import csv import sys import html import json import requests from lxml import etree from pathlib import Path from lxml.html import parse from functools import reduce from link_checker import check_page def corrs_base_data(): return [ { "dataset": "HC_M2_0606_P", "trait_id": "1435464_at", "corr_dataset": "HC_M2_0606_P", }, { "dataset": "HC_M2_0606_P", "trait_id": "1457545_at", "corr_dataset": "HC_M2_0606_R", }, { "dataset": "HC_M2_0606_P", "trait_id": "1442370_at", "corr_dataset": "BXDPublish", } ] def sample_vals(): return '{"C57BL/6J":"10.835","DBA/2J":"11.142","B6D2F1":"11.126","D2B6F1":"11.143","BXD1":"10.811","BXD2":"11.503","BXD5":"10.766","BXD6":"10.986","BXD8":"11.050","BXD9":"10.822","BXD11":"10.670","BXD12":"10.946","BXD13":"10.890","BXD14":"x","BXD15":"10.884","BXD16":"11.222","BXD18":"x","BXD19":"10.968","BXD20":"10.962","BXD21":"10.906","BXD22":"11.080","BXD23":"11.046","BXD24":"11.146","BXD24a":"x","BXD25":"x","BXD27":"11.078","BXD28":"11.034","BXD29":"10.808","BXD30":"x","BXD31":"11.087","BXD32":"11.029","BXD33":"10.662","BXD34":"11.482","BXD35":"x","BXD36":"x","BXD37":"x","BXD38":"10.836","BXD39":"10.926","BXD40":"10.638","BXD41":"x","BXD42":"10.974","BXD43":"10.828","BXD44":"10.900","BXD45":"11.358","BXD48":"11.042","BXD48a":"10.975","BXD49":"x","BXD50":"11.228","BXD51":"11.126","BXD52":"x","BXD53":"x","BXD54":"x","BXD55":"11.580","BXD56":"x","BXD59":"x","BXD60":"10.829","BXD61":"11.152","BXD62":"11.156","BXD63":"10.942","BXD64":"10.506","BXD65":"11.126","BXD65a":"11.272","BXD65b":"11.157","BXD66":"11.071","BXD67":"11.080","BXD68":"10.997","BXD69":"11.096","BXD70":"11.152","BXD71":"x","BXD72":"x","BXD73":"11.262","BXD73a":"11.444","BXD73b":"x","BXD74":"10.974","BXD75":"11.150","BXD76":"10.920","BXD77":"10.928","BXD78":"x","BXD79":"11.371","BXD81":"x","BXD83":"10.946","BXD84":"11.181","BXD85":"10.992","BXD86":"10.770","BXD87":"11.200","BXD88":"x","BXD89":"10.930","BXD90":"11.183","BXD91":"x","BXD93":"11.056","BXD94":"10.737","BXD95":"x","BXD98":"10.986","BXD99":"10.892","BXD100":"x","BXD101":"x","BXD102":"x","BXD104":"x","BXD105":"x","BXD106":"x","BXD107":"x","BXD108":"x","BXD109":"x","BXD110":"x","BXD111":"x","BXD112":"x","BXD113":"x","BXD114":"x","BXD115":"x","BXD116":"x","BXD117":"x","BXD119":"x","BXD120":"x","BXD121":"x","BXD122":"x","BXD123":"x","BXD124":"x","BXD125":"x","BXD126":"x","BXD127":"x","BXD128":"x","BXD128a":"x","BXD130":"x","BXD131":"x","BXD132":"x","BXD133":"x","BXD134":"x","BXD135":"x","BXD136":"x","BXD137":"x","BXD138":"x","BXD139":"x","BXD141":"x","BXD142":"x","BXD144":"x","BXD145":"x","BXD146":"x","BXD147":"x","BXD148":"x","BXD149":"x","BXD150":"x","BXD151":"x","BXD152":"x","BXD153":"x","BXD154":"x","BXD155":"x","BXD156":"x","BXD157":"x","BXD160":"x","BXD161":"x","BXD162":"x","BXD165":"x","BXD168":"x","BXD169":"x","BXD170":"x","BXD171":"x","BXD172":"x","BXD173":"x","BXD174":"x","BXD175":"x","BXD176":"x","BXD177":"x","BXD178":"x","BXD180":"x","BXD181":"x","BXD183":"x","BXD184":"x","BXD186":"x","BXD187":"x","BXD188":"x","BXD189":"x","BXD190":"x","BXD191":"x","BXD192":"x","BXD193":"x","BXD194":"x","BXD195":"x","BXD196":"x","BXD197":"x","BXD198":"x","BXD199":"x","BXD200":"x","BXD201":"x","BXD202":"x","BXD203":"x","BXD204":"x","BXD205":"x","BXD206":"x","BXD207":"x","BXD208":"x","BXD209":"x","BXD210":"x","BXD211":"x","BXD212":"x","BXD213":"x","BXD214":"x","BXD215":"x","BXD216":"x","BXD217":"x","BXD218":"x","BXD219":"x","BXD220":"x"}' def do_request(url, data): response = requests.post( url, data={ "dataset": "HC_M2_0606_P", "trait_id": "1435464_at", "corr_dataset": "HC_M2_0606_P", "corr_sample_method": "pearson", "corr_return_results": "100", "corr_samples_group": "samples_primary", "sample_vals": sample_vals(), "location_type": "gene", **data, }) while response.text.find('<meta http-equiv="refresh" content="5">') >= 0: response = requests.get(response.url) pass return response def check_sample_correlations(baseurl, base_data): data = { **base_data, "corr_type": "sample", "corr_sample_method": "pearson", "location_type": "gene", "corr_return_results": "200" } top_n_message = "The top 200 correlations ranked by the Genetic Correlation" result = do_request(f"{baseurl}/corr_compute", data) assert result.status_code == 200 assert (result.text.find(f"Values of record {base_data['trait_id']}") >= 0), result.text assert (result.text.find(top_n_message) >= 0), result.text def check_tissue_correlations(baseurl, base_data): data = { **base_data, "corr_type": "tissue", "location_type": "gene", } result = do_request(f"{baseurl}/corr_compute", data) assert result.status_code == 200 if (data["trait_id"] == "1442370_at" and data["corr_dataset"] in ("BXDPublish",)): top_n_message = ( "It is not possible to compute the 'Tissue' correlations between " f"trait '{data['trait_id']}' and the data") else: top_n_message = "The top 100 correlations ranked by the Tissue Correlation" assert (result.text.find(f"Values of record {base_data['trait_id']}") >= 0), result.text assert (html.unescape(result.text).find(top_n_message) >= 0), ( f"NOT FOUND: {top_n_message}") def check_lit_correlations(baseurl, base_data): data = { **base_data, "corr_type": "lit", "corr_return_results": "200" } result = do_request(f"{baseurl}/corr_compute", data) assert result.status_code == 200 if (data["trait_id"] == "1442370_at" and data["corr_dataset"] in ("BXDPublish",)): top_n_message = ( "It is not possible to compute the 'Literature' correlations " f"between trait '{data['trait_id']}' and the data") else: top_n_message = "The top 200 correlations ranked by the Literature Correlation" assert (result.text.find(f"Values of record {base_data['trait_id']}") >= 0), result.text assert (html.unescape(result.text).find(top_n_message) >= 0), ( f"NOT FOUND: {top_n_message}") def check_correlations(args_obj, parser): print("") print("Checking the correlations...") corr_type_fns = { "sample": check_sample_correlations, "tissue": check_tissue_correlations, "lit": check_lit_correlations } host = args_obj.host failure = False for corr_type, corr_type_fn in corr_type_fns.items(): for corr_base in corrs_base_data(): try: print(f"\tChecking {corr_type} correlations...", end="") corr_type_fn(host, corr_base) print(" ok") except AssertionError as asserterr: print (f" fail: {asserterr.args[0]}") failure = True if failure: print("FAIL!") sys.exit(1) print("OK") def thread(value, *functions): return reduce(lambda result, func: func(result), functions, value) def parse_results_from_html(raw_html): doc = etree.HTML(raw_html) scripts = doc.xpath('//script') for script in scripts: script_content = thread( script.xpath('.//child::text()'), lambda val: "".join(val).strip()) if script_content.find("var tableJson") >= 0: return { str(row["trait_id"]): row for row in json.loads(thread( script_content, lambda val: val[len("var tableJson = "):].strip().replace( "\\r\\n", "\\n")))} return {} def parse_expected(filepath): with open(filepath, encoding="utf-8") as infl: reader = csv.DictReader(infl, dialect=csv.unix_dialect) for line in reader: yield line def collect_failures(actual, expected, keys): # assert len(actual) == len(expected), ( # f"Expected {len(expected)} results but instead got {len(actual)} " # "results") def __equal(trait_id, act_row, exp_row): if act_row is None: return (f"Could not find trait '{trait_id}' in actual results",) __eq = tuple() for act_key, exp_key, title in keys: act_val, exp_val = ( html.unescape(str(act_row[act_key]).strip()), str(exp_row[exp_key]).strip()) if act_val == exp_val: # __eq = __eq + ("PASSED",) continue __eq = __eq + (( f"Trait '{trait_id}': " f"Different '{title}' values: expected:\n\t\t'{repr(exp_val)}'" "\n\nbut got\n" f"\n\t\t'{repr(act_val)}'"),) continue return __eq return tuple( item for item in ( __equal(str(exp_row["Record"]), actual.get(str(exp_row["Record"])), exp_row) for exp_row in expected) if bool(item)) def check_correctness(host): # pearsons_keys = ( # ("trait_id", "Record ID", "Trait/Record ID"), # ("sample_r", "Sample r ?", "Sample r value"), # ("num_overlap", "N Cases", "N Cases"), # ("sample_p", "Sample p(r) ?", "Sample p value"), # ("symbol", "Symbol", "Symbol"), # ("description", "Description", "Description"), # ("location", "Location Chr and Mb", "Location Chr and Mb"), # ("mean", "Mean Expr", "Mean"), # ("lrs_location", "Max LRS Location Chr and Mb", "Max LRS Location Chr and Mb"), # ("lit_corr", "Lit Corr ?", "Literature Correlation"), # ("tissue_corr", "Tissue r ?", "Tissue Correlation r"), # ("tissue_pvalue", "Tissue p(r) ?", "Tissue Correlation p value")) pearsons_keys = ( ("trait_id", "Record", "Trait/Record ID"), ("sample_r", "Sample r", "Sample r value"), ("num_overlap", "N", "N Cases"), ("sample_p", "Sample p(r)", "Sample p value"), ("description", "Description", "Description")) spearmans_keys = ( ("trait_id", "Record ID", "Trait/Record ID"), ("sample_r", "Sample rho ?", "Sample rho value"), ("num_overlap", "N Cases", "N Cases"), ("sample_p", "Sample p(rho) ?", "Sample p(rho) value"), ("symbol", "Symbol", "Symbol"), ("description", "Description", "Description"), ("location", "Location Chr and Mb", "Location Chr and Mb"), ("mean", "Mean Expr", "Mean"), ("lrs_location", "Max LRS Location Chr and Mb", "Max LRS Location Chr and Mb"), ("lit_corr", "Lit Corr ?", "Literature Correlation"), ("tissue_corr", "Tissue rho ?", "Tissue Correlation rho"), ("tissue_pvalue", "Tissue p(rho) ?", "Tissue Correlation p(rho) value")) failures = {} tests = [ ("Trait '10710' (Dataset 'BXDPublish'): Sample Correlation, Pearson, 500 results", {"dataset": "BXDPublish", "trait_id": "10710", "corr_dataset": "BXDPublish", "corr_type": "sample", "corr_sample_method": "pearson", "location_type": "highest_lod", "corr_samples_group": "samples_primary", "sample_vals": '{"C57BL/6J":"23.000","DBA/2J":"21.390","B6D2F1":"x","D2B6F1":"x","BXD1":"25.505","BXD2":"20.197","BXD5":"27.270","BXD6":"18.768","BXD8":"21.440","BXD9":"23.974","BXD11":"24.309","BXD12":"20.669","BXD13":"18.857","BXD14":"21.035","BXD15":"21.350","BXD16":"20.869","BXD18":"20.812","BXD19":"22.859","BXD20":"19.768","BXD21":"23.424","BXD22":"25.430","BXD23":"18.924","BXD24":"22.433","BXD24a":"x","BXD25":"19.590","BXD27":"19.938","BXD28":"20.123","BXD29":"18.741","BXD30":"19.160","BXD31":"20.330","BXD32":"25.748","BXD33":"23.531","BXD34":"22.670","BXD35":"20.276","BXD36":"21.417","BXD37":"x","BXD38":"19.805","BXD39":"21.827","BXD40":"23.241","BXD41":"x","BXD42":"24.039","BXD43":"21.778","BXD44":"26.300","BXD45":"22.730","BXD48":"x","BXD48a":"x","BXD49":"x","BXD50":"x","BXD51":"24.827","BXD52":"x","BXD53":"x","BXD54":"x","BXD55":"x","BXD56":"x","BXD59":"x","BXD60":"24.055","BXD61":"x","BXD62":"25.336","BXD63":"22.865","BXD64":"x","BXD65":"x","BXD65a":"21.949","BXD65b":"21.836","BXD66":"x","BXD67":"x","BXD68":"x","BXD69":"22.643","BXD70":"x","BXD71":"x","BXD72":"x","BXD73":"23.606","BXD73a":"x","BXD73b":"x","BXD74":"x","BXD75":"22.097","BXD76":"x","BXD77":"24.020","BXD78":"x","BXD79":"x","BXD81":"x","BXD83":"23.811","BXD84":"x","BXD85":"22.137","BXD86":"26.518","BXD87":"21.136","BXD88":"x","BXD89":"20.182","BXD90":"22.480","BXD91":"x","BXD93":"x","BXD94":"x","BXD95":"x","BXD98":"x","BXD99":"x","BXD100":"x","BXD101":"x","BXD102":"x","BXD104":"x","BXD105":"x","BXD106":"x","BXD107":"x","BXD108":"x","BXD109":"x","BXD110":"x","BXD111":"x","BXD112":"x","BXD113":"x","BXD114":"x","BXD115":"x","BXD116":"x","BXD117":"x","BXD119":"x","BXD120":"x","BXD121":"x","BXD122":"x","BXD123":"x","BXD124":"x","BXD125":"x","BXD126":"x","BXD127":"x","BXD128":"x","BXD128a":"x","BXD130":"x","BXD131":"x","BXD132":"x","BXD133":"x","BXD134":"x","BXD135":"x","BXD136":"x","BXD137":"x","BXD138":"x","BXD139":"x","BXD141":"x","BXD142":"x","BXD144":"x","BXD145":"x","BXD146":"x","BXD147":"x","BXD148":"x","BXD149":"x","BXD150":"x","BXD151":"x","BXD152":"x","BXD153":"x","BXD154":"x","BXD155":"x","BXD156":"x","BXD157":"x","BXD160":"x","BXD161":"x","BXD162":"x","BXD165":"x","BXD168":"x","BXD169":"x","BXD170":"x","BXD171":"x","BXD172":"x","BXD173":"x","BXD174":"x","BXD175":"x","BXD176":"x","BXD177":"x","BXD178":"x","BXD180":"x","BXD181":"x","BXD183":"x","BXD184":"x","BXD186":"x","BXD187":"x","BXD188":"x","BXD189":"x","BXD190":"x","BXD191":"x","BXD192":"x","BXD193":"x","BXD194":"x","BXD195":"x","BXD196":"x","BXD197":"x","BXD198":"x","BXD199":"x","BXD200":"x","BXD201":"x","BXD202":"x","BXD203":"x","BXD204":"x","BXD205":"x","BXD206":"x","BXD207":"x","BXD208":"x","BXD209":"x","BXD210":"x","BXD211":"x","BXD212":"x","BXD213":"x","BXD214":"x","BXD215":"x","BXD216":"x","BXD217":"x","BXD218":"x","BXD219":"x","BXD220":"x"}', "corr_return_results": "500"}, "BXD_10710_vs_BXDPublish.csv", pearsons_keys), ] for test_title, test_data, expected_file, method_keys in tests: print(f"Test: {test_title} ...", end="\t") response = requests.post(f"{host}/corr_compute", data=test_data) while response.text.find('<meta http-equiv="refresh" content="5">') >= 0: response = requests.get(response.url) pass results = parse_results_from_html(response.text) if len(results) == 0: failures = { **failures, test_title: (("No results found.",),)} continue filepath = Path.cwd().parent.joinpath( f"test/requests/correlation_results_text_files/{expected_file}") failures = { key: value for key,value in { **failures, test_title: collect_failures( results, tuple(parse_expected(filepath)), method_keys) }.items() if len(value) > 0 } if len(failures) > 0: print("\n\nFAILURES: ") for test_title, failures in failures.items(): print(f"\nTest: {test_title}") for result, result_failures in enumerate(failures): for failure in result_failures: print(f"\tResult {result}: {failure}") print_newline = True if len(result_failures) > 0: print("") return False print("") return True def check_correlations_correctness(args_obj, parser): print("") print("Checking the correctness of the correlations...") if not check_correctness(args_obj.host): sys.exit(1)