['index'] = i + 1
         results_dict['trait_id'] = trait.name
         results_dict['dataset'] = trait.dataset.name
-        results_dict['hmac'] = hmac.data_hmac('{}:{}'.format(trait.name, trait.dataset.name))
+        results_dict['hmac'] = hmac.data_hmac(
+            '{}:{}'.format(trait.name, trait.dataset.name))
         if target_dataset.type == "ProbeSet":
             results_dict['symbol'] = trait.symbol
             results_dict['description'] = "N/A"
@@ -544,7 +599,8 @@ def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_ap
             if bool(trait.authors):
                 authors_list = trait.authors.split(',')
                 if len(authors_list) > 6:
-                    results_dict['authors_display'] = ", ".join(authors_list[:6]) + ", et al."
+                    results_dict['authors_display'] = ", ".join(
+                        authors_list[:6]) + ", et al."
                 else:
                     results_dict['authors_display'] = trait.authors
             if bool(trait.pubmed_id):
@@ -574,85 +630,85 @@ def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_ap
 
     return json.dumps(results_list)
 
+
 def get_header_fields(data_type, corr_method):
     if data_type == "ProbeSet":
         if corr_method == "spearman":
             header_fields = ['Index',
-                                'Record',
-                                'Symbol',
-                                'Description',
-                                'Location',
-                                'Mean',
-                                'Sample rho',
-                                'N',
-                                'Sample p(rho)',
-                                'Lit rho',
-                                'Tissue rho',
-                                'Tissue p(rho)',
-                                'Max LRS',
-                                'Max LRS Location',
-                                'Additive Effect']
+                             'Record',
+                             'Symbol',
+                             'Description',
+                             'Location',
+                             'Mean',
+                             'Sample rho',
+                             'N',
+                             'Sample p(rho)',
+                             'Lit rho',
+                             'Tissue rho',
+                             'Tissue p(rho)',
+                             'Max LRS',
+                             'Max LRS Location',
+                             'Additive Effect']
         else:
             header_fields = ['Index',
-                                'Record',
-                                'Symbol',
-                                'Description',
-                                'Location',
-                                'Mean',
-                                'Sample r',
-                                'N',
-                                'Sample p(r)',
-                                'Lit r',
-                                'Tissue r',
-                                'Tissue p(r)',
-                                'Max LRS',
-                                'Max LRS Location',
-                                'Additive Effect']
+                             'Record',
+                             'Symbol',
+                             'Description',
+                             'Location',
+                             'Mean',
+                             'Sample r',
+                             'N',
+                             'Sample p(r)',
+                             'Lit r',
+                             'Tissue r',
+                             'Tissue p(r)',
+                             'Max LRS',
+                             'Max LRS Location',
+                             'Additive Effect']
     elif data_type == "Publish":
         if corr_method == "spearman":
             header_fields = ['Index',
-                            'Record',
-                            'Abbreviation',
-                            'Description',
-                            'Mean',
-                            'Authors',
-                            'Year',
-                            'Sample rho',
-                            'N',
-                            'Sample p(rho)',
-                            'Max LRS',
-                            'Max LRS Location',
-                            'Additive Effect']
+                             'Record',
+                             'Abbreviation',
+                             'Description',
+                             'Mean',
+                             'Authors',
+                             'Year',
+                             'Sample rho',
+                             'N',
+                             'Sample p(rho)',
+                             'Max LRS',
+                             'Max LRS Location',
+                             'Additive Effect']
         else:
             header_fields = ['Index',
-                            'Record',
-                            'Abbreviation',
-                            'Description',
-                            'Mean',
-                            'Authors',
-                            'Year',
-                            'Sample r',
-                            'N',
-                            'Sample p(r)',
-                            'Max LRS',
-                            'Max LRS Location',
-                            'Additive Effect']
+                             'Record',
+                             'Abbreviation',
+                             'Description',
+                             'Mean',
+                             'Authors',
+                             'Year',
+                             'Sample r',
+                             'N',
+                             'Sample p(r)',
+                             'Max LRS',
+                             'Max LRS Location',
+                             'Additive Effect']
 
     else:
         if corr_method == "spearman":
             header_fields = ['Index',
-                                'ID',
-                                'Location',
-                                'Sample rho',
-                                'N',
-                                'Sample p(rho)']
+                             'ID',
+                             'Location',
+                             'Sample rho',
+                             'N',
+                             'Sample p(rho)']
         else:
             header_fields = ['Index',
-                                'ID',
-                                'Location',
-                                'Sample r',
-                                'N',
-                                'Sample p(r)']
+                             'ID',
+                             'Location',
+                             'Sample r',
+                             'N',
+                             'Sample p(r)']
 
     return header_fields
-