about summary refs log tree commit diff
import csv
import sys
import html
import json
import requests
from lxml import etree
from pathlib import Path
from lxml.html import parse
from functools import reduce
from link_checker import check_page

def corrs_base_data():
    return [
        {
            "dataset": "HC_M2_0606_P",
            "trait_id": "1435464_at",
            "corr_dataset": "HC_M2_0606_P",
        },
        {
            "dataset": "HC_M2_0606_P",
            "trait_id": "1457545_at",
            "corr_dataset": "HC_M2_0606_R",
        },
        {
            "dataset": "HC_M2_0606_P",
            "trait_id": "1442370_at",
            "corr_dataset": "BXDPublish",
        }
    ]
def sample_vals():
    return '{"C57BL/6J":"10.835","DBA/2J":"11.142","B6D2F1":"11.126","D2B6F1":"11.143","BXD1":"10.811","BXD2":"11.503","BXD5":"10.766","BXD6":"10.986","BXD8":"11.050","BXD9":"10.822","BXD11":"10.670","BXD12":"10.946","BXD13":"10.890","BXD14":"x","BXD15":"10.884","BXD16":"11.222","BXD18":"x","BXD19":"10.968","BXD20":"10.962","BXD21":"10.906","BXD22":"11.080","BXD23":"11.046","BXD24":"11.146","BXD24a":"x","BXD25":"x","BXD27":"11.078","BXD28":"11.034","BXD29":"10.808","BXD30":"x","BXD31":"11.087","BXD32":"11.029","BXD33":"10.662","BXD34":"11.482","BXD35":"x","BXD36":"x","BXD37":"x","BXD38":"10.836","BXD39":"10.926","BXD40":"10.638","BXD41":"x","BXD42":"10.974","BXD43":"10.828","BXD44":"10.900","BXD45":"11.358","BXD48":"11.042","BXD48a":"10.975","BXD49":"x","BXD50":"11.228","BXD51":"11.126","BXD52":"x","BXD53":"x","BXD54":"x","BXD55":"11.580","BXD56":"x","BXD59":"x","BXD60":"10.829","BXD61":"11.152","BXD62":"11.156","BXD63":"10.942","BXD64":"10.506","BXD65":"11.126","BXD65a":"11.272","BXD65b":"11.157","BXD66":"11.071","BXD67":"11.080","BXD68":"10.997","BXD69":"11.096","BXD70":"11.152","BXD71":"x","BXD72":"x","BXD73":"11.262","BXD73a":"11.444","BXD73b":"x","BXD74":"10.974","BXD75":"11.150","BXD76":"10.920","BXD77":"10.928","BXD78":"x","BXD79":"11.371","BXD81":"x","BXD83":"10.946","BXD84":"11.181","BXD85":"10.992","BXD86":"10.770","BXD87":"11.200","BXD88":"x","BXD89":"10.930","BXD90":"11.183","BXD91":"x","BXD93":"11.056","BXD94":"10.737","BXD95":"x","BXD98":"10.986","BXD99":"10.892","BXD100":"x","BXD101":"x","BXD102":"x","BXD104":"x","BXD105":"x","BXD106":"x","BXD107":"x","BXD108":"x","BXD109":"x","BXD110":"x","BXD111":"x","BXD112":"x","BXD113":"x","BXD114":"x","BXD115":"x","BXD116":"x","BXD117":"x","BXD119":"x","BXD120":"x","BXD121":"x","BXD122":"x","BXD123":"x","BXD124":"x","BXD125":"x","BXD126":"x","BXD127":"x","BXD128":"x","BXD128a":"x","BXD130":"x","BXD131":"x","BXD132":"x","BXD133":"x","BXD134":"x","BXD135":"x","BXD136":"x","BXD137":"x","BXD138":"x","BXD139":"x","BXD141":"x","BXD142":"x","BXD144":"x","BXD145":"x","BXD146":"x","BXD147":"x","BXD148":"x","BXD149":"x","BXD150":"x","BXD151":"x","BXD152":"x","BXD153":"x","BXD154":"x","BXD155":"x","BXD156":"x","BXD157":"x","BXD160":"x","BXD161":"x","BXD162":"x","BXD165":"x","BXD168":"x","BXD169":"x","BXD170":"x","BXD171":"x","BXD172":"x","BXD173":"x","BXD174":"x","BXD175":"x","BXD176":"x","BXD177":"x","BXD178":"x","BXD180":"x","BXD181":"x","BXD183":"x","BXD184":"x","BXD186":"x","BXD187":"x","BXD188":"x","BXD189":"x","BXD190":"x","BXD191":"x","BXD192":"x","BXD193":"x","BXD194":"x","BXD195":"x","BXD196":"x","BXD197":"x","BXD198":"x","BXD199":"x","BXD200":"x","BXD201":"x","BXD202":"x","BXD203":"x","BXD204":"x","BXD205":"x","BXD206":"x","BXD207":"x","BXD208":"x","BXD209":"x","BXD210":"x","BXD211":"x","BXD212":"x","BXD213":"x","BXD214":"x","BXD215":"x","BXD216":"x","BXD217":"x","BXD218":"x","BXD219":"x","BXD220":"x"}'

def do_request(url, data):
    response = requests.post(
        url,
        data={
            "dataset": "HC_M2_0606_P",
            "trait_id": "1435464_at",
            "corr_dataset": "HC_M2_0606_P",
            "corr_sample_method": "pearson",
            "corr_return_results": "100",
            "corr_samples_group": "samples_primary",
            "sample_vals": sample_vals(),
            "location_type": "gene",
            **data,
        })
    while response.text.find('<meta http-equiv="refresh" content="5">') >= 0:
        response = requests.get(response.url)
        pass
    return response

def check_sample_correlations(baseurl, base_data):
    data = {
        **base_data,
        "corr_type": "sample",
        "corr_sample_method": "pearson",
        "location_type": "gene",
        "corr_return_results": "200"
    }
    top_n_message = "The top 200 correlations ranked by the Genetic Correlation"
    result = do_request(f"{baseurl}/corr_compute", data)
    assert result.status_code == 200
    assert (result.text.find(f"Values of record {base_data['trait_id']}") >= 0), result.text
    assert (result.text.find(top_n_message) >= 0), result.text

def check_tissue_correlations(baseurl, base_data):
    data = {
        **base_data,
        "corr_type": "tissue",
        "location_type": "gene",
    }
    result = do_request(f"{baseurl}/corr_compute", data)

    assert result.status_code == 200
    if (data["trait_id"] == "1442370_at"
        and data["corr_dataset"] in ("BXDPublish",)):
        top_n_message = (
            "It is not possible to compute the 'Tissue' correlations between "
            f"trait '{data['trait_id']}' and the data")
    else:
        top_n_message = "The top 100 correlations ranked by the Tissue Correlation"
        assert (result.text.find(f"Values of record {base_data['trait_id']}") >= 0), result.text

    assert (html.unescape(result.text).find(top_n_message) >= 0), (
        f"NOT FOUND: {top_n_message}")

def check_lit_correlations(baseurl, base_data):
    data = {
        **base_data,
        "corr_type": "lit",
        "corr_return_results": "200"
    }
    result = do_request(f"{baseurl}/corr_compute", data)

    assert result.status_code == 200
    if (data["trait_id"] == "1442370_at"
        and data["corr_dataset"] in ("BXDPublish",)):
        top_n_message = (
            "It is not possible to compute the 'Literature' correlations "
            f"between trait '{data['trait_id']}' and the data")
    else:
        top_n_message = "The top 200 correlations ranked by the Literature Correlation"
        assert (result.text.find(f"Values of record {base_data['trait_id']}") >= 0), result.text

    assert (html.unescape(result.text).find(top_n_message) >= 0), (
        f"NOT FOUND: {top_n_message}")

def check_correlations(args_obj, parser):
    print("")
    print("Checking the correlations...")
    corr_type_fns = {
        "sample": check_sample_correlations,
        "tissue": check_tissue_correlations,
        "lit": check_lit_correlations
    }
    host = args_obj.host
    failure = False
    for corr_type, corr_type_fn in corr_type_fns.items():
        for corr_base in corrs_base_data():
            try:
                print(f"\tChecking {corr_type} correlations...", end="")
                corr_type_fn(host, corr_base)
                print(" ok")
            except AssertionError as asserterr:
                print (f" fail: {asserterr.args[0]}")
                failure = True

    if failure:
        print("FAIL!")
        sys.exit(1)
    print("OK")

def thread(value, *functions):
    return reduce(lambda result, func: func(result), functions, value)

def parse_results_from_html(raw_html):
    doc = etree.HTML(raw_html)
    scripts = doc.xpath('//script')
    for script in scripts:
        script_content = thread(
            script.xpath('.//child::text()'),
            lambda val: "".join(val).strip())
        if script_content.find("var tableJson") >= 0:
            return {
                str(row["trait_id"]): row for row in
                json.loads(thread(
                    script_content,
                    lambda val: val[len("var tableJson = "):].strip().replace(
                        "\\r\\n", "\\n")))}

    return {}

def parse_expected(filepath):
    with open(filepath, encoding="utf-8") as infl:
        reader = csv.DictReader(infl, dialect=csv.unix_dialect)
        for line in reader:
            yield line

def collect_failures(actual, expected, keys):
    # assert len(actual) == len(expected), (
    #     f"Expected {len(expected)} results but instead got {len(actual)} "
    #     "results")
    def __equal(trait_id, act_row, exp_row):
        if act_row is None:
            return (f"Could not find trait '{trait_id}' in actual results",)
        __eq = tuple()
        for act_key, exp_key, title in keys:
            act_val, exp_val = (
                html.unescape(str(act_row[act_key]).strip()),
                str(exp_row[exp_key]).strip())
            if act_val == exp_val:
                # __eq = __eq + ("PASSED",)
                continue
            __eq = __eq + ((
                f"Trait '{trait_id}': "
                f"Different '{title}' values: expected:\n\t\t'{repr(exp_val)}'"
                "\n\nbut got\n"
                f"\n\t\t'{repr(act_val)}'"),)
            continue
        return __eq

    return tuple(
        item for item in (
            __equal(str(exp_row["Record"]),
                    actual.get(str(exp_row["Record"])),
                    exp_row)
            for exp_row in expected)
        if bool(item))

def check_correctness(host):
    # pearsons_keys = (
    #     ("trait_id", "Record ID", "Trait/Record ID"),
    #     ("sample_r", "Sample r ?", "Sample r value"),
    #     ("num_overlap", "N Cases", "N Cases"),
    #     ("sample_p", "Sample p(r) ?", "Sample p value"),
    #     ("symbol", "Symbol", "Symbol"),
    #     ("description", "Description", "Description"),
    #     ("location", "Location Chr and Mb", "Location Chr and Mb"),
    #     ("mean", "Mean Expr", "Mean"),
    #     ("lrs_location", "Max LRS Location Chr and Mb", "Max LRS Location Chr and Mb"),
    #     ("lit_corr", "Lit Corr ?", "Literature Correlation"),
    #     ("tissue_corr", "Tissue r ?", "Tissue Correlation r"),
    #     ("tissue_pvalue", "Tissue p(r) ?", "Tissue Correlation p value"))

    
    pearsons_keys = (
        ("trait_id", "Record", "Trait/Record ID"),
        ("sample_r", "Sample r", "Sample r value"),
        ("num_overlap", "N", "N Cases"),
        ("sample_p", "Sample p(r)", "Sample p value"),
        ("description", "Description", "Description"))

    spearmans_keys = (
        ("trait_id", "Record ID", "Trait/Record ID"),
        ("sample_r", "Sample rho ?", "Sample rho value"),
        ("num_overlap", "N Cases", "N Cases"),
        ("sample_p", "Sample p(rho) ?", "Sample p(rho) value"),
        ("symbol", "Symbol", "Symbol"),
        ("description", "Description", "Description"),
        ("location", "Location Chr and Mb", "Location Chr and Mb"),
        ("mean", "Mean Expr", "Mean"),
        ("lrs_location", "Max LRS Location Chr and Mb", "Max LRS Location Chr and Mb"),
        ("lit_corr", "Lit Corr ?", "Literature Correlation"),
        ("tissue_corr", "Tissue rho ?", "Tissue Correlation rho"),
        ("tissue_pvalue", "Tissue p(rho) ?", "Tissue Correlation p(rho) value"))
    failures = {}
    tests = [
        ("Trait '10710' (Dataset 'BXDPublish'): Sample Correlation, Pearson, 500 results",
         {"dataset": "BXDPublish", "trait_id": "10710",
          "corr_dataset": "BXDPublish", "corr_type": "sample",
          "corr_sample_method": "pearson", "location_type": "highest_lod",
          "corr_samples_group": "samples_primary",
          "sample_vals": '{"C57BL/6J":"23.000","DBA/2J":"21.390","B6D2F1":"x","D2B6F1":"x","BXD1":"25.505","BXD2":"20.197","BXD5":"27.270","BXD6":"18.768","BXD8":"21.440","BXD9":"23.974","BXD11":"24.309","BXD12":"20.669","BXD13":"18.857","BXD14":"21.035","BXD15":"21.350","BXD16":"20.869","BXD18":"20.812","BXD19":"22.859","BXD20":"19.768","BXD21":"23.424","BXD22":"25.430","BXD23":"18.924","BXD24":"22.433","BXD24a":"x","BXD25":"19.590","BXD27":"19.938","BXD28":"20.123","BXD29":"18.741","BXD30":"19.160","BXD31":"20.330","BXD32":"25.748","BXD33":"23.531","BXD34":"22.670","BXD35":"20.276","BXD36":"21.417","BXD37":"x","BXD38":"19.805","BXD39":"21.827","BXD40":"23.241","BXD41":"x","BXD42":"24.039","BXD43":"21.778","BXD44":"26.300","BXD45":"22.730","BXD48":"x","BXD48a":"x","BXD49":"x","BXD50":"x","BXD51":"24.827","BXD52":"x","BXD53":"x","BXD54":"x","BXD55":"x","BXD56":"x","BXD59":"x","BXD60":"24.055","BXD61":"x","BXD62":"25.336","BXD63":"22.865","BXD64":"x","BXD65":"x","BXD65a":"21.949","BXD65b":"21.836","BXD66":"x","BXD67":"x","BXD68":"x","BXD69":"22.643","BXD70":"x","BXD71":"x","BXD72":"x","BXD73":"23.606","BXD73a":"x","BXD73b":"x","BXD74":"x","BXD75":"22.097","BXD76":"x","BXD77":"24.020","BXD78":"x","BXD79":"x","BXD81":"x","BXD83":"23.811","BXD84":"x","BXD85":"22.137","BXD86":"26.518","BXD87":"21.136","BXD88":"x","BXD89":"20.182","BXD90":"22.480","BXD91":"x","BXD93":"x","BXD94":"x","BXD95":"x","BXD98":"x","BXD99":"x","BXD100":"x","BXD101":"x","BXD102":"x","BXD104":"x","BXD105":"x","BXD106":"x","BXD107":"x","BXD108":"x","BXD109":"x","BXD110":"x","BXD111":"x","BXD112":"x","BXD113":"x","BXD114":"x","BXD115":"x","BXD116":"x","BXD117":"x","BXD119":"x","BXD120":"x","BXD121":"x","BXD122":"x","BXD123":"x","BXD124":"x","BXD125":"x","BXD126":"x","BXD127":"x","BXD128":"x","BXD128a":"x","BXD130":"x","BXD131":"x","BXD132":"x","BXD133":"x","BXD134":"x","BXD135":"x","BXD136":"x","BXD137":"x","BXD138":"x","BXD139":"x","BXD141":"x","BXD142":"x","BXD144":"x","BXD145":"x","BXD146":"x","BXD147":"x","BXD148":"x","BXD149":"x","BXD150":"x","BXD151":"x","BXD152":"x","BXD153":"x","BXD154":"x","BXD155":"x","BXD156":"x","BXD157":"x","BXD160":"x","BXD161":"x","BXD162":"x","BXD165":"x","BXD168":"x","BXD169":"x","BXD170":"x","BXD171":"x","BXD172":"x","BXD173":"x","BXD174":"x","BXD175":"x","BXD176":"x","BXD177":"x","BXD178":"x","BXD180":"x","BXD181":"x","BXD183":"x","BXD184":"x","BXD186":"x","BXD187":"x","BXD188":"x","BXD189":"x","BXD190":"x","BXD191":"x","BXD192":"x","BXD193":"x","BXD194":"x","BXD195":"x","BXD196":"x","BXD197":"x","BXD198":"x","BXD199":"x","BXD200":"x","BXD201":"x","BXD202":"x","BXD203":"x","BXD204":"x","BXD205":"x","BXD206":"x","BXD207":"x","BXD208":"x","BXD209":"x","BXD210":"x","BXD211":"x","BXD212":"x","BXD213":"x","BXD214":"x","BXD215":"x","BXD216":"x","BXD217":"x","BXD218":"x","BXD219":"x","BXD220":"x"}',
          "corr_return_results": "500"},
         "BXD_10710_vs_BXDPublish.csv",
         pearsons_keys),
    ]

    for test_title, test_data, expected_file, method_keys in tests:
        print(f"Test: {test_title} ...", end="\t")
        response = requests.post(f"{host}/corr_compute", data=test_data)
        while response.text.find('<meta http-equiv="refresh" content="5">') >= 0:
            response = requests.get(response.url)
            pass
        results = parse_results_from_html(response.text)
        if len(results) == 0:
            failures = {
                **failures,
                test_title: (("No results found.",),)}
            continue
        filepath = Path.cwd().parent.joinpath(
            f"test/requests/correlation_results_text_files/{expected_file}")
        failures = {
            key: value for key,value in {
                **failures,
                test_title: collect_failures(
                    results, tuple(parse_expected(filepath)), method_keys)
            }.items() if len(value) > 0
        }

    if len(failures) > 0:
        print("\n\nFAILURES: ")
        for test_title, failures in failures.items():
            print(f"\nTest: {test_title}")
            for result, result_failures in enumerate(failures):
                for failure in result_failures:
                    print(f"\tResult {result}: {failure}")
                    print_newline = True
                if len(result_failures) > 0:
                    print("")
        return False

    print("")
    return True

def check_correlations_correctness(args_obj, parser):
    print("")
    print("Checking the correctness of the correlations...")
    if not check_correctness(args_obj.host):
        sys.exit(1)