aboutsummaryrefslogtreecommitdiff
import unittest
from unittest import mock
from gn2.wqflask import app
from collections import OrderedDict
from gn2.wqflask.api.correlation import init_corr_params
from gn2.wqflask.api.correlation import convert_to_mouse_gene_id
from gn2.wqflask.api.correlation import do_literature_correlation_for_all_traits
from gn2.wqflask.api.correlation import get_sample_r_and_p_values
from gn2.wqflask.api.correlation import calculate_results


class AttributeSetter:
    def __init__(self, obj):
        for k, v in obj.items():
            setattr(self, k, v)


class MockDataset(AttributeSetter):
    def get_trait_data(self):
        return None

    def retrieve_genes(self, id=None):
        return {"TT-1": "GH-1", "TT-2": "GH-2", "TT-3": "GH-3"}


class TestCorrelations(unittest.TestCase):
    def setUp(self):
        self.app_context = app.app_context()
        self.app_context.push()

    def tearDown(self):
        self.app_context.pop()

    def test_init_corr_params(self):
        start_vars = {"return_count": "3", "type": "T1", "method": "spearman"}

        corr_params_results = init_corr_params(start_vars=start_vars)
        expected_results = {"return_count": 3, "type": "T1", "method": "spearman"}

        self.assertEqual(corr_params_results, expected_results)

    @mock.patch("gn2.wqflask.api.correlation.database_connection")
    def test_convert_to_mouse_gene_id(self, mock_db):
        conn = mock.MagicMock()
        mock_db.return_value.__enter__.return_value = conn
        with conn.cursor() as cursor:
            cursor.fetchone.side_effect = [("MG-1",), ("MG-2",)]

            self.assertEqual(
                convert_to_mouse_gene_id(species="Other", gene_id=""), None
            )
            self.assertEqual(
                convert_to_mouse_gene_id(species="mouse", gene_id="MG-4"), "MG-4"
            )
            self.assertEqual(
                convert_to_mouse_gene_id(species="rat", gene_id="R1"), "MG-1"
            )
            self.assertEqual(
                convert_to_mouse_gene_id(species="human", gene_id="H1"), "MG-2"
            )

    @mock.patch("gn2.wqflask.api.correlation.database_connection")
    @mock.patch("gn2.wqflask.api.correlation.convert_to_mouse_gene_id")
    def test_do_literature_correlation_for_all_traits(
        self, mock_convert_to_mouse_geneid, mock_db
    ):
        mock_convert_to_mouse_geneid.side_effect = ["MG-1", "MG-2;", "MG-3", "MG-4"]

        trait_geneid_dict = {"TT-1": "GH-1", "TT-2": "GH-2", "TT-3": "GH-3"}
        conn = mock.MagicMock()
        mock_db.return_value.__enter__.return_value = conn
        with conn.cursor() as cursor:
            cursor.fetchone.side_effect = [("V1",), ("V2",), ("V3",)]
            this_trait = AttributeSetter({"geneid": "GH-1"})
            target_dataset = AttributeSetter(
                {"group": AttributeSetter({"species": "rat"})}
            )
            results = do_literature_correlation_for_all_traits(
                this_trait=this_trait,
                target_dataset=target_dataset,
                trait_geneid_dict=trait_geneid_dict,
                corr_params={},
            )
            expected_results = {
                "TT-1": ["GH-1", 0],
                "TT-2": ["GH-2", "V1"],
                "TT-3": ["GH-3", "V2"],
            }
            self.assertEqual(results, expected_results)

    @mock.patch("gn2.wqflask.api.correlation.corr_result_helpers.normalize_values")
    def test_get_sample_r_and_p_values(self, mock_normalize):

        group = AttributeSetter(
            {"samplelist": ["S1", "S2", "S3", "S4", "S5", "S6", "S7"]}
        )
        target_dataset = AttributeSetter({"group": group})

        target_vals = [3.4, 6.2, 4.1, 3.4, 1.2, 5.6]
        trait_data = {
            "S1": AttributeSetter({"value": 2.3}),
            "S2": AttributeSetter({"value": 1.1}),
            "S3": AttributeSetter({"value": 6.3}),
            "S4": AttributeSetter({"value": 3.6}),
            "S5": AttributeSetter({"value": 4.1}),
            "S6": AttributeSetter({"value": 5.0}),
        }
        this_trait = AttributeSetter({"data": trait_data})
        mock_normalize.return_value = (
            [2.3, 1.1, 6.3, 3.6, 4.1, 5.0],
            [3.4, 6.2, 4.1, 3.4, 1.2, 5.6],
            6,
        )
        mock_normalize.side_effect = [
            ([2.3, 1.1, 6.3, 3.6, 4.1, 5.0], [3.4, 6.2, 4.1, 3.4, 1.2, 5.6], 6),
            ([2.3, 1.1, 6.3, 3.6, 4.1, 5.0], [3.4, 6.2, 4.1, 3.4, 1.2, 5.6], 6),
            ([2.3, 1.1, 1.4], [3.4, 6.2, 4.1], 3),
        ]

        results_pearsonr = get_sample_r_and_p_values(
            this_trait=this_trait,
            this_dataset={},
            target_vals=target_vals,
            target_dataset=target_dataset,
            type="pearson",
        )
        results_spearmanr = get_sample_r_and_p_values(
            this_trait=this_trait,
            this_dataset={},
            target_vals=target_vals,
            target_dataset=target_dataset,
            type="spearman",
        )
        results_num_overlap = get_sample_r_and_p_values(
            this_trait=this_trait,
            this_dataset={},
            target_vals=target_vals,
            target_dataset=target_dataset,
            type="pearson",
        )
        expected_pearsonr = [-0.21618688834430866, 0.680771605997119, 6]
        expected_spearmanr = [-0.11595420713048969, 0.826848213385815, 6]
        for i, val in enumerate(expected_pearsonr):
            self.assertAlmostEqual(val, results_pearsonr[i], 4)
        for i, val in enumerate(expected_spearmanr):
            self.assertAlmostEqual(val, results_spearmanr[i], 4)
        self.assertEqual(results_num_overlap, None)

    @mock.patch("gn2.wqflask.api.correlation.do_literature_correlation_for_all_traits")
    def test_calculate_results(self, literature_correlation):

        literature_correlation.return_value = {
            "TT-1": ["GH-1", 0],
            "TT-2": ["GH-2", 3],
            "TT-3": ["GH-3", 1],
        }

        this_dataset = MockDataset({"group": AttributeSetter({"species": "rat"})})
        target_dataset = MockDataset({"group": AttributeSetter({"species": "rat"})})
        this_trait = AttributeSetter({"geneid": "GH-1"})
        corr_params = {"type": "literature"}
        sorted_results = calculate_results(
            this_trait=this_trait,
            this_dataset=this_dataset,
            target_dataset=target_dataset,
            corr_params=corr_params,
        )
        expected_results = {
            "TT-2": ["GH-2", 3],
            "TT-3": ["GH-3", 1],
            "TT-1": ["GH-1", 0],
        }

        self.assertTrue(isinstance(sorted_results, OrderedDict))
        self.assertEqual(dict(sorted_results), expected_results)