diff options
author | Zachary Sloan | 2013-04-02 19:36:30 +0000 |
---|---|---|
committer | Zachary Sloan | 2013-04-02 19:36:30 +0000 |
commit | 51e120ae25a7955a895d5e79d5ee459764a331ea (patch) | |
tree | b39708982caceac8db2a952a50bb66c7467ea3ed | |
parent | f2af96043989bf36d2961496aaef61adbe3d9701 (diff) | |
download | genenetwork2-51e120ae25a7955a895d5e79d5ee459764a331ea.tar.gz |
pylmm code is running for human data (plink .bed genotype files)
-rwxr-xr-x | wqflask/base/data_set.py | 5 | ||||
-rwxr-xr-x | wqflask/base/webqtlConfig.py | 1 | ||||
-rw-r--r-- | wqflask/wqflask/do_search.py | 144 | ||||
-rwxr-xr-x | wqflask/wqflask/marker_regression/marker_regression.py | 152 | ||||
-rw-r--r-- | wqflask/wqflask/my_pylmm/pyLMM/input.py | 8 | ||||
-rw-r--r-- | wqflask/wqflask/my_pylmm/pyLMM/lmm.py | 544 | ||||
-rw-r--r-- | wqflask/wqflask/my_pylmm/pylmmGWAS.py | 45 | ||||
-rw-r--r-- | wqflask/wqflask/search_results.py | 21 | ||||
-rwxr-xr-x | wqflask/wqflask/show_trait/show_trait.py | 110 |
9 files changed, 565 insertions, 465 deletions
diff --git a/wqflask/base/data_set.py b/wqflask/base/data_set.py index 71efc9b2..17881e53 100755 --- a/wqflask/base/data_set.py +++ b/wqflask/base/data_set.py @@ -323,6 +323,11 @@ class PhenotypeDataSet(DataSet): description = this_trait.pre_publication_description this_trait.description_display = description + try: + this_trait.description_display.decode('ascii') + except Exception: + this_trait.description_display = this_trait.description_display.decode('utf-8') + if not this_trait.year.isdigit(): this_trait.pubmed_text = "N/A" diff --git a/wqflask/base/webqtlConfig.py b/wqflask/base/webqtlConfig.py index d05fa6e0..1845c749 100755 --- a/wqflask/base/webqtlConfig.py +++ b/wqflask/base/webqtlConfig.py @@ -52,6 +52,7 @@ ENSEMBLETRANSCRIPT_URL="http://useast.ensembl.org/Mus_musculus/Lucene/Details?sp SECUREDIR = GNROOT + 'secure/' COMMON_LIB = GNROOT + 'support/admin' HTMLPATH = GNROOT + 'web/' +PYLMM_PATH = HTMLPATH + 'plink/' IMGDIR = HTMLPATH +'image/' IMAGESPATH = HTMLPATH + 'images/' UPLOADPATH = IMAGESPATH + 'upload/' diff --git a/wqflask/wqflask/do_search.py b/wqflask/wqflask/do_search.py index 4ba35d63..fc65eb49 100644 --- a/wqflask/wqflask/do_search.py +++ b/wqflask/wqflask/do_search.py @@ -13,7 +13,6 @@ sys.path.append("..") from dbFunction import webqtlDatabaseFunction -from utility.benchmark import Bench class DoSearch(object): """Parent class containing parameters/functions used for all searches""" @@ -64,25 +63,17 @@ class DoSearch(object): class QuickMrnaAssaySearch(DoSearch): """A general search for mRNA assays""" - + DoSearch.search_types['quick_mrna_assay'] = "QuickMrnaAssaySearch" - - base_query = """SELECT Species.Name as Species_Name, - ProbeSetFreeze.Name as DataSet_Name, - ProbeSetFreeze.FullName as DataSet_FullName, - ProbeSet.Name as ProbeSet_Name, + + base_query = """SELECT ProbeSet.Name as ProbeSet_Name, ProbeSet.Symbol as ProbeSet_Symbol, ProbeSet.description as ProbeSet_Description, ProbeSet.Chr_num as ProbeSet_Chr_Num, ProbeSet.Mb as ProbeSet_Mb, ProbeSet.name_num as ProbeSet_name_num - FROM ProbeSet, - ProbeSetXRef, - ProbeSetFreeze, - ProbeFreeze, - InbredSet, - Species """ - + FROM ProbeSet """ + header_fields = ['', 'Record ID', 'Symbol', @@ -96,12 +87,7 @@ class QuickMrnaAssaySearch(DoSearch): ProbeSet.description, ProbeSet.symbol, ProbeSet.alias) - AGAINST ('%s' IN BOOLEAN MODE)) and - ProbeSet.Id = ProbeSetXRef.ProbeSetId and - ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id and - ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and - ProbeFreeze.InbredSetId = InbredSet.Id and - InbredSet.SpeciesId = Species.Id + AGAINST ('%s' IN BOOLEAN MODE)) """ % (escape(self.search_term[0])) print("final query is:", pf(query)) @@ -172,7 +158,7 @@ class MrnaAssaySearch(DoSearch): print("final query is:", pf(query)) return self.execute(query) - + class PhenotypeSearch(DoSearch): """A search within a phenotype dataset""" @@ -204,23 +190,6 @@ class PhenotypeSearch(DoSearch): 'Max LRS', 'Max LRS Location'] - #def get_fields_clause(self): - # """Generate clause for WHERE portion of query""" - # - # #Todo: Zach will figure out exactly what both these lines mean - # #and comment here - # if "'" not in self.search_term[0]: - # search_term = "[[:<:]]" + self.search_term[0] + "[[:>:]]" - # - # # This adds a clause to the query that matches the search term - # # against each field in the search_fields tuple - # fields_clause = [] - # for field in self.search_fields: - # fields_clause.append('''%s REGEXP "%s"''' % (field, search_term)) - # fields_clause = "(%s) and " % ' OR '.join(fields_clause) - # - # return fields_clause - def get_fields_clause(self): """Generate clause for WHERE portion of query""" @@ -231,13 +200,13 @@ class PhenotypeSearch(DoSearch): # This adds a clause to the query that matches the search term # against each field in the search_fields tuple - fields_clause = "MATCH(" - fields_clause += ",".join(self.search_fields) + ") " - fields_clause += "AGAINST('{}' IN BOOLEAN MODE)".format(self.search_term[0]) + fields_clause = [] + for field in self.search_fields: + fields_clause.append('''%s REGEXP "%s"''' % (field, search_term)) + fields_clause = "(%s) and " % ' OR '.join(fields_clause) return fields_clause - def compile_final_query(self, from_clause = '', where_clause = ''): """Generates the final query string""" @@ -265,61 +234,56 @@ class PhenotypeSearch(DoSearch): query = self.compile_final_query(where_clause = self.get_fields_clause()) return self.execute(query) - - -class QuickPhenotypeSearch(PhenotypeSearch): - """A search across all phenotype datasets""" - - DoSearch.search_types['quick_phenotype'] = "QuickPhenotypeSearch" - - base_query = """SELECT Species.Name as Species_Name, - PublishFreeze.FullName as Dataset_Name, - PublishFreeze.Name, - PublishXRef.Id, - PublishFreeze.createtime as thistable, - Publication.PubMed_ID as Publication_PubMed_ID, - Phenotype.Post_publication_description as Phenotype_Name - FROM Phenotype, - PublishFreeze, - Publication, - PublishXRef, - InbredSet, - Species """ - - search_fields = ('Phenotype.Post_publication_description', - 'Phenotype.Pre_publication_description', - 'Phenotype.Pre_publication_abbreviation', - 'Phenotype.Post_publication_abbreviation', - 'Phenotype.Lab_code', - 'Publication.PubMed_ID', - 'Publication.Abstract', - 'Publication.Title', - 'Publication.Authors') - - def compile_final_query(self, where_clause = ''): - """Generates the final query string""" - query = (self.base_query + - """WHERE (%s) and - PublishXRef.PhenotypeId = Phenotype.Id and - PublishXRef.PublicationId = Publication.Id and - PublishXRef.InbredSetId = InbredSet.Id and - InbredSet.SpeciesId = Species.Id""" % where_clause) - - print("query is:", pf(query)) - - return query +#class QuickPhenotypeSearch(PhenotypeSearch): +# """A search across all phenotype datasets""" +# +# DoSearch.search_types['quick_phenotype'] = "QuickPhenotypeSearch" +# +# base_query = """SELECT Species.Name as Species_Name, +# PublishFreeze.FullName as Dataset_Name, +# PublishFreeze.Name, +# PublishXRef.Id, +# PublishFreeze.createtime as thistable, +# Publication.PubMed_ID as Publication_PubMed_ID, +# Phenotype.Post_publication_description as Phenotype_Name +# FROM Phenotype, +# PublishFreeze, +# Publication, +# PublishXRef, +# InbredSet, +# Species """ +# +# search_fields = ('Phenotype.Post_publication_description', +# 'Phenotype.Pre_publication_description', +# 'Phenotype.Pre_publication_abbreviation', +# 'Phenotype.Post_publication_abbreviation', +# 'Phenotype.Lab_code', +# 'Publication.PubMed_ID', +# 'Publication.Abstract', +# 'Publication.Title', +# 'Publication.Authors') +# +# def compile_final_query(self, where_clause = ''): +# """Generates the final query string""" +# +# query = (self.base_query + +# """WHERE %s +# PublishXRef.PhenotypeId = Phenotype.Id and +# PublishXRef.PublicationId = Publication.Id and +# PublishXRef.InbredSetId = InbredSet.Id and +# InbredSet.SpeciesId = Species.Id""" % where_clause) +# +# print("query is:", pf(query)) +# +# return query def run(self): """Generates and runs a search across all phenotype datasets""" query = self.compile_final_query(where_clause = self.get_fields_clause()) - with Bench("Doing quick phenotype search"): - results = self.execute(query) - - return results - + return self.execute(query) class GenotypeSearch(DoSearch): """A search within a genotype dataset""" diff --git a/wqflask/wqflask/marker_regression/marker_regression.py b/wqflask/wqflask/marker_regression/marker_regression.py index 6c85afe9..c3555e8f 100755 --- a/wqflask/wqflask/marker_regression/marker_regression.py +++ b/wqflask/wqflask/marker_regression/marker_regression.py @@ -6,23 +6,30 @@ from base import data_set #import create_dataset from pprint import pformat as pf import string +import sys import os import collections import numpy as np +from scipy import linalg #from redis import Redis -from utility import Plot, Bunch + from base.trait import GeneralTrait from base import data_set from base import species -from utility import helper_functions from base import webqtlConfig from wqflask.my_pylmm.data import prep_data from wqflask.my_pylmm.pyLMM import lmm +from wqflask.my_pylmm.pyLMM import input +from utility import helper_functions +from utility import Plot, Bunch from utility import temp_data +from utility.benchmark import Bench + + class MarkerRegression(object): def __init__(self, start_vars, temp_uuid): @@ -52,28 +59,135 @@ class MarkerRegression(object): ) + def gen_data(self, tempdata): """Generates p-values for each marker""" - genotype_data = [marker['genotypes'] for marker in self.dataset.group.markers.markers] - - no_val_samples = self.identify_empty_samples() - trimmed_genotype_data = self.trim_genotypes(genotype_data, no_val_samples) - - pheno_vector = np.array([float(val) for val in self.vals if val!="x"]) - genotype_matrix = np.array(trimmed_genotype_data).T - print("pheno_vector is: ", pf(pheno_vector)) - print("genotype_matrix is: ", pf(genotype_matrix)) + file_base = os.path.join(webqtlConfig.PYLMM_PATH, self.dataset.group.name) + + plink_input = input.plink(file_base, type='b') + + + pheno_vector = np.array([val == "x" and np.nan or float(val) for val in self.vals]) + pheno_vector = pheno_vector.reshape((len(pheno_vector), 1)) + covariate_matrix = np.ones((pheno_vector.shape[0],1)) + kinship_matrix = np.fromfile(open(file_base + '.kin','r'),sep=" ") + kinship_matrix.resize((len(plink_input.indivs),len(plink_input.indivs))) + + refit = False + + v = np.isnan(pheno_vector) + keep = True - v + keep = keep.reshape((len(keep),)) + eigen_values = [] + eigen_vectors = [] + + + print("pheno_vector shape is: ", pf(pheno_vector.shape)) + + #print("pheno_vector is: ", pf(pheno_vector)) + #print("kinship_matrix is: ", pf(kinship_matrix)) + + if v.sum(): + pheno_vector = pheno_vector[keep] + print("pheno_vector shape is now: ", pf(pheno_vector.shape)) + covariate_matrix = covariate_matrix[keep,:] + print("kinship_matrix shape is: ", pf(kinship_matrix.shape)) + print("len(keep) is: ", pf(keep.shape)) + kinship_matrix = kinship_matrix[keep,:][:,keep] + + #if not v.sum(): + # eigen_values = np.fromfile(file_base + ".kin.kva") + # eigen_vectors = np.fromfile(file_base + ".kin.kve") + + #print("eigen_values is: ", pf(eigen_values)) + #print("eigen_vectors is: ", pf(eigen_vectors)) + + n = kinship_matrix.shape[0] + lmm_ob = lmm.LMM(pheno_vector, + kinship_matrix, + eigen_values, + eigen_vectors, + covariate_matrix) + lmm_ob.fit() + + # Buffers for pvalues and t-stats + p_values = [] + t_statistics = [] + count = 0 + + plink_input.getSNPIterator() + print("# snps is: ", pf(plink_input.numSNPs)) + with Bench("snp iterator loop"): + for snp, this_id in plink_input: + #if count > 10000: + # break + count += 1 + + x = snp[keep].reshape((n,1)) + #x[[1,50,100,200,3000],:] = np.nan + v = np.isnan(x).reshape((-1,)) + + # Check SNPs for missing values + if v.sum(): + keeps = True - v + xs = x[keeps,:] + # If no variation at this snp or all genotypes missing + if keeps.sum() <= 1 or xs.var() <= 1e-6: + p_values.append(np.nan) + t_statistics.append(np.nan) + continue + + # Its ok to center the genotype - I used options.normalizeGenotype to + # force the removal of missing genotypes as opposed to replacing them with MAF. + + #if not options.normalizeGenotype: + # xs = (xs - xs.mean()) / np.sqrt(xs.var()) + + filtered_pheno = pheno_vector[keeps] + filtered_covariate_matrix = covariate_matrix[keeps,:] + filtered_kinship_matrix = kinship_matrix[keeps,:][:,keeps] + filtered_lmm_ob = lmm.LMM(filtered_pheno,filtered_kinship_matrix,X0=filtered_covariate_matrix) + if refit: + filtered_lmm_ob.fit(X=xs) + else: + #try: + filtered_lmm_ob.fit() + #except: pdb.set_trace() + ts,ps,beta,betaVar = Ls.association(xs,returnBeta=True) + else: + if x.var() == 0: + p_values.append(np.nan) + t_statistics.append(np.nan) + continue + + if refit: + lmm_ob.fit(X=x) + ts,ps,beta,betaVar = lmm_ob.association(x) + p_values.append(ps) + t_statistics.append(ts) + - t_stats, p_values = lmm.run( - pheno_vector, - genotype_matrix, - restricted_max_likelihood=True, - refit=False, - temp_data=tempdata - ) + #genotype_data = [marker['genotypes'] for marker in self.dataset.group.markers.markers] + # + #no_val_samples = self.identify_empty_samples() + #trimmed_genotype_data = self.trim_genotypes(genotype_data, no_val_samples) + # + #genotype_matrix = np.array(trimmed_genotype_data).T + # + #print("pheno_vector is: ", pf(pheno_vector)) + #print("genotype_matrix is: ", pf(genotype_matrix)) + # + #t_stats, p_values = lmm.run( + # pheno_vector, + # genotype_matrix, + # restricted_max_likelihood=True, + # refit=False, + # temp_data=tempdata + #) + print("p_values is: ", pf(p_values)) self.dataset.group.markers.add_pvalues(p_values) #self.lrs_values = [marker['lrs_value'] for marker in self.dataset.group.markers.markers] @@ -118,3 +232,5 @@ class MarkerRegression(object): new_genotypes.append(genotype) trimmed_genotype_data.append(new_genotypes) return trimmed_genotype_data + + diff --git a/wqflask/wqflask/my_pylmm/pyLMM/input.py b/wqflask/wqflask/my_pylmm/pyLMM/input.py index b8b76fd0..35662072 100644 --- a/wqflask/wqflask/my_pylmm/pyLMM/input.py +++ b/wqflask/wqflask/my_pylmm/pyLMM/input.py @@ -41,7 +41,8 @@ class plink: # the programmer to turn off the kinship reading. self.readKFile = readKFile - if self.kFile: self.K = self.readKinship(self.kFile) + if self.kFile: + self.K = self.readKinship(self.kFile) elif os.path.isfile("%s.kin" % fbase): self.kFile = "%s.kin" %fbase if self.readKFile: @@ -54,7 +55,7 @@ class plink: self.fhandle = None self.snpFileHandle = None - + def __del__(self): if self.fhandle: self.fhandle.close() if self.snpFileHandle: self.snpFileHandle.close() @@ -160,7 +161,8 @@ class plink: # reorder to match self.indivs D = {} L = [] - for i in range(len(keys)): D[keys[i]] = i + for i in range(len(keys)): + D[keys[i]] = i for i in range(len(self.indivs)): if not D.has_key(self.indivs[i]): continue diff --git a/wqflask/wqflask/my_pylmm/pyLMM/lmm.py b/wqflask/wqflask/my_pylmm/pyLMM/lmm.py index 163b876a..f1f195d6 100644 --- a/wqflask/wqflask/my_pylmm/pyLMM/lmm.py +++ b/wqflask/wqflask/my_pylmm/pyLMM/lmm.py @@ -26,42 +26,42 @@ from scipy import stats from pprint import pformat as pf -from utility.benchmark import Bench - -#np.seterr('raise') - -def run(pheno_vector, - genotype_matrix, - restricted_max_likelihood=True, - refit=False, - temp_data=None): - """Takes the phenotype vector and genotype matrix and returns a set of p-values and t-statistics - - restricted_max_likelihood -- whether to use restricted max likelihood; True or False - refit -- whether to refit the variance component for each marker - temp_data -- TempData object that stores the progress for each major step of the - calculations ("calculate_kinship" and "GWAS" take the majority of time) - - """ - - with Bench("Calculate Kinship"): - kinship_matrix = calculate_kinship(genotype_matrix, temp_data) - - with Bench("Create LMM object"): - lmm_ob = LMM(pheno_vector, kinship_matrix) - - with Bench("LMM_ob fitting"): - lmm_ob.fit() - - with Bench("Doing GWAS"): - t_stats, p_values = GWAS(pheno_vector, - genotype_matrix, - kinship_matrix, - restricted_max_likelihood=True, - refit=False, - temp_data=temp_data) - Bench().report() - return t_stats, p_values +#from utility.benchmark import Bench +# +##np.seterr('raise') +# +#def run(pheno_vector, +# genotype_matrix, +# restricted_max_likelihood=True, +# refit=False, +# temp_data=None): +# """Takes the phenotype vector and genotype matrix and returns a set of p-values and t-statistics +# +# restricted_max_likelihood -- whether to use restricted max likelihood; True or False +# refit -- whether to refit the variance component for each marker +# temp_data -- TempData object that stores the progress for each major step of the +# calculations ("calculate_kinship" and "GWAS" take the majority of time) +# +# """ +# +# with Bench("Calculate Kinship"): +# kinship_matrix = calculate_kinship(genotype_matrix, temp_data) +# +# with Bench("Create LMM object"): +# lmm_ob = LMM(pheno_vector, kinship_matrix) +# +# with Bench("LMM_ob fitting"): +# lmm_ob.fit() +# +# with Bench("Doing GWAS"): +# t_stats, p_values = GWAS(pheno_vector, +# genotype_matrix, +# kinship_matrix, +# restricted_max_likelihood=True, +# refit=False, +# temp_data=temp_data) +# Bench().report() +# return t_stats, p_values def matrixMult(A,B): @@ -72,8 +72,8 @@ def matrixMult(A,B): except AttributeError: return np.dot(A,B) - print("A is:", pf(A.shape)) - print("B is:", pf(B.shape)) + #print("A is:", pf(A.shape)) + #print("B is:", pf(B.shape)) # If the matrices are in Fortran order then the computations will be faster # when using dgemm. Otherwise, the function will copy the matrix and that takes time. @@ -234,237 +234,245 @@ def GWAS(pheno_vector, class LMM: - """ - This is a simple version of EMMA/fastLMM. - The main purpose of this module is to take a phenotype vector (Y), a set of covariates (X) and a kinship matrix (K) - and to optimize this model by finding the maximum-likelihood estimates for the model parameters. - There are three model parameters: heritability (h), covariate coefficients (beta) and the total - phenotypic variance (sigma). - Heritability as defined here is the proportion of the total variance (sigma) that is attributed to - the kinship matrix. - - For simplicity, we assume that everything being input is a numpy array. - If this is not the case, the module may throw an error as conversion from list to numpy array - is not done consistently. - - """ - def __init__(self,Y,K,Kva=[],Kve=[],X0=None,verbose=False): - - """ - The constructor takes a phenotype vector or array of size n. - It takes a kinship matrix of size n x n. Kva and Kve can be computed as Kva,Kve = linalg.eigh(K) and cached. - If they are not provided, the constructor will calculate them. - X0 is an optional covariate matrix of size n x q, where there are q covariates. - When this parameter is not provided, the constructor will set X0 to an n x 1 matrix of all ones to represent a mean effect. - """ - - if X0 == None: X0 = np.ones(len(Y)).reshape(len(Y),1) - self.verbose = verbose - - #x = Y != -9 - x = True - np.isnan(Y) - if not x.sum() == len(Y): - if self.verbose: sys.stderr.write("Removing %d missing values from Y\n" % ((True - x).sum())) - Y = Y[x] - K = K[x,:][:,x] - X0 = X0[x,:] - Kva = [] - Kve = [] - self.nonmissing = x - - if len(Kva) == 0 or len(Kve) == 0: - if self.verbose: sys.stderr.write("Obtaining eigendecomposition for %dx%d matrix\n" % (K.shape[0],K.shape[1]) ) - begin = time.time() - Kva,Kve = linalg.eigh(K) - end = time.time() - if self.verbose: sys.stderr.write("Total time: %0.3f\n" % (end - begin)) - - self.K = K - self.Kva = Kva - self.Kve = Kve - print("self.Kva is: ", pf(self.Kva)) - print("self.Kve is: ", pf(self.Kve)) - self.Y = Y - self.X0 = X0 - self.N = self.K.shape[0] - - if sum(self.Kva < 1e-6): - if self.verbose: sys.stderr.write("Cleaning %d eigen values\n" % (sum(self.Kva < 0))) - self.Kva[self.Kva < 1e-6] = 1e-6 - - self.transform() - - def transform(self): - - """ - Computes a transformation on the phenotype vector and the covariate matrix. - The transformation is obtained by left multiplying each parameter by the transpose of the - eigenvector matrix of K (the kinship). - """ + """ + This is a simple version of EMMA/fastLMM. + The main purpose of this module is to take a phenotype vector (Y), a set of covariates (X) and a kinship matrix (K) + and to optimize this model by finding the maximum-likelihood estimates for the model parameters. + There are three model parameters: heritability (h), covariate coefficients (beta) and the total + phenotypic variance (sigma). + Heritability as defined here is the proportion of the total variance (sigma) that is attributed to + the kinship matrix. + + For simplicity, we assume that everything being input is a numpy array. + If this is not the case, the module may throw an error as conversion from list to numpy array + is not done consistently. + + """ + def __init__(self,Y,K,Kva=[],Kve=[],X0=None,verbose=False): + + """ + The constructor takes a phenotype vector or array of size n. + It takes a kinship matrix of size n x n. Kva and Kve can be computed as Kva,Kve = linalg.eigh(K) and cached. + If they are not provided, the constructor will calculate them. + X0 is an optional covariate matrix of size n x q, where there are q covariates. + When this parameter is not provided, the constructor will set X0 to an n x 1 matrix of all ones to represent a mean effect. + """ + + if X0 == None: X0 = np.ones(len(Y)).reshape(len(Y),1) + self.verbose = verbose + + #x = Y != -9 + x = True - np.isnan(Y) + if not x.sum() == len(Y): + if self.verbose: sys.stderr.write("Removing %d missing values from Y\n" % ((True - x).sum())) + Y = Y[x] + K = K[x,:][:,x] + X0 = X0[x,:] + Kva = [] + Kve = [] + self.nonmissing = x + + if len(Kva) == 0 or len(Kve) == 0: + if self.verbose: sys.stderr.write("Obtaining eigendecomposition for %dx%d matrix\n" % (K.shape[0],K.shape[1]) ) + begin = time.time() + Kva,Kve = linalg.eigh(K) + end = time.time() + if self.verbose: sys.stderr.write("Total time: %0.3f\n" % (end - begin)) + + self.K = K + self.Kva = Kva + self.Kve = Kve + print("self.Kva is: ", pf(self.Kva)) + print("self.Kve is: ", pf(self.Kve)) + self.Y = Y + self.X0 = X0 + self.N = self.K.shape[0] + + if sum(self.Kva < 1e-6): + if self.verbose: sys.stderr.write("Cleaning %d eigen values\n" % (sum(self.Kva < 0))) + self.Kva[self.Kva < 1e-6] = 1e-6 + + self.transform() + + def transform(self): + + """ + Computes a transformation on the phenotype vector and the covariate matrix. + The transformation is obtained by left multiplying each parameter by the transpose of the + eigenvector matrix of K (the kinship). + """ + + self.Yt = matrixMult(self.Kve.T, self.Y) + self.X0t = matrixMult(self.Kve.T, self.X0) + self.X0t_stack = np.hstack([self.X0t, np.ones((self.N,1))]) + self.q = self.X0t.shape[1] + + def getMLSoln(self,h,X): + + """ + Obtains the maximum-likelihood estimates for the covariate coefficients (beta), + the total variance of the trait (sigma) and also passes intermediates that can + be utilized in other functions. The input parameter h is a value between 0 and 1 and represents + the heritability or the proportion of the total variance attributed to genetics. The X is the + covariate matrix. + """ - self.Yt = matrixMult(self.Kve.T, self.Y) - self.X0t = matrixMult(self.Kve.T, self.X0) - self.X0t_stack = np.hstack([self.X0t, np.ones((self.N,1))]) - self.q = self.X0t.shape[1] - - def getMLSoln(self,h,X): - - """ - Obtains the maximum-likelihood estimates for the covariate coefficients (beta), - the total variance of the trait (sigma) and also passes intermediates that can - be utilized in other functions. The input parameter h is a value between 0 and 1 and represents - the heritability or the proportion of the total variance attributed to genetics. The X is the - covariate matrix. - """ - - S = 1.0/(h*self.Kva + (1.0 - h)) - Xt = X.T*S - XX = matrixMult(Xt,X) - XX_i = linalg.inv(XX) - beta = matrixMult(matrixMult(XX_i,Xt),self.Yt) - Yt = self.Yt - matrixMult(X,beta) - Q = np.dot(Yt.T*S,Yt) - sigma = Q * 1.0 / (float(self.N) - float(X.shape[1])) - return beta,sigma,Q,XX_i,XX - - def LL_brent(self,h,X=None,REML=False): - #brent will not be bounded by the specified bracket. - # I return a large number if we encounter h < 0 to avoid errors in LL computation during the search. - if h < 0: return 1e6 - return -self.LL(h,X,stack=False,REML=REML)[0] + S = 1.0/(h*self.Kva + (1.0 - h)) + Xt = X.T*S + XX = matrixMult(Xt,X) + XX_i = linalg.inv(XX) + beta = matrixMult(matrixMult(XX_i,Xt),self.Yt) + Yt = self.Yt - matrixMult(X,beta) + Q = np.dot(Yt.T*S,Yt) + sigma = Q * 1.0 / (float(self.N) - float(X.shape[1])) + return beta,sigma,Q,XX_i,XX + + def LL_brent(self,h,X=None,REML=False): + #brent will not be bounded by the specified bracket. + # I return a large number if we encounter h < 0 to avoid errors in LL computation during the search. + if h < 0: return 1e6 + return -self.LL(h,X,stack=False,REML=REML)[0] - def LL(self,h,X=None,stack=True,REML=False): - - """ - Computes the log-likelihood for a given heritability (h). If X==None, then the - default X0t will be used. If X is set and stack=True, then X0t will be matrix concatenated with - the input X. If stack is false, then X is used in place of X0t in the LL calculation. - REML is computed by adding additional terms to the standard LL and can be computed by setting REML=True. - """ - - if X == None: X = self.X0t - elif stack: - self.X0t_stack[:,(self.q)] = matrixMult(self.Kve.T,X)[:,0] - X = self.X0t_stack - - n = float(self.N) - q = float(X.shape[1]) - beta,sigma,Q,XX_i,XX = self.getMLSoln(h,X) - LL = n*np.log(2*np.pi) + np.log(h*self.Kva + (1.0-h)).sum() + n + n*np.log(1.0/n * Q) - LL = -0.5 * LL - - if REML: - LL_REML_part = q*np.log(2.0*np.pi*sigma) + np.log(linalg.det(matrixMult(X.T,X))) - np.log(linalg.det(XX)) - LL = LL + 0.5*LL_REML_part - - return LL,beta,sigma,XX_i - - def getMax(self,H, X=None,REML=False): - - """ - Helper functions for .fit(...). - This function takes a set of LLs computed over a grid and finds possible regions - containing a maximum. Within these regions, a Brent search is performed to find the - optimum. - - """ - n = len(self.LLs) - HOpt = [] - for i in range(1,n-2): - if self.LLs[i-1] < self.LLs[i] and self.LLs[i] > self.LLs[i+1]: - HOpt.append(optimize.brent(self.LL_brent,args=(X,REML),brack=(H[i-1],H[i+1]))) - if np.isnan(HOpt[-1][0]): HOpt[-1][0] = [self.LLs[i-1]] - - if len(HOpt) > 1: - if self.verbose: sys.stderr.write("NOTE: Found multiple optima. Returning first...\n") - return HOpt[0] - elif len(HOpt) == 1: return HOpt[0] - elif self.LLs[0] > self.LLs[n-1]: return H[0] - else: return H[n-1] - - def fit(self,X=None,ngrids=100,REML=True): - - """ - Finds the maximum-likelihood solution for the heritability (h) given the current parameters. - X can be passed and will transformed and concatenated to X0t. Otherwise, X0t is used as - the covariate matrix. - - This function calculates the LLs over a grid and then uses .getMax(...) to find the optimum. - Given this optimum, the function computes the LL and associated ML solutions. - """ - - if X == None: X = self.X0t - else: - #X = np.hstack([self.X0t,matrixMult(self.Kve.T, X)]) - self.X0t_stack[:,(self.q)] = matrixMult(self.Kve.T,X)[:,0] - X = self.X0t_stack - - H = np.array(range(ngrids)) / float(ngrids) - L = np.array([self.LL(h,X,stack=False,REML=REML)[0] for h in H]) - self.LLs = L - - hmax = self.getMax(H,X,REML) - L,beta,sigma,betaSTDERR = self.LL(hmax,X,stack=False,REML=REML) - - self.H = H - self.optH = hmax - self.optLL = L - self.optBeta = beta - self.optSigma = sigma - - return hmax,beta,sigma,L - - def association(self,X, h = None, stack=True,REML=True, returnBeta=False): - - """ - Calculates association statitics for the SNPs encoded in the vector X of size n. - If h == None, the optimal h stored in optH is used. - - """ - if stack: - #X = np.hstack([self.X0t,matrixMult(self.Kve.T, X)]) - self.X0t_stack[:,(self.q)] = matrixMult(self.Kve.T,X)[:,0] - X = self.X0t_stack - - if h == None: h = self.optH - - L,beta,sigma,betaVAR = self.LL(h,X,stack=False,REML=REML) - q = len(beta) - ts,ps = self.tstat(beta[q-1],betaVAR[q-1,q-1],sigma,q) - - if returnBeta: return ts,ps,beta[q-1].sum(),betaVAR[q-1,q-1].sum()*sigma - return ts,ps - - def tstat(self,beta,var,sigma,q): - + def LL(self,h,X=None,stack=True,REML=False): + + """ + Computes the log-likelihood for a given heritability (h). If X==None, then the + default X0t will be used. If X is set and stack=True, then X0t will be matrix concatenated with + the input X. If stack is false, then X is used in place of X0t in the LL calculation. + REML is computed by adding additional terms to the standard LL and can be computed by setting REML=True. + """ + + if X == None: X = self.X0t + elif stack: + self.X0t_stack[:,(self.q)] = matrixMult(self.Kve.T,X)[:,0] + X = self.X0t_stack + + n = float(self.N) + q = float(X.shape[1]) + beta,sigma,Q,XX_i,XX = self.getMLSoln(h,X) + LL = n*np.log(2*np.pi) + np.log(h*self.Kva + (1.0-h)).sum() + n + n*np.log(1.0/n * Q) + LL = -0.5 * LL + + if REML: + LL_REML_part = q*np.log(2.0*np.pi*sigma) + np.log(linalg.det(matrixMult(X.T,X))) - np.log(linalg.det(XX)) + LL = LL + 0.5*LL_REML_part + + return LL,beta,sigma,XX_i + + def getMax(self,H, X=None,REML=False): + """ - Calculates a t-statistic and associated p-value given the estimate of beta and its standard error. - This is actually an F-test, but when only one hypothesis is being performed, it reduces to a t-test. + Helper functions for .fit(...). + This function takes a set of LLs computed over a grid and finds possible regions + containing a maximum. Within these regions, a Brent search is performed to find the + optimum. + """ - - ts = beta / np.sqrt(var * sigma) - ps = 2.0*(1.0 - stats.t.cdf(np.abs(ts), self.N-q)) - if not len(ts) == 1 or not len(ps) == 1: raise Exception("Something bad happened :(") - return ts.sum(),ps.sum() - - def plotFit(self,color='b-',title=''): - - """ - Simple function to visualize the likelihood space. It takes the LLs - calcualted over a grid and normalizes them by subtracting off the mean and exponentiating. - The resulting "probabilities" are normalized to one and plotted against heritability. - This can be seen as an approximation to the posterior distribuiton of heritability. - - For diagnostic purposes this lets you see if there is one distinct maximum or multiple - and what the variance of the parameter looks like. - """ - import matplotlib.pyplot as pl - - mx = self.LLs.max() - p = np.exp(self.LLs - mx) - p = p/p.sum() - - pl.plot(self.H,p,color) - pl.xlabel("Heritability") - pl.ylabel("Probability of data") - pl.title(title)
\ No newline at end of file + n = len(self.LLs) + HOpt = [] + for i in range(1,n-2): + if self.LLs[i-1] < self.LLs[i] and self.LLs[i] > self.LLs[i+1]: + HOpt.append(optimize.brent(self.LL_brent,args=(X,REML),brack=(H[i-1],H[i+1]))) + if np.isnan(HOpt[-1][0]): + HOpt[-1][0] = [self.LLs[i-1]] + + if len(HOpt) > 1: + if self.verbose: + sys.stderr.write("NOTE: Found multiple optima. Returning first...\n") + return HOpt[0] + elif len(HOpt) == 1: + return HOpt[0] + elif self.LLs[0] > self.LLs[n-1]: + return H[0] + else: + return H[n-1] + + def fit(self,X=None,ngrids=100,REML=True): + + """ + Finds the maximum-likelihood solution for the heritability (h) given the current parameters. + X can be passed and will transformed and concatenated to X0t. Otherwise, X0t is used as + the covariate matrix. + + This function calculates the LLs over a grid and then uses .getMax(...) to find the optimum. + Given this optimum, the function computes the LL and associated ML solutions. + """ + + if X == None: + X = self.X0t + else: + #X = np.hstack([self.X0t,matrixMult(self.Kve.T, X)]) + self.X0t_stack[:,(self.q)] = matrixMult(self.Kve.T,X)[:,0] + X = self.X0t_stack + + H = np.array(range(ngrids)) / float(ngrids) + L = np.array([self.LL(h,X,stack=False,REML=REML)[0] for h in H]) + self.LLs = L + + hmax = self.getMax(H,X,REML) + L,beta,sigma,betaSTDERR = self.LL(hmax,X,stack=False,REML=REML) + + self.H = H + self.optH = hmax + self.optLL = L + self.optBeta = beta + self.optSigma = sigma + + return hmax,beta,sigma,L + + def association(self,X, h = None, stack=True,REML=True, returnBeta=True): + + """ + Calculates association statitics for the SNPs encoded in the vector X of size n. + If h == None, the optimal h stored in optH is used. + + """ + if stack: + #X = np.hstack([self.X0t,matrixMult(self.Kve.T, X)]) + self.X0t_stack[:,(self.q)] = matrixMult(self.Kve.T,X)[:,0] + X = self.X0t_stack + + if h == None: + h = self.optH + + L,beta,sigma,betaVAR = self.LL(h,X,stack=False,REML=REML) + q = len(beta) + ts,ps = self.tstat(beta[q-1],betaVAR[q-1,q-1],sigma,q) + + if returnBeta: + return ts,ps,beta[q-1].sum(),betaVAR[q-1,q-1].sum()*sigma + return ts,ps + + def tstat(self,beta,var,sigma,q): + + """ + Calculates a t-statistic and associated p-value given the estimate of beta and its standard error. + This is actually an F-test, but when only one hypothesis is being performed, it reduces to a t-test. + """ + + ts = beta / np.sqrt(var * sigma) + ps = 2.0*(1.0 - stats.t.cdf(np.abs(ts), self.N-q)) + if not len(ts) == 1 or not len(ps) == 1: raise Exception("Something bad happened :(") + return ts.sum(),ps.sum() + + def plotFit(self,color='b-',title=''): + + """ + Simple function to visualize the likelihood space. It takes the LLs + calcualted over a grid and normalizes them by subtracting off the mean and exponentiating. + The resulting "probabilities" are normalized to one and plotted against heritability. + This can be seen as an approximation to the posterior distribuiton of heritability. + + For diagnostic purposes this lets you see if there is one distinct maximum or multiple + and what the variance of the parameter looks like. + """ + import matplotlib.pyplot as pl + + mx = self.LLs.max() + p = np.exp(self.LLs - mx) + p = p/p.sum() + + pl.plot(self.H,p,color) + pl.xlabel("Heritability") + pl.ylabel("Probability of data") + pl.title(title)
\ No newline at end of file diff --git a/wqflask/wqflask/my_pylmm/pylmmGWAS.py b/wqflask/wqflask/my_pylmm/pylmmGWAS.py index 487949f0..54a230de 100644 --- a/wqflask/wqflask/my_pylmm/pylmmGWAS.py +++ b/wqflask/wqflask/my_pylmm/pylmmGWAS.py @@ -20,7 +20,8 @@ import pdb import time -def printOutHead(): out.write("\t".join(["SNP_ID","BETA","BETA_SD","F_STAT","P_VALUE"]) + "\n") +def printOutHead(): + out.write("\t".join(["SNP_ID","BETA","BETA_SD","F_STAT","P_VALUE"]) + "\n") def outputResult(id,beta,betaSD,ts,ps): out.write("\t".join([str(x) for x in [id,beta,betaSD,ts,ps]]) + "\n") @@ -88,7 +89,8 @@ from scipy import linalg from pylmm.lmm import LMM from pylmm import input -if len(args) != 1: parser.error("Incorrect number of arguments") +if len(args) != 1: + parser.error("Incorrect number of arguments") outFile = args[0] if not options.pfile and not options.tfile and not options.bfile: @@ -97,30 +99,40 @@ if not options.kfile: parser.error("Please provide a pre-computed kinship file") # READING PLINK input -if options.verbose: sys.stderr.write("Reading PLINK input...\n") -if options.bfile: IN = input.plink(options.bfile,type='b', phenoFile=options.phenoFile,normGenotype=options.normalizeGenotype) -elif options.tfile: IN = input.plink(options.tfile,type='t', phenoFile=options.phenoFile,normGenotype=options.normalizeGenotype) -elif options.pfile: IN = input.plink(options.pfile,type='p', phenoFile=options.phenoFile,normGenotype=options.normalizeGenotype) -else: parser.error("You must provide at least one PLINK input file base") +if options.verbose: + sys.stderr.write("Reading PLINK input...\n") +if options.bfile: + IN = input.plink(options.bfile,type='b', phenoFile=options.phenoFile,normGenotype=options.normalizeGenotype) +elif options.tfile: + IN = input.plink(options.tfile,type='t', phenoFile=options.phenoFile,normGenotype=options.normalizeGenotype) +elif options.pfile: + IN = input.plink(options.pfile,type='p', phenoFile=options.phenoFile,normGenotype=options.normalizeGenotype) +else: + parser.error("You must provide at least one PLINK input file base") if not os.path.isfile(options.phenoFile or IN.fbase + '.phenos'): parser.error("No .pheno file exist for %s" % (options.phenoFile or IN.fbase + '.phenos')) # READING Covariate File if options.covfile: - if options.verbose: sys.stderr.write("Reading covariate file...\n") + if options.verbose: + sys.stderr.write("Reading covariate file...\n") # Read the covariate file -- write this into input.plink P = IN.getCovariates(options.covfile) - if options.noMean: X0 = P - else: X0 = np.hstack([np.ones((IN.phenos.shape[0],1)),P]) + if options.noMean: + X0 = P + else: + X0 = np.hstack([np.ones((IN.phenos.shape[0],1)),P]) if np.isnan(X0).sum(): parser.error("The covariate file %s contains missing values. At this time we are not dealing with this case. Either remove those individuals with missing values or replace them in some way.") -else: X0 = np.ones((IN.phenos.shape[0],1)) +else: + X0 = np.ones((IN.phenos.shape[0],1)) # READING Kinship - major bottleneck for large datasets -if options.verbose: sys.stderr.write("Reading kinship...\n") +if options.verbose: + sys.stderr.write("Reading kinship...\n") begin = time.time() # This method seems to be the fastest and works if you already know the size of the matrix if options.kfile[-3:] == '.gz': @@ -129,13 +141,15 @@ if options.kfile[-3:] == '.gz': F = f.read() # might exhaust mem if the file is huge K = np.fromstring(F,sep=' ') # Assume that space separated f.close() -else: K = np.fromfile(open(options.kfile,'r'),sep=" ") +else: + K = np.fromfile(open(options.kfile,'r'),sep=" ") K.resize((len(IN.indivs),len(IN.indivs))) end = time.time() # Other slower ways #K = np.loadtxt(options.kfile) #K = np.genfromtxt(options.kfile) -if options.verbose: sys.stderr.write("Read the %d x %d kinship matrix in %0.3fs \n" % (K.shape[0],K.shape[1],end-begin)) +if options.verbose: + sys.stderr.write("Read the %d x %d kinship matrix in %0.3fs \n" % (K.shape[0],K.shape[1],end-begin)) # PROCESS the phenotype data -- Remove missing phenotype values @@ -144,7 +158,8 @@ Y = IN.phenos[:,options.pheno] v = np.isnan(Y) keep = True - v if v.sum(): - if options.verbose: sys.stderr.write("Cleaning the phenotype vector by removing %d individuals...\n" % (v.sum())) + if options.verbose: + sys.stderr.write("Cleaning the phenotype vector by removing %d individuals...\n" % (v.sum())) Y = Y[keep] X0 = X0[keep,:] K = K[keep,:][:,keep] diff --git a/wqflask/wqflask/search_results.py b/wqflask/wqflask/search_results.py index 8942d2ff..43c68942 100644 --- a/wqflask/wqflask/search_results.py +++ b/wqflask/wqflask/search_results.py @@ -61,29 +61,17 @@ class SearchResultPage(): self.results = [] if 'q' in kw: - self.quick_search = True + #self.quick_search = True self.search_terms = kw['q'] print("self.search_terms is: ", self.search_terms) - self.do_quick_search() + self.quick_search() else: - self.quick_search = False + #self.quick_search = False self.search_terms = kw['search_terms'] self.dataset = create_dataset(kw['dataset']) self.search() self.gen_search_result() - def gen_quick_search_result(self): - self.trait_list = [] - - species_list = [] - - for result in self.results: - if not result: - continue - if result[0] not in species_list: - species_list.append(result[0]) - - def gen_search_result(self): """ @@ -112,7 +100,7 @@ class SearchResultPage(): self.dataset.get_trait_info(self.trait_list, species) - def do_quick_search(self): + def quick_search(self): self.search_terms = parser.parse(self.search_terms) print("After parsing:", self.search_terms) @@ -171,6 +159,7 @@ class SearchResultPage(): search_ob = do_search.DoSearch.get_search(search_type) search_class = getattr(do_search, search_ob) + print("search_class is: ", pf(search_class)) the_search = search_class(search_term, search_operator, self.dataset, diff --git a/wqflask/wqflask/show_trait/show_trait.py b/wqflask/wqflask/show_trait/show_trait.py index 5c064359..85e33595 100755 --- a/wqflask/wqflask/show_trait/show_trait.py +++ b/wqflask/wqflask/show_trait/show_trait.py @@ -679,61 +679,61 @@ class ShowTrait(object): elif this_trait and this_trait.dataset and this_trait.dataset.type =='Publish': #Check if trait is phenotype - if this_trait.confidential: - pass - #tbl.append(HT.TR( - # HT.TD('Pre-publication Phenotype: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), - # HT.TD(width=10, valign="top"), - # HT.TD(HT.Span(this_trait.pre_publication_description, Class="fs13"), valign="top", width=740) - # )) - if webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=this_trait.authorized_users): - #tbl.append(HT.TR( - # HT.TD('Post-publication Phenotype: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), - # HT.TD(width=10, valign="top"), - # HT.TD(HT.Span(this_trait.post_publication_description, Class="fs13"), valign="top", width=740) - # )) - #tbl.append(HT.TR( - # HT.TD('Pre-publication Abbreviation: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), - # HT.TD(width=10, valign="top"), - # HT.TD(HT.Span(this_trait.pre_publication_abbreviation, Class="fs13"), valign="top", width=740) - # )) - #tbl.append(HT.TR( - # HT.TD('Post-publication Abbreviation: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), - # HT.TD(width=10, valign="top"), - # HT.TD(HT.Span(this_trait.post_publication_abbreviation, Class="fs13"), valign="top", width=740) - # )) - #tbl.append(HT.TR( - # HT.TD('Lab code: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), - # HT.TD(width=10, valign="top"), - # HT.TD(HT.Span(this_trait.lab_code, Class="fs13"), valign="top", width=740) - # )) - pass - #tbl.append(HT.TR( - # HT.TD('Owner: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), - # HT.TD(width=10, valign="top"), - # HT.TD(HT.Span(this_trait.owner, Class="fs13"), valign="top", width=740) - # )) - else: - pass - #tbl.append(HT.TR( - # HT.TD('Phenotype: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), - # HT.TD(width=10, valign="top"), - # HT.TD(HT.Span(this_trait.post_publication_description, Class="fs13"), valign="top", width=740) - # )) - #tbl.append(HT.TR( - # HT.TD('Authors: ', Class="fs13 fwb", - # valign="top", nowrap="on", width=90), - # HT.TD(width=10, valign="top"), - # HT.TD(HT.Span(this_trait.authors, Class="fs13"), - # valign="top", width=740) - # )) - #tbl.append(HT.TR( - # HT.TD('Title: ', Class="fs13 fwb", - # valign="top", nowrap="on", width=90), - # HT.TD(width=10, valign="top"), - # HT.TD(HT.Span(this_trait.title, Class="fs13"), - # valign="top", width=740) - # )) + #if this_trait.confidential: + # pass + # #tbl.append(HT.TR( + # # HT.TD('Pre-publication Phenotype: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + # # HT.TD(width=10, valign="top"), + # # HT.TD(HT.Span(this_trait.pre_publication_description, Class="fs13"), valign="top", width=740) + # # )) + # if webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=this_trait.authorized_users): + # #tbl.append(HT.TR( + # # HT.TD('Post-publication Phenotype: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + # # HT.TD(width=10, valign="top"), + # # HT.TD(HT.Span(this_trait.post_publication_description, Class="fs13"), valign="top", width=740) + # # )) + # #tbl.append(HT.TR( + # # HT.TD('Pre-publication Abbreviation: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + # # HT.TD(width=10, valign="top"), + # # HT.TD(HT.Span(this_trait.pre_publication_abbreviation, Class="fs13"), valign="top", width=740) + # # )) + # #tbl.append(HT.TR( + # # HT.TD('Post-publication Abbreviation: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + # # HT.TD(width=10, valign="top"), + # # HT.TD(HT.Span(this_trait.post_publication_abbreviation, Class="fs13"), valign="top", width=740) + # # )) + # #tbl.append(HT.TR( + # # HT.TD('Lab code: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + # # HT.TD(width=10, valign="top"), + # # HT.TD(HT.Span(this_trait.lab_code, Class="fs13"), valign="top", width=740) + # # )) + # pass + # #tbl.append(HT.TR( + # # HT.TD('Owner: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + # # HT.TD(width=10, valign="top"), + # # HT.TD(HT.Span(this_trait.owner, Class="fs13"), valign="top", width=740) + # # )) + #else: + # pass + # #tbl.append(HT.TR( + # # HT.TD('Phenotype: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + # # HT.TD(width=10, valign="top"), + # # HT.TD(HT.Span(this_trait.post_publication_description, Class="fs13"), valign="top", width=740) + # # )) + ##tbl.append(HT.TR( + ## HT.TD('Authors: ', Class="fs13 fwb", + ## valign="top", nowrap="on", width=90), + ## HT.TD(width=10, valign="top"), + ## HT.TD(HT.Span(this_trait.authors, Class="fs13"), + ## valign="top", width=740) + ## )) + ##tbl.append(HT.TR( + ## HT.TD('Title: ', Class="fs13 fwb", + ## valign="top", nowrap="on", width=90), + ## HT.TD(width=10, valign="top"), + ## HT.TD(HT.Span(this_trait.title, Class="fs13"), + ## valign="top", width=740) + ## )) if this_trait.journal: journal = this_trait.journal if this_trait.year: |