about summary refs log tree commit diff
diff options
context:
space:
mode:
authorBonfaceKilz2020-10-07 15:08:05 +0300
committerBonfaceKilz2020-10-09 00:01:35 +0300
commit4aa138360fd41f9d496e00aa744700cd4d8a53a6 (patch)
treea4468e558dbcc6f40289edbae92a93dc58c746ef
parentf0dd46e668a55bd024f5dee4e99cf1215a107c26 (diff)
downloadgenenetwork2-4aa138360fd41f9d496e00aa744700cd4d8a53a6.tar.gz
Apply PEP-8 formatting
-rw-r--r--wqflask/wqflask/correlation_matrix/show_corr_matrix.py29
-rw-r--r--wqflask/wqflask/network_graph/network_graph.py100
-rw-r--r--wqflask/wqflask/wgcna/wgcna_analysis.py169
3 files changed, 156 insertions, 142 deletions
diff --git a/wqflask/wqflask/correlation_matrix/show_corr_matrix.py b/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
index 49ba9e5d..c0d84aa2 100644
--- a/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
+++ b/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
@@ -22,33 +22,24 @@ import datetime
 import math
 import numpy as np
 import scipy
-
-from rpy2.robjects.packages import importr
 import rpy2.robjects as robjects
+import utility.webqtlUtil  # this is for parallel computing only.
+import utility.logger
 
-from pprint import pformat as pf
+from base import data_set
+from functools import reduce
+from rpy2.robjects.packages import importr
 
+from utility import webqtlUtil
+from utility import helper_functions
+from utility import corr_result_helpers
 from utility.redis_tools import get_redis_conn
-from functools import reduce
+
+logger = utility.logger.getLogger(__name__)
 
 Redis = get_redis_conn()
 THIRTY_DAYS = 60 * 60 * 24 * 30
 
-from utility.THCell import THCell
-from utility.TDCell import TDCell
-from base.trait import GeneralTrait
-from base import data_set
-from utility import webqtlUtil, helper_functions, corr_result_helpers
-
-from db import webqtlDatabaseFunction
-import utility.webqtlUtil #this is for parallel computing only.
-from wqflask.correlation import correlation_functions
-from utility.benchmark import Bench
-
-from flask import Flask, g, url_for
-
-import utility.logger
-logger = utility.logger.getLogger(__name__ )
 
 class CorrelationMatrix(object):
 
diff --git a/wqflask/wqflask/network_graph/network_graph.py b/wqflask/wqflask/network_graph/network_graph.py
index cfefe4ec..723a749f 100644
--- a/wqflask/wqflask/network_graph/network_graph.py
+++ b/wqflask/wqflask/network_graph/network_graph.py
@@ -1,4 +1,4 @@
-## Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
 #
 # This program is free software: you can redistribute it and/or modify it
 # under the terms of the GNU Affero General Public License
@@ -20,25 +20,19 @@
 
 import scipy
 import simplejson as json
-from pprint import pformat as pf
 
-
-from utility.TDCell import TDCell
 from base.trait import create_trait
 from base import data_set
-from utility import webqtlUtil, helper_functions, corr_result_helpers
+from utility import helper_functions
+from utility import corr_result_helpers
 from utility.tools import GN2_BRANCH_URL
-from db import webqtlDatabaseFunction
-import utility.webqtlUtil #this is for parallel computing only.
-from wqflask.correlation import correlation_functions
-
-from flask import Flask, g
 
 
 class NetworkGraph(object):
 
     def __init__(self, start_vars):
-        trait_db_list = [trait.strip() for trait in start_vars['trait_list'].split(',')]
+        trait_db_list = [trait.strip()
+                         for trait in start_vars['trait_list'].split(',')]
 
         helper_functions.get_trait_db_obs(self, trait_db_list)
 
@@ -66,7 +60,8 @@ class NetworkGraph(object):
                     this_trait_vals.append('')
             self.sample_data.append(this_trait_vals)
 
-        self.lowest_overlap = 8 #ZS: Variable set to the lowest overlapping samples in order to notify user, or 8, whichever is lower (since 8 is when we want to display warning)
+        # ZS: Variable set to the lowest overlapping samples in order to notify user, or 8, whichever is lower (since 8 is when we want to display warning)
+        self.lowest_overlap = 8
 
         self.nodes_list = []
         self.edges_list = []
@@ -78,9 +73,9 @@ class NetworkGraph(object):
             this_sample_data = this_trait.data
 
             corr_result_row = []
-            is_spearman = False #ZS: To determine if it's above or below the diagonal
+            is_spearman = False  # ZS: To determine if it's above or below the diagonal
 
-            max_corr = 0 #ZS: Used to determine whether node should be hidden when correlation coefficient slider is used
+            max_corr = 0  # ZS: Used to determine whether node should be hidden when correlation coefficient slider is used
 
             for target in self.trait_list:
                 target_trait = target[0]
@@ -99,20 +94,23 @@ class NetworkGraph(object):
                         this_trait_vals.append(sample_value)
                         target_vals.append(target_sample_value)
 
-                this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(this_trait_vals, target_vals)
+                this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(
+                    this_trait_vals, target_vals)
 
                 if num_overlap < self.lowest_overlap:
                     self.lowest_overlap = num_overlap
                 if num_overlap == 0:
                     continue
                 else:
-                    pearson_r, pearson_p = scipy.stats.pearsonr(this_trait_vals, target_vals)
+                    pearson_r, pearson_p = scipy.stats.pearsonr(
+                        this_trait_vals, target_vals)
                     if is_spearman == False:
                         sample_r, sample_p = pearson_r, pearson_p
                         if sample_r == 1:
                             continue
                     else:
-                        sample_r, sample_p = scipy.stats.spearmanr(this_trait_vals, target_vals)
+                        sample_r, sample_p = scipy.stats.spearmanr(
+                            this_trait_vals, target_vals)
 
                     if -1 <= sample_r < -0.7:
                         color = "#0000ff"
@@ -130,44 +128,44 @@ class NetworkGraph(object):
                         color = "#ffa500"
                         width = 2
                     elif 0.7 <= sample_r <= 1:
-                        color = "#ff0000"  
-                        width = 3 
+                        color = "#ff0000"
+                        width = 3
                     else:
                         color = "#000000"
-                        width = 0                      
+                        width = 0
 
                     if abs(sample_r) > max_corr:
                         max_corr = abs(sample_r)
 
-                    edge_data = {'id' : str(this_trait.name) + '_to_' + str(target_trait.name),
-                                 'source' : str(this_trait.name) + ":" + str(this_trait.dataset.name),
-                                 'target' : str(target_trait.name) + ":" + str(target_trait.dataset.name),
-                                 'correlation' : round(sample_r, 3),
-                                 'abs_corr' : abs(round(sample_r, 3)),
-                                 'p_value' : round(sample_p, 3),
-                                 'overlap' : num_overlap,
-                                 'color' : color,
-                                 'width' : width }
+                    edge_data = {'id': str(this_trait.name) + '_to_' + str(target_trait.name),
+                                 'source': str(this_trait.name) + ":" + str(this_trait.dataset.name),
+                                 'target': str(target_trait.name) + ":" + str(target_trait.dataset.name),
+                                 'correlation': round(sample_r, 3),
+                                 'abs_corr': abs(round(sample_r, 3)),
+                                 'p_value': round(sample_p, 3),
+                                 'overlap': num_overlap,
+                                 'color': color,
+                                 'width': width}
 
-                    edge_dict = { 'data' : edge_data }
+                    edge_dict = {'data': edge_data}
 
                     self.edges_list.append(edge_dict)
 
             if trait_db[1].type == "ProbeSet":
-                node_dict = { 'data' : {'id' : str(this_trait.name) + ":" + str(this_trait.dataset.name), 
-                                        'label' : this_trait.symbol,
-                                        'symbol' : this_trait.symbol,
-                                        'geneid' : this_trait.geneid,
-                                        'omim' : this_trait.omim,
-                                        'max_corr' : max_corr } }
+                node_dict = {'data': {'id': str(this_trait.name) + ":" + str(this_trait.dataset.name),
+                                      'label': this_trait.symbol,
+                                      'symbol': this_trait.symbol,
+                                      'geneid': this_trait.geneid,
+                                      'omim': this_trait.omim,
+                                      'max_corr': max_corr}}
             elif trait_db[1].type == "Publish":
-                node_dict = { 'data' : {'id' : str(this_trait.name) + ":" + str(this_trait.dataset.name), 
-                                        'label' : this_trait.name,
-                                        'max_corr' : max_corr } }
+                node_dict = {'data': {'id': str(this_trait.name) + ":" + str(this_trait.dataset.name),
+                                      'label': this_trait.name,
+                                      'max_corr': max_corr}}
             else:
-                node_dict = { 'data' : {'id' : str(this_trait.name) + ":" + str(this_trait.dataset.name), 
-                                        'label' : this_trait.name,
-                                        'max_corr' : max_corr } }
+                node_dict = {'data': {'id': str(this_trait.name) + ":" + str(this_trait.dataset.name),
+                                      'label': this_trait.name,
+                                      'max_corr': max_corr}}
             self.nodes_list.append(node_dict)
 
         self.elements = json.dumps(self.nodes_list + self.edges_list)
@@ -177,13 +175,13 @@ class NetworkGraph(object):
         for sample in self.all_sample_list:
             groups.append(1)
 
-        self.js_data = dict(traits = [trait.name for trait in self.traits],
-                            groups = groups,
-                            cols = list(range(len(self.traits))),
-                            rows = list(range(len(self.traits))),
-                            samples = self.all_sample_list,
-                            sample_data = self.sample_data,
-                            elements = self.elements,)
+        self.js_data = dict(traits=[trait.name for trait in self.traits],
+                            groups=groups,
+                            cols=list(range(len(self.traits))),
+                            rows=list(range(len(self.traits))),
+                            samples=self.all_sample_list,
+                            sample_data=self.sample_data,
+                            elements=self.elements,)
 
     def get_trait_db_obs(self, trait_db_list):
         self.trait_list = []
@@ -193,6 +191,6 @@ class NetworkGraph(object):
             trait_name, dataset_name = trait_db.split(":")
             dataset_ob = data_set.create_dataset(dataset_name)
             trait_ob = create_trait(dataset=dataset_ob,
-                                   name=trait_name,
-                                   cellid=None)
+                                    name=trait_name,
+                                    cellid=None)
             self.trait_list.append((trait_ob, dataset_ob))
diff --git a/wqflask/wqflask/wgcna/wgcna_analysis.py b/wqflask/wqflask/wgcna/wgcna_analysis.py
index d79ad6df..0afe7e82 100644
--- a/wqflask/wqflask/wgcna/wgcna_analysis.py
+++ b/wqflask/wqflask/wgcna/wgcna_analysis.py
@@ -1,122 +1,146 @@
 # WGCNA analysis for GN2
 # Author / Maintainer: Danny Arends <Danny.Arends@gmail.com>
 import sys
-from numpy import *
-import scipy as sp                            # SciPy
 import rpy2.robjects as ro                    # R Objects
 import rpy2.rinterface as ri
+import array
 
+from numpy import *
 from base.webqtlConfig import GENERATED_IMAGE_DIR
-from utility import webqtlUtil                # Random number for the image
-
-import base64
-import array
+from rpy2.robjects.packages import importr
 
+from utility import webqtlUtil                # Random number for the image
 from utility import helper_functions
 
-from rpy2.robjects.packages import importr
 utils = importr("utils")
 
-## Get pointers to some common R functions
-r_library       = ro.r["library"]             # Map the library function
-r_options       = ro.r["options"]             # Map the options function
-r_read_csv      = ro.r["read.csv"]            # Map the read.csv function
-r_dim           = ro.r["dim"]                 # Map the dim function
-r_c             = ro.r["c"]                   # Map the c function
-r_cat           = ro.r["cat"]                 # Map the cat function
-r_paste         = ro.r["paste"]               # Map the paste function
-r_unlist        = ro.r["unlist"]              # Map the unlist function
-r_unique        = ro.r["unique"]              # Map the unique function
-r_length        = ro.r["length"]              # Map the length function
-r_unlist        = ro.r["unlist"]              # Map the unlist function
-r_list          = ro.r.list                   # Map the list function
-r_matrix        = ro.r.matrix                 # Map the matrix function
-r_seq           = ro.r["seq"]                 # Map the seq function
-r_table         = ro.r["table"]               # Map the table function
-r_names         = ro.r["names"]               # Map the names function
-r_sink          = ro.r["sink"]                # Map the sink function
-r_is_NA         = ro.r["is.na"]               # Map the is.na function
-r_file          = ro.r["file"]                # Map the file function
-r_png           = ro.r["png"]                 # Map the png function for plotting
-r_dev_off       = ro.r["dev.off"]             # Map the dev.off function
+# Get pointers to some common R functions
+r_library = ro.r["library"]             # Map the library function
+r_options = ro.r["options"]             # Map the options function
+r_read_csv = ro.r["read.csv"]            # Map the read.csv function
+r_dim = ro.r["dim"]                 # Map the dim function
+r_c = ro.r["c"]                   # Map the c function
+r_cat = ro.r["cat"]                 # Map the cat function
+r_paste = ro.r["paste"]               # Map the paste function
+r_unlist = ro.r["unlist"]              # Map the unlist function
+r_unique = ro.r["unique"]              # Map the unique function
+r_length = ro.r["length"]              # Map the length function
+r_unlist = ro.r["unlist"]              # Map the unlist function
+r_list = ro.r.list                   # Map the list function
+r_matrix = ro.r.matrix                 # Map the matrix function
+r_seq = ro.r["seq"]                 # Map the seq function
+r_table = ro.r["table"]               # Map the table function
+r_names = ro.r["names"]               # Map the names function
+r_sink = ro.r["sink"]                # Map the sink function
+r_is_NA = ro.r["is.na"]               # Map the is.na function
+r_file = ro.r["file"]                # Map the file function
+r_png = ro.r["png"]                 # Map the png function for plotting
+r_dev_off = ro.r["dev.off"]             # Map the dev.off function
+
 
 class WGCNA(object):
     def __init__(self):
         print("Initialization of WGCNA")
         #log = r_file("/tmp/genenetwork_wcgna.log", open = "wt")
-        #r_sink(log)                                  # Uncomment the r_sink() commands to log output from stdout/stderr to a file
+        # r_sink(log)                                  # Uncomment the r_sink() commands to log output from stdout/stderr to a file
         #r_sink(log, type = "message")
-        r_library("WGCNA")                            # Load WGCNA - Should only be done once, since it is quite expensive
-        r_options(stringsAsFactors = False)
+        # Load WGCNA - Should only be done once, since it is quite expensive
+        r_library("WGCNA")
+        r_options(stringsAsFactors=False)
         print("Initialization of WGCNA done, package loaded in R session")
-        self.r_enableWGCNAThreads    = ro.r["enableWGCNAThreads"]        # Map the enableWGCNAThreads function
-        self.r_pickSoftThreshold     = ro.r["pickSoftThreshold"]         # Map the pickSoftThreshold function
-        self.r_blockwiseModules      = ro.r["blockwiseModules"]          # Map the blockwiseModules function
-        self.r_labels2colors         = ro.r["labels2colors"]             # Map the labels2colors function
-        self.r_plotDendroAndColors   = ro.r["plotDendroAndColors"]       # Map the plotDendroAndColors function
+        # Map the enableWGCNAThreads function
+        self.r_enableWGCNAThreads = ro.r["enableWGCNAThreads"]
+        # Map the pickSoftThreshold function
+        self.r_pickSoftThreshold = ro.r["pickSoftThreshold"]
+        # Map the blockwiseModules function
+        self.r_blockwiseModules = ro.r["blockwiseModules"]
+        # Map the labels2colors function
+        self.r_labels2colors = ro.r["labels2colors"]
+        # Map the plotDendroAndColors function
+        self.r_plotDendroAndColors = ro.r["plotDendroAndColors"]
         print("Obtained pointers to WGCNA functions")
 
     def run_analysis(self, requestform):
         print("Starting WGCNA analysis on dataset")
-        self.r_enableWGCNAThreads()                                      # Enable multi threading
-        self.trait_db_list = [trait.strip() for trait in requestform['trait_list'].split(',')]
-        print(("Retrieved phenotype data from database", requestform['trait_list']))
+        # Enable multi threading
+        self.r_enableWGCNAThreads()
+        self.trait_db_list = [trait.strip()
+                              for trait in requestform['trait_list'].split(',')]
+        print(("Retrieved phenotype data from database",
+               requestform['trait_list']))
         helper_functions.get_trait_db_obs(self, self.trait_db_list)
 
         self.input = {}           # self.input contains the phenotype values we need to send to R
-        strains = []              # All the strains we have data for (contains duplicates)
-        traits  = []              # All the traits we have data for (should not contain duplicates)
+        # All the strains we have data for (contains duplicates)
+        strains = []
+        # All the traits we have data for (should not contain duplicates)
+        traits = []
         for trait in self.trait_list:
             traits.append(trait[0].name)
             self.input[trait[0].name] = {}
             for strain in trait[0].data:
                 strains.append(strain)
-                self.input[trait[0].name][strain]  = trait[0].data[strain].value
+                self.input[trait[0].name][strain] = trait[0].data[strain].value
 
         # Transfer the load data from python to R
-        uStrainsR = r_unique(ro.Vector(strains))    # Unique strains in R vector
+        # Unique strains in R vector
+        uStrainsR = r_unique(ro.Vector(strains))
         uTraitsR = r_unique(ro.Vector(traits))      # Unique traits in R vector
 
         r_cat("The number of unique strains:", r_length(uStrainsR), "\n")
         r_cat("The number of unique traits:", r_length(uTraitsR), "\n")
 
         # rM is the datamatrix holding all the data in R /rows = strains columns = traits
-        rM = ro.r.matrix(ri.NA_Real, nrow=r_length(uStrainsR), ncol=r_length(uTraitsR), dimnames = r_list(uStrainsR, uTraitsR))
+        rM = ro.r.matrix(ri.NA_Real, nrow=r_length(uStrainsR), ncol=r_length(
+            uTraitsR), dimnames=r_list(uStrainsR, uTraitsR))
         for t in uTraitsR:
-            trait = t[0]                  # R uses vectors every single element is a vector
+            # R uses vectors every single element is a vector
+            trait = t[0]
             for s in uStrainsR:
-                strain = s[0]             # R uses vectors every single element is a vector
+                # R uses vectors every single element is a vector
+                strain = s[0]
                 #DEBUG: print(trait, strain, " in python: ", self.input[trait].get(strain), "in R:", rM.rx(strain,trait)[0])
-                rM.rx[strain, trait] = self.input[trait].get(strain)  # Update the matrix location
+                rM.rx[strain, trait] = self.input[trait].get(
+                    strain)  # Update the matrix location
                 sys.stdout.flush()
 
         self.results = {}
-        self.results['nphe'] = r_length(uTraitsR)[0]          # Number of phenotypes/traits
-        self.results['nstr'] = r_length(uStrainsR)[0]         # Number of strains
+        # Number of phenotypes/traits
+        self.results['nphe'] = r_length(uTraitsR)[0]
+        self.results['nstr'] = r_length(
+            uStrainsR)[0]         # Number of strains
         self.results['phenotypes'] = uTraitsR                 # Traits used
-        self.results['strains'] = uStrainsR                   # Strains used in the analysis
-        self.results['requestform'] = requestform             # Store the user specified parameters for the output page
+        # Strains used in the analysis
+        self.results['strains'] = uStrainsR
+        # Store the user specified parameters for the output page
+        self.results['requestform'] = requestform
 
         # Calculate soft threshold if the user specified the SoftThreshold variable
         if requestform.get('SoftThresholds') is not None:
-          powers = [int(threshold.strip()) for threshold in requestform['SoftThresholds'].rstrip().split(",")]
-          rpow = r_unlist(r_c(powers))
-          print(("SoftThresholds: {} == {}".format(powers, rpow)))
-          self.sft    = self.r_pickSoftThreshold(rM, powerVector = rpow, verbose = 5)
-
-          print(("PowerEstimate: {}".format(self.sft[0])))
-          self.results['PowerEstimate'] = self.sft[0]
-          if self.sft[0][0] is ri.NA_Integer:
-            print("No power is suitable for the analysis, just use 1")
-            self.results['Power'] = 1                         # No power could be estimated
-          else:
-            self.results['Power'] = self.sft[0][0]            # Use the estimated power
+            powers = [int(threshold.strip())
+                      for threshold in requestform['SoftThresholds'].rstrip().split(",")]
+            rpow = r_unlist(r_c(powers))
+            print(("SoftThresholds: {} == {}".format(powers, rpow)))
+            self.sft = self.r_pickSoftThreshold(
+                rM, powerVector=rpow, verbose=5)
+
+            print(("PowerEstimate: {}".format(self.sft[0])))
+            self.results['PowerEstimate'] = self.sft[0]
+            if self.sft[0][0] is ri.NA_Integer:
+                print("No power is suitable for the analysis, just use 1")
+                # No power could be estimated
+                self.results['Power'] = 1
+            else:
+                # Use the estimated power
+                self.results['Power'] = self.sft[0][0]
         else:
-          # The user clicked a button, so no soft threshold selection
-          self.results['Power'] = requestform.get('Power')    # Use the power value the user gives
+            # The user clicked a button, so no soft threshold selection
+            # Use the power value the user gives
+            self.results['Power'] = requestform.get('Power')
 
         # Create the block wise modules using WGCNA
-        network = self.r_blockwiseModules(rM, power = self.results['Power'], TOMType = requestform['TOMtype'], minModuleSize = requestform['MinModuleSize'], verbose = 3)
+        network = self.r_blockwiseModules(
+            rM, power=self.results['Power'], TOMType=requestform['TOMtype'], minModuleSize=requestform['MinModuleSize'], verbose=3)
 
         # Save the network for the GUI
         self.results['network'] = network
@@ -130,7 +154,8 @@ class WGCNA(object):
         self.results['imgloc'] = GENERATED_IMAGE_DIR + self.results['imgurl']
         r_png(self.results['imgloc'], width=1000, height=600, type='cairo-png')
         mergedColors = self.r_labels2colors(network[1])
-        self.r_plotDendroAndColors(network[5][0], mergedColors, "Module colors", dendroLabels = False, hang = 0.03, addGuide = True, guideHang = 0.05)
+        self.r_plotDendroAndColors(network[5][0], mergedColors, "Module colors",
+                                   dendroLabels=False, hang=0.03, addGuide=True, guideHang=0.05)
         r_dev_off()
         sys.stdout.flush()
 
@@ -146,11 +171,11 @@ class WGCNA(object):
         print("Processing WGCNA output")
         template_vars = {}
         template_vars["input"] = self.input
-        template_vars["powers"] = self.sft[1:]                      # Results from the soft threshold analysis
+        # Results from the soft threshold analysis
+        template_vars["powers"] = self.sft[1:]
         template_vars["results"] = self.results
         self.render_image(results)
         sys.stdout.flush()
-        #r_sink(type = "message")                                   # This restores R output to the stdout/stderr
-        #r_sink()                                                   # We should end the Rpy session more or less
+        # r_sink(type = "message")                                   # This restores R output to the stdout/stderr
+        # r_sink()                                                   # We should end the Rpy session more or less
         return(dict(template_vars))
-