# CTL analysis for GN2
# Author / Maintainer: Danny Arends <Danny.Arends@gmail.com>
import sys
from numpy import *
import rpy2.robjects as ro # R Objects
import rpy2.rinterface as ri
import simplejson as json
from gn2.base.webqtlConfig import GENERATED_IMAGE_DIR
from gn2.utility import webqtlUtil # Random number for the image
from gn2.utility import genofile_parser # genofile_parser
import base64
import array
import csv
import itertools
from gn2.base import data_set
from gn2.base.trait import create_trait, retrieve_sample_data
from gn2.utility import helper_functions
from gn2.utility.tools import locate, GN2_BRANCH_URL
from rpy2.robjects.packages import importr
# Get pointers to some common R functions
r_library = ro.r["library"] # Map the library function
r_options = ro.r["options"] # Map the options function
r_t = ro.r["t"] # Map the t function
r_unlist = ro.r["unlist"] # Map the unlist function
r_list = ro.r.list # Map the list function
r_png = ro.r["png"] # Map the png function for plotting
r_dev_off = ro.r["dev.off"] # Map the dev.off function
r_write_table = ro.r["write.table"] # Map the write.table function
r_data_frame = ro.r["data.frame"] # Map the write.table function
r_as_numeric = ro.r["as.numeric"] # Map the write.table function
class CTL:
def __init__(self):
# Load CTL - Should only be done once, since it is quite expensive
r_library("ctl")
r_options(stringsAsFactors=False)
# Map the CTLscan function
self.r_CTLscan = ro.r["CTLscan"]
# Map the CTLsignificant function
self.r_CTLsignificant = ro.r["CTLsignificant"]
# Map the ctl.lineplot function
self.r_lineplot = ro.r["ctl.lineplot"]
# Map the CTLsignificant function
self.r_plotCTLobject = ro.r["plot.CTLobject"]
self.nodes_list = []
self.edges_list = []
self.gn2_url = GN2_BRANCH_URL
def addNode(self, gt):
node_dict = {'data': {'id': str(gt.name) + ":" + str(gt.dataset.name),
'sid': str(gt.name),
'dataset': str(gt.dataset.name),
'label': gt.name,
'symbol': gt.symbol,
'geneid': gt.geneid,
'omim': gt.omim}}
self.nodes_list.append(node_dict)
def addEdge(self, gtS, gtT, significant, x):
edge_data = {'id': str(gtS.symbol) + '_' + significant[1][x] + '_' + str(gtT.symbol),
'source': str(gtS.name) + ":" + str(gtS.dataset.name),
'target': str(gtT.name) + ":" + str(gtT.dataset.name),
'lod': significant[3][x],
'color': "#ff0000",
'width': significant[3][x]}
edge_dict = {'data': edge_data}
self.edges_list.append(edge_dict)
def run_analysis(self, requestform):
self.trait_db_list = [trait.strip()
for trait in requestform['trait_list'].split(',')]
self.trait_db_list = [x for x in self.trait_db_list if x]
strategy = requestform.get("strategy")
nperm = int(requestform.get("nperm"))
parametric = bool(requestform.get("parametric"))
significance = float(requestform.get("significance"))
# Get the name of the .geno file belonging to the first phenotype
datasetname = self.trait_db_list[0].split(":")[1]
dataset = data_set.create_dataset(datasetname)
genofilelocation = locate(dataset.group.name + ".geno", "genotype")
parser = genofile_parser.ConvertGenoFile(genofilelocation)
parser.process_csv()
# Create a genotype matrix
individuals = parser.individuals
markers = []
markernames = []
for marker in parser.markers:
markernames.append(marker["name"])
markers.append(marker["genotypes"])
genotypes = list(itertools.chain(*markers))
rGeno = r_t(ro.r.matrix(r_unlist(genotypes), nrow=len(markernames), ncol=len(
individuals), dimnames=r_list(markernames, individuals), byrow=True))
# Create a phenotype matrix
traits = []
for trait in self.trait_db_list:
if trait != "":
ts = trait.split(':')
gt = create_trait(name=ts[0], dataset_name=ts[1])
gt = retrieve_sample_data(gt, dataset, individuals)
for ind in individuals:
if ind in list(gt.data.keys()):
traits.append(gt.data[ind].value)
else:
traits.append("-999")
rPheno = r_t(ro.r.matrix(r_as_numeric(r_unlist(traits)), nrow=len(self.trait_db_list), ncol=len(
individuals), dimnames=r_list(self.trait_db_list, individuals), byrow=True))
# Use a data frame to store the objects
rPheno = r_data_frame(rPheno, check_names=False)
rGeno = r_data_frame(rGeno, check_names=False)
# Debug: Print the genotype and phenotype files to disk
#r_write_table(rGeno, "~/outputGN/geno.csv")
#r_write_table(rPheno, "~/outputGN/pheno.csv")
# Perform the CTL scan
res = self.r_CTLscan(rGeno, rPheno, strategy=strategy,
nperm=nperm, parametric=parametric, nthreads=6)
# Get significant interactions
significant = self.r_CTLsignificant(res, significance=significance)
# Create an image for output
self.results = {}
self.results['imgurl1'] = webqtlUtil.genRandStr("CTLline_") + ".png"
self.results['imgloc1'] = GENERATED_IMAGE_DIR + self.results['imgurl1']
self.results['ctlresult'] = significant
# Store the user specified parameters for the output page
self.results['requestform'] = requestform
# Create the lineplot
r_png(self.results['imgloc1'], width=1000,
height=600, type='cairo-png')
self.r_lineplot(res, significance=significance)
r_dev_off()
# We start from 2, since R starts from 1 :)
n = 2
for trait in self.trait_db_list:
# Create the QTL like CTL plots
self.results['imgurl' + \
str(n)] = webqtlUtil.genRandStr("CTL_") + ".png"
self.results['imgloc' + str(n)] = GENERATED_IMAGE_DIR + \
self.results['imgurl' + str(n)]
r_png(self.results['imgloc' + str(n)],
width=1000, height=600, type='cairo-png')
self.r_plotCTLobject(
res, (n - 1), significance=significance, main='Phenotype ' + trait)
r_dev_off()
n = n + 1
# Flush any output from R
sys.stdout.flush()
# Create the interactive graph for cytoscape visualization (Nodes and Edges)
if not isinstance(significant, ri.RNULLType):
for x in range(len(significant[0])):
# Source
tsS = significant[0][x].split(':')
# Target
tsT = significant[2][x].split(':')
# Retrieve Source info from the DB
gtS = create_trait(name=tsS[0], dataset_name=tsS[1])
# Retrieve Target info from the DB
gtT = create_trait(name=tsT[0], dataset_name=tsT[1])
self.addNode(gtS)
self.addNode(gtT)
self.addEdge(gtS, gtT, significant, x)
# Update the trait name for the displayed table
significant[0][x] = "{} ({})".format(gtS.symbol, gtS.name)
# Update the trait name for the displayed table
significant[2][x] = "{} ({})".format(gtT.symbol, gtT.name)
self.elements = json.dumps(self.nodes_list + self.edges_list)
def loadImage(self, path, name):
imgfile = open(self.results[path], 'rb')
imgdata = imgfile.read()
imgB64 = base64.b64encode(imgdata)
bytesarray = array.array('B', imgB64)
self.results[name] = bytesarray
def render_image(self, results):
self.loadImage("imgloc1", "imgdata1")
n = 2
for trait in self.trait_db_list:
self.loadImage("imgloc" + str(n), "imgdata" + str(n))
n = n + 1
def process_results(self, results):
template_vars = {}
template_vars["results"] = self.results
template_vars["elements"] = self.elements
self.render_image(self.results)
sys.stdout.flush()
return(dict(template_vars))