about summary refs log tree commit diff
import requests
import simplejson as json
from wqflask import app

import utility.hmac as hmac
from base import webqtlConfig
from base.webqtlCaseData import webqtlCaseData
from base.data_set import create_dataset
from utility.authentication_tools import check_resource_availability
from utility.tools import GN2_BASE_URL, GN_PROXY_URL
from utility.redis_tools import get_redis_conn, get_resource_id

from flask import g, request, url_for

from wqflask.database import database_connection


Redis = get_redis_conn()


def create_trait(**kw):
    assert bool(kw.get('dataset')) != bool(
        kw.get('dataset_name')), "Needs dataset ob. or name"

    assert bool(kw.get('name')), "Needs trait name"


    if bool(kw.get('dataset')):
        dataset = kw.get('dataset')


    else:
        if kw.get('dataset_name') != "Temp":


            dataset = create_dataset(kw.get('dataset_name'))
        else:

            dataset = create_dataset(
                    dataset_name="Temp",
                    dataset_type="Temp",
                    group_name= kw.get('name').split("_")[2])


    if dataset.type == 'Publish':
        permissions = check_resource_availability(
            dataset, g.user_session.user_id, kw.get('name'))
    else:
        permissions = check_resource_availability(
            dataset, g.user_session.user_id)


    if permissions['data'] != "no-access":
        
        the_trait = GeneralTrait(**dict(kw,dataset=dataset))
        if the_trait.dataset.type != "Temp":
            the_trait = retrieve_trait_info(
                the_trait,
                the_trait.dataset,
                get_qtl_info=kw.get('get_qtl_info'))
        return the_trait
    else:
        return None


class GeneralTrait:
    """
    Trait class defines a trait in webqtl, can be either Microarray,
    Published phenotype, genotype, or user input trait

    """

    def __init__(self, get_qtl_info=False, get_sample_info=True, **kw):
        # xor assertion
        assert kw.get("dataset"), "Dataset obj is needed as a kwarg"

        # Trait ID, ProbeSet ID, Published ID, etc.
        self.name = kw.get('name')
        self.dataset = kw.get("dataset")
        self.cellid = kw.get('cellid')
        self.identification = kw.get('identification', 'un-named trait')
        self.haveinfo = kw.get('haveinfo', False)
        # Blat sequence, available for ProbeSet
        self.sequence = kw.get('sequence')
        self.data = kw.get('data', {})
        self.view = True

        # Sets defaults
        self.locus = None
        self.lrs = None
        self.pvalue = None
        self.mean = None
        self.additive = None
        self.num_overlap = None
        self.strand_probe = None
        self.symbol = None
        self.abbreviation = None
        self.display_name = self.name

        self.LRS_score_repr = "N/A"
        self.LRS_location_repr = "N/A"
        self.chr = self.mb = self.locus_chr = self.locus_mb = ""

        if kw.get('fullname'):
            name2 = value.split("::")
            if len(name2) == 2:
                self.dataset, self.name = name2
                # self.cellid is set to None above
            elif len(name2) == 3:
                self.dataset, self.name, self.cellid = name2

        # Todo: These two lines are necessary most of the time, but
        # perhaps not all of the time So we could add a simple if
        # statement to short-circuit this if necessary
        if get_sample_info is not False:
            self = retrieve_sample_data(self, self.dataset)

    def export_informative(self, include_variance=0):
        """
        export informative sample
        mostly used in qtl regression

        """
        samples = []
        vals = []
        the_vars = []
        sample_aliases = []
        for sample_name, sample_data in list(self.data.items()):
            if sample_data.value is not None:
                if not include_variance or sample_data.variance is not None:
                    samples.append(sample_name)
                    vals.append(sample_data.value)
                    the_vars.append(sample_data.variance)
                    sample_aliases.append(sample_data.name2)
        return samples, vals, the_vars, sample_aliases

    @property
    def description_fmt(self):
        """Return a text formated description"""
        if self.dataset.type == 'ProbeSet':
            if self.description:
                formatted = self.description
                if self.probe_target_description:
                    formatted += "; " + self.probe_target_description
            else:
                formatted = "Not available"
        elif self.dataset.type == 'Publish':
            if self.confidential:
                formatted = self.pre_publication_description
            else:
                formatted = self.post_publication_description
        else:
            formatted = "Not available"
        if isinstance(formatted, bytes):
            formatted = formatted.decode("utf-8")
        return formatted

    @property
    def alias_fmt(self):
        """Return a text formatted alias"""

        alias = 'Not available'
        if getattr(self, "alias", None):
            alias = self.alias.replace(";", " ")
            alias = ", ".join(alias.split())

        return alias

    @property
    def wikidata_alias_fmt(self):
        """Return a text formatted alias"""

        alias = 'Not available'
        if self.symbol:
            human_response = requests.get(
                GN2_BASE_URL + "gn3/gene/aliases/" + self.symbol.upper())
            mouse_response = requests.get(
                GN2_BASE_URL + "gn3/gene/aliases/" + self.symbol.capitalize())
            other_response = requests.get(
                GN2_BASE_URL + "gn3/gene/aliases/" + self.symbol.lower())

            if human_response and mouse_response and other_response:
                alias_list = json.loads(human_response.content) + json.loads(
                    mouse_response.content) + \
                    json.loads(other_response.content)

                filtered_aliases = []
                seen = set()
                for item in alias_list:
                    if item in seen:
                        continue
                    else:
                        filtered_aliases.append(item)
                        seen.add(item)
                alias = "; ".join(filtered_aliases)

        return alias

    @property
    def location_fmt(self):
        """Return a text formatted location

        While we're at it we set self.location in case we need it
        later (do we?)

        """

        if self.chr == "Un":
            return 'Not available'

        if self.chr and self.mb:
            self.location = 'Chr %s @ %s Mb' % (self.chr, self.mb)
        elif self.chr:
            self.location = 'Chr %s @ Unknown position' % (self.chr)
        else:
            self.location = 'Not available'

        fmt = self.location
        # XZ: deal with direction
        if self.strand_probe == '+':
            fmt += (' on the plus strand ')
        elif self.strand_probe == '-':
            fmt += (' on the minus strand ')

        return fmt


def retrieve_sample_data(trait, dataset, samplelist=None):
    if samplelist is None:
        samplelist = []

    if dataset.type == "Temp":
        results = Redis.get(trait.name).split()
    else:
        results = dataset.retrieve_sample_data(trait.name)
    # Todo: is this necessary? If not remove
    trait.data.clear()

    if results:
        if dataset.type == "Temp":
            all_samples_ordered = dataset.group.all_samples_ordered()
            for i, item in enumerate(results):
                try:
                    trait.data[all_samples_ordered[i]] = webqtlCaseData(
                        all_samples_ordered[i], float(item))
                except:
                    pass
        else:
            for item in results:
                name, value, variance, num_cases, name2 = item
                if not samplelist or (samplelist and name in samplelist):
                    # name, value, variance, num_cases)
                    trait.data[name] = webqtlCaseData(*item)
    return trait


@app.route("/trait/get_sample_data")
def get_sample_data():
    params = request.args
    trait = params['trait']
    dataset = params['dataset']

    trait_ob = create_trait(name=trait, dataset_name=dataset)
    if trait_ob:
        trait_dict = {}
        trait_dict['name'] = trait
        trait_dict['db'] = dataset
        trait_dict['type'] = trait_ob.dataset.type
        trait_dict['group'] = trait_ob.dataset.group.name
        trait_dict['tissue'] = trait_ob.dataset.tissue
        trait_dict['species'] = trait_ob.dataset.group.species
        trait_dict['url'] = url_for(
            'show_trait_page', trait_id=trait, dataset=dataset)
        if trait_ob.dataset.type == "ProbeSet":
            trait_dict['symbol'] = trait_ob.symbol
            trait_dict['location'] = trait_ob.location_repr
            trait_dict['description'] = trait_ob.description_display
        elif trait_ob.dataset.type == "Publish":
            trait_dict['description'] = trait_ob.description_display
            if trait_ob.pubmed_id:
                trait_dict['pubmed_link'] = trait_ob.pubmed_link
            trait_dict['pubmed_text'] = trait_ob.pubmed_text
        else:
            trait_dict['location'] = trait_ob.location_repr

        return json.dumps([trait_dict, {key: value.value for
                                        key, value in list(
                                            trait_ob.data.items())}])
    else:
        return None


def jsonable(trait, dataset=None):
    """Return a dict suitable for using as json

    Actual turning into json doesn't happen here though"""

    if not dataset:
        dataset = create_dataset(dataset_name=trait.dataset.name,
                                dataset_type=trait.dataset.type,
                                group_name=trait.dataset.group.name)


    trait_symbol = "N/A"
    trait_mean = "N/A"
    if trait.symbol:
        trait_symbol = trait.symbol
    if trait.mean:
        trait_mean = trait.mean

    if dataset.type == "ProbeSet":
        return dict(name=trait.name,
                    display_name=trait.display_name,
                    hmac=hmac.data_hmac('{}:{}'.format(trait.display_name, dataset.name)),
                    view=str(trait.view),
                    symbol=trait_symbol,
                    dataset=dataset.name,
                    dataset_name=dataset.shortname,
                    description=trait.description_display,
                    mean=trait_mean,
                    location=trait.location_repr,
                    chr=trait.chr,
                    mb=trait.mb,
                    lrs_score=trait.LRS_score_repr,
                    lrs_location=trait.LRS_location_repr,
                    lrs_chr=trait.locus_chr,
                    lrs_mb=trait.locus_mb,
                    additive=trait.additive
                    )
    elif dataset.type == "Publish":
        if trait.pubmed_id:
            return dict(name=trait.name,
                        display_name=trait.display_name,
                        hmac=hmac.data_hmac('{}:{}'.format(trait.name, dataset.name)),
                        view=str(trait.view),
                        symbol=trait.abbreviation,
                        dataset=dataset.name,
                        dataset_name=dataset.shortname,
                        description=trait.description_display,
                        abbreviation=trait.abbreviation,
                        authors=trait.authors,
                        pubmed_id=trait.pubmed_id,
                        pubmed_text=trait.pubmed_text,
                        pubmed_link=trait.pubmed_link,
                        mean=trait_mean,
                        lrs_score=trait.LRS_score_repr,
                        lrs_location=trait.LRS_location_repr,
                        lrs_chr=trait.locus_chr,
                        lrs_mb=trait.locus_mb,
                        additive=trait.additive
                        )
        else:
            return dict(name=trait.name,
                        display_name=trait.display_name,
                        hmac=hmac.data_hmac('{}:{}'.format(trait.name, dataset.name)),
                        view=str(trait.view),
                        symbol=trait.abbreviation,
                        dataset=dataset.name,
                        dataset_name=dataset.shortname,
                        description=trait.description_display,
                        abbreviation=trait.abbreviation,
                        authors=trait.authors,
                        pubmed_text=trait.pubmed_text,
                        mean=trait_mean,
                        lrs_score=trait.LRS_score_repr,
                        lrs_location=trait.LRS_location_repr,
                        lrs_chr=trait.locus_chr,
                        lrs_mb=trait.locus_mb,
                        additive=trait.additive
                        )
    elif dataset.type == "Geno":
        return dict(name=trait.name,
                    display_name=trait.display_name,
                    hmac=hmac.data_hmac('{}:{}'.format(trait.display_name, dataset.name)),
                    view=str(trait.view),
                    dataset=dataset.name,
                    dataset_name=dataset.shortname,
                    location=trait.location_repr,
                    chr=trait.chr,
                    mb=trait.mb
                    )
    elif dataset.name == "Temp":
        return dict(name=trait.name,
                    display_name=trait.display_name,
                    hmac=hmac.data_hmac('{}:{}'.format(trait.display_name, dataset.name)),
                    view=str(trait.view),
                    dataset="Temp",
                    dataset_name="Temp")
    else:
        return dict()


def retrieve_trait_info(trait, dataset, get_qtl_info=False):
    if not dataset:
        raise ValueError("Dataset doesn't exist")

    with database_connection() as conn, conn.cursor() as cursor:
        trait_info = ()
        if dataset.type == 'Publish':
            cursor.execute(
                "SELECT PublishXRef.Id, InbredSet.InbredSetCode, "
                "Publication.PubMed_ID, "
                "CAST(Phenotype.Pre_publication_description AS BINARY), "
                "CAST(Phenotype.Post_publication_description AS BINARY), "
                "CAST(Phenotype.Original_description AS BINARY), "
                "CAST(Phenotype.Pre_publication_abbreviation AS BINARY), "
                "CAST(Phenotype.Post_publication_abbreviation AS BINARY), "
                "PublishXRef.mean, Phenotype.Lab_code, "
                "Phenotype.Submitter, Phenotype.Owner, "
                "Phenotype.Authorized_Users, "
                "CAST(Publication.Authors AS BINARY), "
                "CAST(Publication.Title AS BINARY), "
                "CAST(Publication.Abstract AS BINARY), "
                "CAST(Publication.Journal AS BINARY), "
                "Publication.Volume, Publication.Pages, "
                "Publication.Month, Publication.Year, "
                "PublishXRef.Sequence, Phenotype.Units, "
                "PublishXRef.comments FROM PublishXRef, Publication, "
                "Phenotype, PublishFreeze, InbredSet WHERE "
                "PublishXRef.Id = %s AND "
                "Phenotype.Id = PublishXRef.PhenotypeId "
                "AND Publication.Id = PublishXRef.PublicationId "
                "AND PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
                "AND PublishXRef.InbredSetId = InbredSet.Id AND "
                "PublishFreeze.Id = %s",
                (trait.name, dataset.id,)
            )
            trait_info = cursor.fetchone()

        # XZ, 05/08/2009: Xiaodong add this block to use ProbeSet.Id to find the probeset instead of just using ProbeSet.Name
        # XZ, 05/08/2009: to avoid the problem of same probeset name from different platforms.
        elif dataset.type == 'ProbeSet':
            display_fields_string = ', ProbeSet.'.join(dataset.display_fields)
            display_fields_string = f'ProbeSet.{display_fields_string}'
            cursor.execute(
                f"SELECT {display_fields_string} FROM ProbeSet, ProbeSetFreeze, "
                "ProbeSetXRef WHERE "
                "ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
                "AND ProbeSetXRef.ProbeSetId = ProbeSet.Id AND "
                "ProbeSetFreeze.Name = %s AND "
                "ProbeSet.Name = %s",
                (dataset.name, str(trait.name),)
            )
            trait_info = cursor.fetchone()
        # XZ, 05/08/2009: We also should use Geno.Id to find marker instead of just using Geno.Name
        # to avoid the problem of same marker name from different species.
        elif dataset.type == 'Geno':
            display_fields_string = ',Geno.'.join(dataset.display_fields)
            display_fields_string = f'Geno.{display_fields_string}'
            cursor.execute(
                f"SELECT {display_fields_string} FROM Geno, GenoFreeze, "
                "GenoXRef WHERE "
                "GenoXRef.GenoFreezeId = GenoFreeze.Id "
                "AND GenoXRef.GenoId = Geno.Id "
                "AND GenoFreeze.Name = %s "
                "AND Geno.Name = %s",
                (dataset.name, trait.name)
            )
            trait_info = cursor.fetchone()
        else:  # Temp type
            cursor.execute(
                f"SELECT {','.join(dataset.display_fields)} "
                f"FROM {dataset.type} WHERE Name = %s",
                (trait.name,)
            )
            trait_info = cursor.fetchone()

        if trait_info:
            trait.haveinfo = True
            for i, field in enumerate(dataset.display_fields):
                holder = trait_info[i]
                if isinstance(holder, bytes):
                    holder = holder.decode("utf-8", errors="ignore")
                setattr(trait, field, holder)

            if dataset.type == 'Publish':
                if trait.group_code:
                    trait.display_name = trait.group_code + "_" + str(trait.name)

                trait.confidential = 0
                if trait.pre_publication_description and not trait.pubmed_id:
                    trait.confidential = 1

                description = trait.post_publication_description

                # If the dataset is confidential and the user has access to confidential
                # phenotype traits, then display the pre-publication description instead
                # of the post-publication description
                trait.description_display = "N/A"
                trait.abbreviation = "N/A"
                if not trait.pubmed_id:
                    if trait.pre_publication_abbreviation:
                        trait.abbreviation = trait.pre_publication_abbreviation
                    if trait.pre_publication_description:
                        trait.description_display = trait.pre_publication_description
                else:
                    if trait.post_publication_abbreviation:
                        trait.abbreviation = trait.post_publication_abbreviation
                    if description:
                        trait.description_display = description.strip()

                if not trait.year.isdigit():
                    trait.pubmed_text = "N/A"
                else:
                    trait.pubmed_text = trait.year

                if trait.pubmed_id:
                    trait.pubmed_link = webqtlConfig.PUBMEDLINK_URL % trait.pubmed_id

            if dataset.type == 'ProbeSet' and dataset.group:
                description_string = trait.description
                target_string = trait.probe_target_description

                if str(description_string or "") != "" and description_string != 'None':
                    description_display = description_string
                else:
                    description_display = trait.symbol

                if (str(description_display or "") != ""
                    and description_display != 'N/A'
                        and str(target_string or "") != "" and target_string != 'None'):
                    description_display = description_display + '; ' + target_string.strip()

                # Save it for the jinja2 template
                trait.description_display = description_display

                trait.location_repr = 'N/A'
                if trait.chr and trait.mb:
                    trait.location_repr = 'Chr%s: %.6f' % (
                        trait.chr, float(trait.mb))

            elif dataset.type == "Geno":
                trait.location_repr = 'N/A'
                if trait.chr and trait.mb:
                    trait.location_repr = 'Chr%s: %.6f' % (
                        trait.chr, float(trait.mb))

            if get_qtl_info:
                # LRS and its location
                trait.LRS_score_repr = "N/A"
                trait.LRS_location_repr = "N/A"
                trait.locus = trait.locus_chr = trait.locus_mb = trait.lrs = trait.pvalue = trait.additive = ""
                if dataset.type == 'ProbeSet' and not trait.cellid:
                    trait.mean = ""
                    cursor.execute(
                        "SELECT ProbeSetXRef.Locus, ProbeSetXRef.LRS, "
                        "ProbeSetXRef.pValue, ProbeSetXRef.mean, "
                        "ProbeSetXRef.additive FROM ProbeSetXRef, "
                        "ProbeSet WHERE "
                        "ProbeSetXRef.ProbeSetId = ProbeSet.Id "
                        "AND ProbeSet.Name = %s AND "
                        "ProbeSetXRef.ProbeSetFreezeId = %s",
                        (trait.name, dataset.id,)
                    )
                    trait_qtl = cursor.fetchone()
                    if any(trait_qtl):
                        trait.locus, trait.lrs, trait.pvalue, trait.mean, trait.additive = trait_qtl
                        if trait.locus:
                            cursor.execute(
                                "SELECT Geno.Chr, Geno.Mb FROM "
                                "Geno, Species WHERE "
                                "Species.Name = %s AND "
                                "Geno.Name = %s AND "
                                "Geno.SpeciesId = Species.Id",
                                (dataset.group.species, trait.locus,)
                            )
                            if result := cursor.fetchone() :
                                trait.locus_chr = result[0]
                                trait.locus_mb = result[1]
                            else:
                                trait.locus_chr = trait.locus_mb = ""
                        else:
                            trait.locus = trait.locus_chr = trait.locus_mb = trait.additive = ""

                if dataset.type == 'Publish':
                    cursor.execute(
                        "SELECT PublishXRef.Locus, PublishXRef.LRS, "
                        "PublishXRef.additive FROM "
                        "PublishXRef, PublishFreeze WHERE "
                        "PublishXRef.Id = %s AND "
                        "PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
                        "AND PublishFreeze.Id = %s", (trait.name, dataset.id,)
                    )
                    if trait_qtl := cursor.fetchone():
                        trait.locus, trait.lrs, trait.additive = trait_qtl
                        if trait.locus:
                            cursor.execute(
                                "SELECT Geno.Chr, Geno.Mb FROM Geno, "
                                "Species WHERE Species.Name = %s "
                                "AND Geno.Name = %s AND "
                                "Geno.SpeciesId = Species.Id",
                                (dataset.group.species, trait.locus,)
                            )
                            if result := cursor.fetchone():
                                trait.locus_chr = result[0]
                                trait.locus_mb = result[1]
                            else:
                                trait.locus = trait.locus_chr = trait.locus_mb = trait.additive = ""
                        else:
                            trait.locus = trait.locus_chr = trait.locus_mb = trait.additive = ""
                    else:
                        trait.locus = trait.lrs = trait.additive = ""
                if (dataset.type == 'Publish' or dataset.type == "ProbeSet"):
                    if str(trait.locus_chr or "") != "" and str(trait.locus_mb or "") != "":
                        trait.LRS_location_repr = LRS_location_repr = 'Chr%s: %.6f' % (
                            trait.locus_chr, float(trait.locus_mb))
                    if str(trait.lrs or "") != "":
                        trait.LRS_score_repr = LRS_score_repr = '%3.1f' % trait.lrs
        else:
            raise KeyError(
                f"{repr(trait.name)} information is not found in the database "
                f"for dataset '{dataset.name}' with id '{dataset.id}'.")
        return trait