aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlexanderKabui2022-11-09 15:43:16 +0300
committerAlexanderKabui2022-11-09 15:43:16 +0300
commit3781312b3fecc2227a7a17057bc6718a64faefb4 (patch)
tree3950b395082ff7ba03b091efd96c7280adc9c90d
parent5b587876c144c9ab512b23b5be47f9378a0bd3b2 (diff)
downloadgenenetwork2-3781312b3fecc2227a7a17057bc6718a64faefb4.tar.gz
delete unecessary code
-rw-r--r--wqflask/wqflask/correlation/show_corr_results.py286
1 files changed, 89 insertions, 197 deletions
diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py
index f279bcc3..f3082a89 100644
--- a/wqflask/wqflask/correlation/show_corr_results.py
+++ b/wqflask/wqflask/correlation/show_corr_results.py
@@ -74,10 +74,10 @@ def set_template_vars(start_vars, correlation_data):
return correlation_data
-def apply_filters(target_trait, target_dataset, **filters):
+def apply_filters(trait, target_trait, target_dataset, **filters):
def __p_val_filter__(p_lower, p_upper):
return not (float(trait.get('corr_coefficient', 0.0)) >= p_lower and
- float(trait.get('corr_coefficient', 0.0)) <= p_upper)
+ float(trait.get('corr_coefficient', 0.0)) <= p_upper)
def __min_filter__(min_expr):
if (target_dataset['type'] in ["ProbeSet", "Publish"] and target_trait['mean']):
@@ -111,8 +111,6 @@ def apply_filters(target_trait, target_dataset, **filters):
return True
-
-
# check if one of the condition is not met i.e One is True
return (__p_val_filter__(
@@ -144,7 +142,9 @@ def get_user_filters(start_vars):
get_float(start_vars, 'p_range_upper', 1.0)
)
- if ["loc_chr", "min_loc_mb", "max_location_mb"] in start_vars:
+ if all(keys in start_vars for keys in ["loc_chr",
+ "min_loc_mb",
+ "max_location_mb"]):
location_chr = get_string(start_vars, "loc_chr")
min_location_mb = get_int(start_vars, "min_loc_mb")
@@ -179,80 +179,86 @@ def generate_table_metadata(all_traits, dataset_metadata, dataset_obj):
return (dataset_metadata | ({trait["name"]: trait for trait in metadata}))
-def populate_table(dataset_metadata, target_dataset, corr_results):
- def __populate_trait__(idx, target_trait, target_dataset):
- results_dict = {}
- results_dict['index'] = idx + 1 #
- results_dict['trait_id'] = target_trait['name']
- results_dict['dataset'] = target_dataset['name']
- results_dict['hmac'] = hmac.data_hmac(
- '{}:{}'.format(target_trait['name'], target_dataset['name']))
- results_dict['sample_r'] = f"{float(trait.get('corr_coefficient',0.0)):.3f}"
- results_dict['num_overlap'] = trait.get('num_overlap', 0)
- results_dict['sample_p'] = f"{float(trait.get('p_value',0)):.3e}"
- if target_dataset['type'] == "ProbeSet":
- results_dict['symbol'] = target_trait['symbol']
- results_dict['description'] = "N/A"
- results_dict['location'] = target_trait['location']
- results_dict['mean'] = "N/A"
- results_dict['additive'] = "N/A"
- if target_trait['description']:
- results_dict['description'] = target_trait['description']
- if target_trait['mean']:
- results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
- try:
- results_dict['lod_score'] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
- except:
- results_dict['lod_score'] = "N/A"
- results_dict['lrs_location'] = target_trait['lrs_location']
- if target_trait['additive']:
- results_dict['additive'] = f"{float(target_trait['additive']):.3f}"
- results_dict['lit_corr'] = "--"
- results_dict['tissue_corr'] = "--"
- results_dict['tissue_pvalue'] = "--"
- if this_dataset['type'] == "ProbeSet":
- if 'lit_corr' in trait:
- results_dict['lit_corr'] = f"{float(trait['lit_corr']):.3f}"
- if 'tissue_corr' in trait:
- results_dict['tissue_corr'] = f"{float(trait['tissue_corr']):.3f}"
- results_dict['tissue_pvalue'] = f"{float(trait['tissue_p_val']):.3e}"
- elif target_dataset['type'] == "Publish":
- results_dict['abbreviation_display'] = "N/A"
- results_dict['description'] = "N/A"
- results_dict['mean'] = "N/A"
- results_dict['authors_display'] = "N/A"
- results_dict['additive'] = "N/A"
- results_dict['pubmed_link'] = "N/A"
- results_dict['pubmed_text'] = target_trait["pubmed_text"]
-
- if target_trait["abbreviation"]:
- results_dict = target_trait['abbreviation']
-
- if target_trait["description"] == target_trait['description']:
- results_dict['description'] = target_trait['description']
-
- if target_trait["mean"]:
- results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
-
- if target_trait["authors"]:
- authors_list = target_trait['authors'].split(',')
- results_dict['authors_display'] = ", ".join(
- authors_list[:6]) + ", et al." if len(authors_list) > 6 else target_trait['authors']
-
- if "pubmed_id" in target_trait:
- results_dict['pubmed_link'] = target_trait['pubmed_link']
- results_dict['pubmed_text'] = target_trait['pubmed_text']
- try:
- results_dict["lod_score"] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
- except ValueError:
- results_dict['lod_score'] = "N/A"
- else:
- results_dict['lrs_location'] = target_trait['lrs_location']
+def populate_table(dataset_metadata, target_dataset, this_dataset, corr_results, filters):
- return results_dict
+ def __populate_trait__(idx, trait):
- return [__populate_trait__(idx, target_trait, target_dataset)
- for (idx, target_trait) in enumerate(corr_results)]
+ trait_name = list(trait.keys())[0]
+ target_trait = dataset_metadata.get(trait_name)
+ trait = trait[trait_name]
+ if not apply_filters(trait, target_trait, target_dataset, **filters):
+ results_dict = {}
+ results_dict['index'] = idx + 1 #
+ results_dict['trait_id'] = target_trait['name']
+ results_dict['dataset'] = target_dataset['name']
+ results_dict['hmac'] = hmac.data_hmac(
+ '{}:{}'.format(target_trait['name'], target_dataset['name']))
+ results_dict['sample_r'] = f"{float(trait.get('corr_coefficient',0.0)):.3f}"
+ results_dict['num_overlap'] = trait.get('num_overlap', 0)
+ results_dict['sample_p'] = f"{float(trait.get('p_value',0)):.3e}"
+ if target_dataset['type'] == "ProbeSet":
+ results_dict['symbol'] = target_trait['symbol']
+ results_dict['description'] = "N/A"
+ results_dict['location'] = target_trait['location']
+ results_dict['mean'] = "N/A"
+ results_dict['additive'] = "N/A"
+ if target_trait['description']:
+ results_dict['description'] = target_trait['description']
+ if target_trait['mean']:
+ results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
+ try:
+ results_dict['lod_score'] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
+ except:
+ results_dict['lod_score'] = "N/A"
+ results_dict['lrs_location'] = target_trait['lrs_location']
+ if target_trait['additive']:
+ results_dict['additive'] = f"{float(target_trait['additive']):.3f}"
+ results_dict['lit_corr'] = "--"
+ results_dict['tissue_corr'] = "--"
+ results_dict['tissue_pvalue'] = "--"
+ if this_dataset['type'] == "ProbeSet":
+ if 'lit_corr' in trait:
+ results_dict['lit_corr'] = f"{float(trait['lit_corr']):.3f}"
+ if 'tissue_corr' in trait:
+ results_dict['tissue_corr'] = f"{float(trait['tissue_corr']):.3f}"
+ results_dict['tissue_pvalue'] = f"{float(trait['tissue_p_val']):.3e}"
+ elif target_dataset['type'] == "Publish":
+ results_dict['abbreviation_display'] = "N/A"
+ results_dict['description'] = "N/A"
+ results_dict['mean'] = "N/A"
+ results_dict['authors_display'] = "N/A"
+ results_dict['additive'] = "N/A"
+ results_dict['pubmed_link'] = "N/A"
+ results_dict['pubmed_text'] = target_trait["pubmed_text"]
+
+ if target_trait["abbreviation"]:
+ results_dict = target_trait['abbreviation']
+
+ if target_trait["description"] == target_trait['description']:
+ results_dict['description'] = target_trait['description']
+
+ if target_trait["mean"]:
+ results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
+
+ if target_trait["authors"]:
+ authors_list = target_trait['authors'].split(',')
+ results_dict['authors_display'] = ", ".join(
+ authors_list[:6]) + ", et al." if len(authors_list) > 6 else target_trait['authors']
+
+ if "pubmed_id" in target_trait:
+ results_dict['pubmed_link'] = target_trait['pubmed_link']
+ results_dict['pubmed_text'] = target_trait['pubmed_text']
+ try:
+ results_dict["lod_score"] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
+ except ValueError:
+ results_dict['lod_score'] = "N/A"
+ else:
+ results_dict['lrs_location'] = target_trait['lrs_location']
+
+ return results_dict
+
+ return [__populate_trait__(idx, trait)
+ for (idx, trait) in enumerate(corr_results)]
def correlation_json_for_table(start_vars, correlation_data, this_trait, this_dataset, target_dataset_ob):
@@ -267,132 +273,18 @@ def correlation_json_for_table(start_vars, correlation_data, this_trait, this_da
this_trait = correlation_data['this_trait']
this_dataset = correlation_data['this_dataset']
target_dataset = target_dataset_ob.as_dict()
-
- results_list = []
+ corr_results = correlation_data['correlation_results']
dataset_metadata = generate_table_metadata({name for trait in corr_results
for (name, _val) in trait.items()},
correlation_data["traits_metadata"],
target_dataset_ob)
- min_expr = get_float(start_vars, 'min_expr')
- p_range_lower = get_float(start_vars, 'p_range_lower', -1.0)
- p_range_upper = get_float(start_vars, 'p_range_upper', 1.0)
-
- if ('loc_chr' in start_vars and
- 'min_loc_mb' in start_vars and
- 'max_loc_mb' in start_vars):
-
- location_chr = get_string(start_vars, 'loc_chr')
- min_location_mb = get_int(start_vars, 'min_loc_mb')
- max_location_mb = get_int(start_vars, 'max_loc_mb')
- else:
- location_chr = min_location_mb = max_location_mb = None
-
- for i, trait_dict in enumerate(corr_results):
- trait_name = list(trait_dict.keys())[0]
- trait = trait_dict[trait_name]
-
- target_trait = dataset_metadata.get(trait_name)
- if (float(trait.get('corr_coefficient', 0.0)) >= p_range_lower and
- float(trait.get('corr_coefficient', 0.0)) <= p_range_upper):
-
- if (target_dataset['type'] == "ProbeSet" or target_dataset['type'] == "Publish") and bool(target_trait['mean']):
- if (min_expr != None) and (float(target_trait['mean']) < min_expr):
- continue
-
- if start_vars['location_type'] == "gene" and (target_dataset['type'] == "ProbeSet" or target_dataset['type'] == "Geno"):
- if location_chr != None and (target_trait['chr'] != location_chr):
- continue
- if (min_location_mb != None) and (float(target_trait['mb']) < float(min_location_mb)):
- continue
- if (max_location_mb != None) and (float(target_trait['mb']) > float(max_location_mb)):
- continue
- elif target_dataset['type'] == "ProbeSet" or target_dataset['type'] == "Publish":
- if location_chr != None and (target_trait['lrs_chr'] != location_chr):
- continue
- if (min_location_mb != None) and (float(target_trait['lrs_mb']) < float(min_location_mb)):
- continue
- if (max_location_mb != None) and (float(target_trait['lrs_mb']) > float(max_location_mb)):
- continue
- else:
- continue
- else:
- continue
-
- results_dict = {}
- results_dict['index'] = i + 1
- results_dict['trait_id'] = target_trait['name']
- results_dict['dataset'] = target_dataset['name']
- results_dict['hmac'] = hmac.data_hmac(
- '{}:{}'.format(target_trait['name'], target_dataset['name']))
- results_dict['sample_r'] = f"{float(trait.get('corr_coefficient',0.0)):.3f}"
- results_dict['num_overlap'] = trait.get('num_overlap', 0)
- results_dict['sample_p'] = f"{float(trait.get('p_value',0)):.3e}"
- if target_dataset['type'] == "ProbeSet":
- results_dict['symbol'] = target_trait['symbol']
- results_dict['description'] = "N/A"
- results_dict['location'] = target_trait['location']
- results_dict['mean'] = "N/A"
- results_dict['additive'] = "N/A"
- if bool(target_trait['description']):
- results_dict['description'] = target_trait['description']
- if bool(target_trait['mean']):
- results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
- try:
- results_dict['lod_score'] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
- except:
- results_dict['lod_score'] = "N/A"
- results_dict['lrs_location'] = target_trait['lrs_location']
- if bool(target_trait['additive']):
- results_dict['additive'] = f"{float(target_trait['additive']):.3f}"
- results_dict['lit_corr'] = "--"
- results_dict['tissue_corr'] = "--"
- results_dict['tissue_pvalue'] = "--"
- if this_dataset['type'] == "ProbeSet":
- if 'lit_corr' in trait:
- results_dict['lit_corr'] = f"{float(trait['lit_corr']):.3f}"
- if 'tissue_corr' in trait:
- results_dict['tissue_corr'] = f"{float(trait['tissue_corr']):.3f}"
- results_dict['tissue_pvalue'] = f"{float(trait['tissue_p_val']):.3e}"
- elif target_dataset['type'] == "Publish":
- results_dict['abbreviation_display'] = "N/A"
- results_dict['description'] = "N/A"
- results_dict['mean'] = "N/A"
- results_dict['authors_display'] = "N/A"
- results_dict['additive'] = "N/A"
- results_dict['pubmed_link'] = "N/A"
- results_dict['pubmed_text'] = target_trait["pubmed_text"]
-
- if bool(target_trait['abbreviation']):
- results_dict['abbreviation_display'] = target_trait['abbreviation']
- if bool(target_trait['description']):
- results_dict['description'] = target_trait['description']
- if bool(target_trait['mean']):
- results_dict['mean'] = f"{float(target_trait['mean']):.3f}"
- if bool(target_trait['authors']):
- authors_list = target_trait['authors'].split(',')
- if len(authors_list) > 6:
- results_dict['authors_display'] = ", ".join(
- authors_list[:6]) + ", et al."
- else:
- results_dict['authors_display'] = target_trait['authors']
- if 'pubmed_id' in target_trait:
- results_dict['pubmed_link'] = target_trait['pubmed_link']
- results_dict['pubmed_text'] = target_trait['pubmed_text']
- try:
- results_dict['lod_score'] = f"{float(target_trait['lrs_score']) / 4.61:.1f}"
- except:
- results_dict['lod_score'] = "N/A"
- results_dict['lrs_location'] = target_trait['lrs_location']
- if bool(target_trait['additive']):
- results_dict['additive'] = f"{float(target_trait['additive']):.3f}"
- else:
- results_dict['location'] = target_trait['location']
-
- results_list.append(results_dict)
-
- return json.dumps(results_list)
+ results = populate_table(dataset_metadata,
+ target_dataset,
+ this_dataset, corr_results,
+ get_user_filters(start_vars))
+ return json.dumps([result for result in results if result])
def get_formatted_corr_type(corr_type, corr_method):